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Abstract— Malicious file analysis is well beyond the days
when creating simple hashes for binaries was sufficient. The
use of malicious PDF, Office, and other files present a far more
diverse threat than our defensive tools were originally designed
to handle. Even PE32 executables have been turned into poli-
and meta-morphic binaries with layers of packing applied to
hide from detection. To make matters worse, the sheer influx of
files to analyze presents a meaningful logistical problem which
becomes increasingly complex as analytic methods move from
static to dynamic analysis. When the point in time problem is
considered - the fact that historical discoveries can be viewed
differently in the light of new analytic techniques or information
- the problem seems all but intractable.

To this end, we designed the Skald framework, a blueprint
for future analytic systems. We leveraged this framework to
develop TOTEM, a system which is capable of coordinating, or-
chestrating, and scaling malware analytics across multiple cloud
providers and thousands of running instances. TOTEM makes
it easy to add new capabilities and can intelligently segregate
work based on features, such as filetype, analytic duration, and
computational complexity. TOTEM supports dynamic analysis
through DRAKVUF, a novel open-source dynamic malware
analysis system which was designed specifically to achieve
unparalleled scalability, while maintaining a high level of stealth
and visibility into the executing sample. Building on the latest
hardware virtualization extensions found in Intel processors
and the Xen hypervisor, DRAKVUF remains completely hidden
from the executing sample and requires no special software
to be installed within the sandbox. Further addressing the
problem of monitoring kernel-mode rootkits as well as user-
space applications, DRAKVUF significantly raises the bar for
evasive malware to remain undetected.

This paper will discuss the design, implementation, and
practical deployment of TOTEM and DRAKVUF to analyze
tremendous numbers of binary files.

I. INTRODUCTION
Modern malware analysis systems have come a long

way over the past years with numerous powerful tools
are currently available to researchers. Unfortunately, many
of these tools have been created to aid in the analysis
of binaries for the purpose of signature generation. While
effective at achieving their original goals, they fall short
when stretched to deal with the latest analysis trends, tech-
nology breakthroughs, and simply being used together in an
automated fashion. Furthermore, cyber criminals are growing
in sophistication and writing a signature to detect malware
binaries is no longer enough to stop the threat. This problem
is two fold. The first problem is that cyber criminals have
organized themselves. These teams command sophisticated
tools, infrastructure, financial networks, and the resources
required to stay ahead of the defender [5], [18]. The second
problem is that researchers are faced with an increasing rise
in malware volume. For example, in 2012, McAfee reported

receiving over 100k samples per day [3], yet on May 7
of 2015 alone, VirusTotal received over 1 million unique
samples [20].

To put it simply, a single analyst is no longer enough
to protect networks and identify malicious activity. A range
of specialized skills and tools are now required to perform
investigations and keep systems secure. In response, the
lone reverse engineer is evolving into teams of analysis to
identify:

1) Who is behind the action
2) What are their goals
3) Where is the infrastructure
4) When do they operate
5) Why are they conducting the operation
6) How do we thwart their activities

To answer these questions teams must work together, lever-
age the knowledge of their industry peers, and be able to
process an ever growing and changing volume of data. Sadly,
cyber security tools have not evolved to help these teams
perform their mission. The cyber security community is
in desperate need of tools that can extract features, utilize
techniques to make sense of the data, and provide a platform
to share this data with our peers. Furthermore, these tools
must scale to cope with the growing volume of information,
be resilient to system failures, and be flexible enough to
incorporate the latest technology trends.

The goal of this paper is to provide a high level overview
of the Skald framework for large scale threat intelligence.
The framework enables the creation of systems that can
support teams of analysts against the current threats. We
will then discuss two systems we created, TOTEM and
DRAKVUF, that already do leverage and integrate with
Skald-based systems. TOTEM is capable of performing
triage against objects through static analysis and collect
Indicators of Compromise (IOC) information from partners
at a scale previously impossible. We will then discuss our
solution for dynamic analysis, DRAKVUF, which performs
hypervisor based analysis efficiently while remaining stealthy
and increasingly resilient to evidence tampering.

II. BACKGROUND
Many of today’s security systems exist in a vacuum,

designed to "just get the job done", irrespective of how
they integrate into a larger security landscape [21]. While
current systems represent major steps forward, significant
improvements are required in the flow of data analysis if the
cyber security community wishes to tackle our present and
future challenges. In our experience, many of today’s systems



struggle to scale and provide the fault-tolerance required to
support the sheer amount of data that needs to be processed.
One of the major reasons for this is the linear, monolithic,
and tightly coupled processing pipeline of current systems.
For example, in the case of CRITs and MANTIS, secondary
tools are not separated from the core Apache system and
are executed on the same physical host. When the system
becomes overloaded, the scheduler forms a bottleneck and
prevents the secondary tools from executing properly. As
a result, the entire system can become unresponsive under
heavy load. Additionally, we observed that when one of
these tools fails, a graceful exit or cleanup is difficult to
perform and the system can quickly become overwhelmed
with a load of only a few thousand malware samples.
HTTP load balancing can help alleviate this problem but
represents a temporary fix, and not a true solution. These
issues of scale are not only limited to systems that focus
on performing malware and file analytics. Current methods
used for capturing and sharing IOCs are also significantly
limited when scaling across large internal and external user
bases. Ultimately, issues of scale and resiliency of current
systems limit the scope of analysis and collaboration that
can be performed.

Once analysis systems have collected data and IOCs,
working with the collected body of knowledge is another
area in need of improvement. To be truly effective, we must
merge existing systems together to leverage their strengths in
collecting data while also providing the infrastructure needed
to make sense of the data collected. Currently, multiple
systems are required to complete operational and strategic
threat intelligence tasks, each system storing a subset of
the data that must then be consumed by a human analyst.
As shown by Rieck et al. [17] and Chau et al. [4], the
computational merger of this data can prove to be invaluable
when performing advanced analytics using machine learning,
as well as during human guided analysis. Unfortunately, no
such system or framework exists that can tackle this problem.
Furthermore, systems designed to make sense of cyber threat
intelligence data are not able to easily digest data from the
highly different sources.

III. SYSTEM DESIGN
A. Skald

Fig. 1: Organization of the Framework

The Skald framework provides a foundation for developing
analytic platforms to support teams of analysts working to

thwart cyber-crime. It provides a foundation that is centered
around the three core pillars of resilience, scalability, and
flexibility. The Skald framework is designed to support many
types of object input by making the pipeline file and data-
type agnostic. Skald then provides the structure needed to
perform user-defined advanced analytics against a set of the
data for one to many object types. This means that Skald
based systems can asynchronously perform appropriate work
(for example on PE32 files, PDF documents, and lists of
domain names), with individual objects subjected to differing
workflows based on user and datatype requirements. These
actions are possible even while presenting an interface to
empower the analysts as to allow them to retrieve and share
their results using their preferred tools and scripting inter-
face. Skald is then capable of scaling these actions across
millions of objects while remaining resilient to failures and
providing the flexibility needed to change analytic methods
and core features.

The Skald framework is designed around the eXtended
Service-oriented Architecture (xSOA) with loosely coupled
Services [12], [13] and the microservices design pattern. This
was chosen as the foundation as xSOA naturally provides
flexibility and loosely coupling Services allows the system
to be resilient to faults. Additionally, leveraging the prin-
cipals of loosely coupled architecture affords a distributed
system that can scale to large workloads. Skald has been
slightly modified from the traditional xSOA architecture by
incorporating elements from the Borg system [19] to ensure
that the system would satisfy the three pillars - resilience,
scalability, and flexibility - when conducting analysis.

Three main elements, Services, Planners, and Transports,
compose the Skald framework. As illustrated in Figure 1
the Transport functions as the main orchestrator and moves
data and tasking around to the Planners. The Planners then
allocate infrastructure, enforce security, task the Services,
and monitor the Services health. The Services perform the
requested work and provide the resultant response, along
with pertinent meta-information such as error messages, back
to the Planner.

The Planner plays a major role in enabling the scalability
of the system. Like the Borg model, the Planner is able to
see all available tasking and the requirements of Services.
Because of this, it is able to package Services together when
this makes sense. This allows a Skald system to operate
efficiently by substantially reducing the infrastructure and
network overhead for transmitting data to and from Services.
In our evaluation we found that this was a major boon in
particular when scaling to a cloud-based infrastructure.

The independence of elements and abstraction provided
by the Planner creates a system that can be flexible. Because
a Planner only needs to know how to communicate with a
Service and what infrastructure it needs to execute the task,
Services can be exchanged, added, or subtracted to the sys-
tem easily. As long as the Services can communicate with the
Planner, and vice versa, the Planner requires no knowledge
of how the Services accomplish their tasks. Should a newer,
better, or simply different method be discovered to extract



Fig. 2: Organization of the Framework Themes

PE header information, for example, it can be swapped out
with or added alongside the old one very easily. Additionally,
this model allows 3rd parties to provide the Planners and
Services components for a Skald based system. Thus, an
implementation based on Skald can outsource Planner or
Service creation and development to a company specializing
in that work.

Finally, Planners are logically broken into themes as
illustrated in Figure 2. This breakout allows Skald to provide
a standard API/language that allows analysts to plug in
different viewing agents, ingest routines, and custom data
query scripts. This allows the analysis of Skald’s resultant
data to be the final goal and helps tackle the data overload
problem discussed by Woods et al. [26]. Specifically, Skald’s
data output format remains flexible and allows presentation
of that data to vary based on the needs and will of the analyst.
With the Skald design, it is feasible to have a Presenter
Service that allows one analysts to view the data through
a tool such as Maltego while a RE analysts can view a set
of the data through a plugin in IDAPro, while not requiring
a change in how the data is gathered, or affecting the data
formats of other analytic processes.

1) Investigation: The Investigation Planner is responsible
for performing analysis against one object. It does this
through providing four primary functions. The first function
is to schedule the execution of its analysis Services against a
supplied object. These Services then perform static analysis,
dynamic analysis, and gathering of data from other sources
that are either publicly or privately available. This satisfies
our goal for resiliency by having the analysis performed out-
side of the Planner component. As such, a failed Service will
not hinder other Services and the Planner itself. The second
function is to perform QoS operations through monitoring
the health of Services and reporting status. Additionally,
the Planner should execute remediation operations such as
adjusting its scheduler and issuing additional Services. Thus,
allowing the system to scale to meet operational require-

ments. The third function is the enforcement of the ACL by
adhering to configuring restrictions listed in the ACL-meta
tags. Finally, the fourth function is to optimize the tasking
of Services such as reducing data transfer over network
boundaries.

To help illustrate the goal of the Investigation Planner,
in an ideal world the Planner would function as follows.
The Transport layer will submit an object for Investigation
along with a set of taskings and ACL tags. The Planner
will then identify which Services are available for tasking
and configure them according to the tasking request and
ACL meta tags. Next, the Planner will identify how best
to execute the Services through either packaging an object
together with a set of Services for execution on one node or
through sending the object to an preexisting node dedicated
to a Service. The Planner will then monitor the health of
the Service and perform any remediation action as needed.
For example, if a Service is unable to gather data from a
source such as VirusTotal due to a query cap, the Planner will
reschedule the Service’s execution once the cap has expired.
Once the results of a Service is received, the Planner will then
pass the results to the Transport layer to have the Storage
Planner store the results. Additionally, if a Service returns
new objects, the Planner will package a new object with a
set of taskings and ACL tags. It will then submit the object
to the Transport layer to begin analysis.

2) Interrogation: The Interrogation Planner focuses on
what to do with the data and metadata after it extracted from
the raw objects of analysis. This takes on two forms. The
first focuses on how best to organize data in the system for
retrieval. The second form is how to performs analysis across
a set of elements in storage. Additionally, the Interrogation
Planner should be capable of performing caching to reduce
database queries and Service tasking.

In the first form, Interrogation Services will gather the
necessary data and then present them in a digestible form.
For example, a Service for displaying results from VirusTotal



(gathered by an Investigation Service) will receive the needed
stored results and then provide the mechanism to present
what is desirable. This separation provides flexibility by
allowing the display to change based on user needs. For
example, if at a later date IDAPro integration is desired, an
Interrogation Service can be created that provides this inter-
action. Additionally, the separation allows a Skald system to
scale with the number of users querying a system for data.

In the second form, an Interrogation Service will per-
form advanced analytics using techniques such as machine
learning. Supporting Services will perform the computational
work load while the Planner will distribute the work load
across available Services to complete the task at hand. This
load balancing can be integrated with mini-batch training
techniques to achieve large scale model training and genera-
tion, or could serve as a distribution layer for pre-trained
models so that querying Services can use such models
locally.

B. TOTEM

Implemented in Scala, TOTEM was developed concur-
rently to the definition of the Skald framework. Scala was
selected here for its functional programming capabilities,
ability to use already existing JVM libraries, and widespread
support. Compared to other major languages such as Python,
Scala was selected due to its speed and ease of deployment.
One of our goals with Totem was to ensure that it could
run across a diverse set of VPS providers, and the ease
of deploying JVM programs to Google Compute Cluster,
AWS, and others, were major considerations. Because of
the fact that we needed TOTEM to be easy to add new
Servers, while allowing developers to be able to easily
develop work flows across their unique needs, TOTEM has
been implemented as a series of libraries, allowing users to
modify their installations to their needs. Totem was designed
to be approachable to both small users and large ones, a
departure from previous mass malware processing systems.
As a result, there are relatively few external requirements -
both in the hardware and software realm. The TOTEM stack
is easily extended, but for discussion’s sake, we will refer to
the stack used during the early production stages at Novetta.

C. TOTEM Terms

TOTEM is somewhat different from other stream process-
ing systems, so it is important to clearly state the language
that will be using to describe the system going forward.

1) Worker: A specific instance of a TOTEM worker sys-
tem, separate from the Message Queue. Each Worker is
a self-contained system of processes, which coordinate
with each other on the local system, and are capable of
executing a predefined set of analytic tasks. Workers
have no knowledge of other members of their swarm,
and only communicate with the transport layer.

2) Job: A structure which details the location of a file to
analyze, the individual analysis tasks to be performed,
any associated information or context needed to per-

form those tasks, and the number of times this overall
job has been attempted.

3) Work: An individual analytic process to be executed.
Given the example of having a Job where the file in
question is a PDF document, a possible task would be
the extraction of textual data from that document.

4) Work Results: The results returned from a single
analytic process. A Job which describes three Work
units - the hashing of a file, application of Yara rulesets
against that file, and the submission of that file to
VirusTotal - would generate three Work Results. These
results can analytic successes, failures, or errors.

5) Eviction: The removal of a Job from a worker’s local
store. This occurs when the job has resolved as a suc-
cess, or failure, with regards to operations performed,
and not necessarily the analytic result. TOTEM has
a concept of partial completion - Work which needs
to be requeued are re-queued, whereas Work which is
completed is forwarded on, even within Jobs that result
with a combination of these results.

D. TOTEM Components

The TOTEM system relies on relatively few discrete
components, which can be directly associated with the com-
ponent primitives laid out in Skald. In this section we will
discuss architectural components of TOTEM, and how they
relate to their corresponding Skald counterparts. TOTEM’s
architecture is optimized towards preventing unneeded net-
work transfer of files. This makes relying on other stream
processing systems such as Apache Storm or Spark difficult,
as both systems have built in shuffle and enrichment distri-
bution mechanisms which heavily favor distributed services
and network shuffle operations. Additionally, it is assumed
that users will wish to process large amounts of work at
inconsistent times, forcing the need to have components
that can dynamically scale the members of the worker and
analytic swarm without lengthy data re-balancing operations.
Additionally, many tools which are currently used by analysts
assume that analytic targets exist on a local disk, a concern
which encourages workers to have as many analytic Services
co-resident as is feasible. These design constraints heavily
factored into our selection of technologies, as detailed below.

1) Transport: The backbone of Skald-inspired services,
TOTEM relies on RabbitMQ to transport data into and out of
the system. Our initial work was with the RabbitMQ AMQP
platform because of its robustness to traditional failure
scenarios, its support for complex routing topologies and
persistence/retry strategies, and ability to horizontally scale
to cope with large workloads well. In selecting our Transport
layer message queue, we prioritized reliability and routing
expressiveness over raw speed. This is primarily a product
of the environment that we originally deployed TOTEM into
(AWS), more than a hard requirement or commentary on
other queuing platforms.

2) Binary Storage: This component serves as an interface
to other backing file systems. In our smaller-scale deploy-
ments, we have opted to have an HTTPS layer proxy con-



nection requests to our short-term, or long-term datastores.
This has the advantage of making our connectors extremely
generic, but depending on the deployment, users may opt to
have their installation directly access their binary store of
record.

3) Planner: Within the TOTEM system, the user effec-
tively assembles the Planner component during the creation
of the Worker.

4) Analytic Services: TOTEM is designed to allow ana-
lysts to write new analytic processes in languages that they
are familiar with. As a result, we needed a communication
protocol that was common across a wide variety of lan-
guages, was relatively simple to understand and debug, and
could move variable quantities of arbitrary data. We selected
HTTP as our method and protocol of communication. HTTP
allows arbitrary data to be passed, is very well understood,
and operates at reasonable speeds. There is nothing that
prevents users from implementing their own communication
protocols, but the initial release of TOTEM provides assets
for communicating with HTTP services. The services offered
by the TOTEM worker are typically shipped concurrently
with the worker process itself at deployment time.

E. TOTEM Concurrency

Unlike other systems, such as CRITS and VIPER, TOTEM
is designed to achieve throughput through concurrent sample
processing. TOTEM’s concurrency model is based on Actors,
implemented through the Akka project. It is important to
note that Actors are only to be used for stateful concurrency,
hence our actual calls to analytic services are done via
Futures. Our services are connected over HTTP/S REST
interfaces, and are language agnostic.

Unlike other distributed systems, each TOTEM instance
is effectively stand alone. TOTEM’s communication is
message-centric, and form the sole means of sharing in-
formation between multiple worker nodes. Messages both
from exterior source, and interior sources, contain all the
context appropriate for that message. This means that a new
work element details to each worker what work needs to
be done, where the resource of operation is located, and
what, if any, optional commands should be performed. These
messages are persistent throughout the message queue -
without explicit acknowledgment of completion or failure,
no messages are removed from the message queue.

Individual workers have no knowledge of whether or
not there are any other workers running. This makes each
TOTEM worker effectively a stand-alone deployment. As all
communication between nodes is performed via messages
passed asynchronously, there is no need or support for
direct internode communication or conflict resolution. In a
departure from Skald, currently we do not use an external
service such as Zookeeper to register enrichment services -
this is currently being considered as future work. Currently,
we take advantage of our transport layer’s wildcard routing
key matching to selectively route messages to applicable
workers.

This decentralization allows nodes to fail individually,
without the risk of taking down other elements of the
system with them. While TOTEM cannot guarantee zero
work loss during catastrophic failure, there is no portion
of the system which can directly cause the failure of any
other, and work lost during failures is limited to only work
locally stored during processing. After such failures, such
work tasks are retried due to their presence on the queue
system. This results in an at-least-once processing system.
This was selected due to the concern of losing work, as
opposed to the concern of doing some work tasks more
than once. Our planned worst case scenarios in standard
operation revolve around the partitioning or failure of the
message queuing backbone. Should this happen, work will
obviously stop flowing through the system, but will resume
when connections have been reestablished. Work in progress
will be discarded.

F. TOTEM Work Resolution

To prevent work loss we ensure that messages are fully
processed before removing the original Job from the Trans-
port layer. To do so, each worker, within its’ local state,
ensures that Jobs have had their component Work elements
submitted to all applicable analytic services on the system,
that responses from those services have been collected, that
those responses have been transmitted to the Transport layer
and that any failed or incomplete work has been submitted
for re-processing. While we cannot make perfect data loss
guarantees, this multi-stage confirmation prevents tasking
from being lost.

IV. TOTEM EXAMPLE

This example will demonstrate the core elements of a
TOTEM enrichment service. Implementing this function as a
solitary worker requires the development of a configuration
file, the definition of the work and result class types, the
overall system driver, and the addition of this work to the
parser work routers. The example driver below will generate
two messages, and submit them for processing by the Yara,
PEInfo, and FileMetadata services. Defined services will
return results to the results queue, and any undefined services
will re-queue their work.

A. Driver

Each worker is controlled by a driver, a class which
serves as the primary entry point to the program, and which
represents the Planner component as defined by Skald. This
driver handles the parsing of configuration settings, defines
the structure of the component queuing system communica-
tions, and serves as a central point of control for internal
worker services. The majority of this functionality is defined
by the TOTEM libraries and only require instantiation and
configuration.

B. WorkEncoding

The following three worker functions along with the
enclosing class which inherits the WorkEncoding trait are



needed to parse, route, and manage the various enrichment
services that this worker supports.
class TotemEncoding(conf: Config) extends WorkEncoding {

...
def GeneratePartial(work: String): String = { ... }
def enumerateWork(key: Long,
filename: String,
workToDo: Map[String, List[String]]

): List[TaskedWork] = { ... }
def workRoutingKey(work: WorkResult): String = { ... }

}

C. MetadataREST

This is the TOTEM representation of an enrichment ser-
vice - the class that represents how work is to be done,
how to interact with the service itself, and the internal
classes that represent the work and its respective results.
Each work element, and their result, can be as simple (a
string) or as complex (a fully native POSO), as desired,
allowing developers to further enrich analytic results, or
begin secondary processing as a part of a longer chain of
operations.
case class MetadataWork(
key: Long,
filename: String,
TimeoutMillis: Int,
WorkType: String,
Worker: String,
Arguments: List[String]

) extends TaskedWork {
def doWork(): Future[WorkResult] = { ... }

}
case class MetadataSuccess(

status: Boolean,
data: String,
Arguments: List[String],
routingKey: String = "metadata.result.static.zoo",
WorkType: String = "FILE_METADATA"

) extends WorkSuccess
case class MetadataFailure(

status: Boolean,
data: String,
Arguments: List[String],
routingKey: String = "",
WorkType: String = "FILE_METADATA"

) extends WorkFailure

object MetadataREST {
def constructURL(
root: String,
filename: String,
arguments: List[String]

): String = { ... }
}

D. DRAKVUF

Since the proliferation of poli- and meta-morphic malware,
dynamic malware analysis has been an effective approach to
understand and categorize malware by observing the execu-
tion of malware samples in a quarantined environment [8],
[25]. The interaction between the executing malware sample
and the host OS allows dynamic malware analysis systems
to collect behavioral characteristics that aid in formulating
defensive steps.

As dynamic malware analysis systems have become
widely deployed, malware has evolved to detect and evade
such systems by either refusing to execute in a sandboxed

Fig. 3: System overview of DRAKVUF

environment, or by modifying its run-time behavior to lead
the analysis system astray [2]. Consequently, it is critical
for dynamic malware analysis systems to provide a stealthy
environment to hide the presence of the data collection from
the executing sample [7]. However, even recent analysis sys-
tems that meet the stealth requirements [6] have considerable
resource requirements and require manual interaction with
the malware samples, which constitutes a barrier to scalable,
automated dynamic malware analysis.

DRAKVUF is a prototype system designed to address
these concerns directly. An overview of DRAKVUF can be
seen in Figure 3. In this prototype we implemented a set
of data collection mechanisms for 32-bit and 64-bit versions
of Windows 7 SP1 using only hardware virtualization ex-
tensions as the source of information. DRAKVUF builds
directly on the Xen Project Hypervisor, and through the
use of Virtual Machine Introspection becomes capable of
monitoring the execution of the sandbox purely from an
external perspective.

As dynamic malware analysis relies on observing the live
execution of malware, the fidelity of the collected data is
essential. As rootkits employ a variety of techniques to
hide their presence on a system, the broader the scope
of data collection, the more likely the analysis will reveal
useful features. In our current prototype system we focus on
Windows but our system could easily be extended to monitor
Linux and other operating systems as well, as the underlying
monitoring techniques are OS agnostic.

A key feature of existing dynamic malware analysis sys-
tems is the ability to trace the execution of processes by
monitoring system calls. However, monitoring only system
calls limits the execution trace to the interaction between
user-space programs and the kernel, which does not include
the execution of kernel-mode rootkits. To overcome this
issue, in DRAKVUF we took an alternative approach by
directly trapping internal kernel functions via #BP injection.
With direct trapping DRAKVUF is able to monitor malicious
drivers as well as rootkits, which was previously not possible



with just system call interception.
The location of the kernel functions are determined by

extracting information from the debug data provided for
the kernel. The use of debugging information has been an
established method in the forensics community and it is the
most convenient avenue to gain insight into the state of
the operating system. In DRAKVUF we make use of the
Rekall forensics tool [16] to parse the debug data provided
by Microsoft to establish a map of internal kernel functions.

At runtime, DRAKVUF locates the kernel automatically
in memory without having to perform signature based scans,
which improves resiliency as compared to existing forensics
tools [11], [24]. To automatically locate the kernel in memory
we make the observation that Windows 7 uses the FS and
GS registers to store a kernel virtual address pointing to the
_KPCR structure, which is always loaded into a fixed relative
virtual address (RVA) within the kernel, identified by the
KiInitialPCR symbol. As we have obtained the RVA
for all kernel symbols, including KiInitialPCR, we only
have to subtract the known RVA of the symbol from the
address found in the vCPU register to obtain the kernel base
address.

Once the kernel base address is established, DRAKVUF
can trap all kernel functions via #BP injection. With internal
kernel functions being trapped, the logs thus generated
provide a full trace of the execution of the OS from the
moment the malware sample is executed.

In the current implementation DRAKVUF tracks all system
calls and heap allocations of the kernel and generates logs
based on the associated tag of the structure. If the tag of
the structure is one of the already known 2,254 tags, the
log contains further details about the type of the object to
aid the analyst in identifying allocations that may be of
further interest. To detect for example a hidden process, an
analyst can now apply a cross-view check to determine if
the allocated structures are also accessible via standard lists
[10]. DRAKVUF further traps the routines responsible for
freeing these structures. Thus, providing a full-view into the
life-cycle of the structures. In the next section we further
illustrate how this approach enables us to track the active
usage of _FILE_OBJECTs.

Monitoring filesystem accesses is one of the core feature of
any dynamic malware analysis system. However, prior agent-
less VMI approaches have attempted to monitor file-system
accesses by modifying the disk emulator to intercept events
[15]. While such an approach is effective, reconstructing
high-level file-system accesses (like path and permissions)
from the low-level disk-emulation perspective is in itself a
form of the semantic gap problem and requires extensive
knowledge of file-system internals. However, the internal ker-
nel structures that DRAKVUF tracks reveal highly valuable
information about the execution state of the system, such
as the complete set of running processes, kernel modules,
threads, and even objects allocated for filesystem accesses
by the OS.

The process by which we catch filesystem accesses is
shown in Figure 4. When a file is accessed, either by

Fig. 4: Tracking file accesses by monitoring the allocation
of _FILE_OBJECTs in the Windows kernel heap.

the OS or by a user-land process, a _FILE_OBJECT is
allocated within the kernel heap with the accompanying tag,
"Fil\xe5". When the allocation address is caught, we
mark the page on which the structure is allocated as non-
writable in the EPT. As the _FILE_OBJECT is preceded
by a set of optional object headers (shown with a gray
background), we derive the exact location of the access
flags and file name by subtracting the known size of the
_FILE_OBJECT from the end of the heap allocation. This
allows us to determine the full path of the file as well as the
access privilege with which the file is accessed, such as read,
write and/or delete permission, without the need to have any
deeper understanding of the filesystem itself.

In DRAKVUF, we also have turned our attention to a
critical step so far overlooked in automated dynamic malware
analysis: we start the execution of the malware sample
without leaving an identifiable trace of the monitoring en-
vironment. With systems where an in-guest component is
used, the execution can be initiated by the monitoring agent
itself, but the same in-guest component could be potentially
used to detect monitoring, even if it is only an autostart
script. On the other hand, when no in-guest agent is present,
the sample has to be started manually. Therefore, in order
to avoid creating any artifacts within the analysis VMs but
to allow automated execution, we implemented an injection
mechanism that hijacks an actively running but arbitrary
process within the VM to initiate the start of the sample
on our behalf.

The hijack mechanism takes over the execution at the first
instruction executed in CPL3, as shown in Figure 5, and
locates the CreateProcessA routine in kernel32.dll’s export



Fig. 5: Process hijacking employed in DRAKVUF to exter-
nally start the execution of the malware sample.

table. The stack of the process is updated to contain the
input arguments required for calling the function, as well as
the RCX, RDX, R8 and R9 registers on x86_64, while the
original content of the RIP register is pushed as the return
address on the stack. The return address is further injected
with a breakpoint to notify us when the routine finished. The
execution of the analysis VM is resumed after placing the
address of CreateProcessA in the RIP register.

Our focus in DRAKVUF has further been to maximize
the throughput of the physical machine used for the analysis.
While the performance overhead imposed on the execution of
individual malware samples is important and should be kept
to a minimum, in our opinion such overhead is only of con-
cern if it actively interferes with the analysis. In our system
we take advantage of Xen’s copy-on-write (CoW) memory
feature to limit the memory requirements, and the LVM CoW
disk capability to limit the harddrive space requirements on
the host machine. With the combined use of these CoW
techniques we are able to greatly increase the number of
analysis sessions that can be performed concurrently on a
given physical machine.

The CoW techniques employed by DRAKVUF require
the presence of a static domain whose disk and memory
can be used as a reference point, referred to as the origin
domain. The origin domain can be configured as a regular
domain before it is cloned, then once a clone is created
it remains statically frozen. When cloning is initiated, first
the LVM CoW disk is setup, followed by Xen creating
the domain for the clone VM. The content of the origin
domain’s memory is piped into the newly created clone
domain, immediately followed by memory de-duplication via
memory sharing. After memory sharing, the only memory
overhead is the memory allocated for QEMU to provide
disk and network I/O to the clone, and the pages where
breakpoints are injected. In our tests, the creation of a full
VM clone with 2GB of CoW memory and CoW disk was

performed in less than 10 seconds.

V. FUTURE WORK

A. Intel Virtualization Exceptions

As virtualization extensions continue to evolve, alternative
security models become more viable for defense security
research that were previously unable to guarantee secure
isolation. In recent years Intel has introduced a new exten-
sion, dubbed #VE (short for Virtualization Exceptions). This
has been in direct response to the defensive research com-
munity’s finding that two-stage paging (such as Intel EPT)
based tracing present significant overhead that can prove
prohibitive for certain applications. The first - and thus far
only - feature known that will use the #VE mechanisms is the
newly introduced VMFUNC instruction’s EPTP switching
option.

The EPT extension on Intel has been from the beginning
capable of maintaining up to 512 distinct EPTs in the
VMCS for each vCPU. Nevertheless, all modern open-source
hypervisor currently use only one EPT shared across all
VMCS of the VM. However, in case the hypervisor used more
pages, it would be possible to maintain one restrictive table
used for trapping and one table for allowing the execution
to flow normally. The VMFUNC instruction is designed to
allow switching between such "views" from within the guest.
Further allowing EPT violations to be selectively delivered
to the guest in the form of interrupts without performing a
VMEXIT, the performance overhead of the EPT based tracing
can be significantly reduced.

As the hypervisor can still selectively configured which
EPT entries are injected via #VE into the guest and which
ones are still trapped to the hypervisor, the hybrid model
of using both in-band and out-of-band delivery model first
proposed by Payne et al. [14] is becoming a lot more viable
in the near future.

The first open-source implementation by Intel for the
upcoming #VE extension has already been proposed for the
Xen Project Hypervisor 4.6 release, and has been dubbed the
altp2m subsystem. In a joint effort, we have worked with
Intel to enable this feature to be used in a purely out-of-
band monitor scenario as well. The core feature added to
Xen that has immediate use-case for out-of-band scenarios
is the support added for multiple second-stage pagetables.
With the possibility of maintaining multiple sets of tables,
it is now possible to selective switch the view only on
the violation-causing vCPU. While this method still doesn’t
obtain the performance benefits of the hybrid in-band/out-of-
band model, it will enable our prototypes to perform analysis
on multi-vCPU guests as well.

B. Mobile malware

With the rapid growth of the use of smart-phone devices
there has already been a rapid expansion of malware targeting
this new platform [?], thus malware analysis has to be able
to also observe these types of malware. In our evaluation we
have performed an initial exploration of the ARM CPU’s
virtualization extensions to support the type of malware



analysis discussed in this thesis. As part of this effort, we
have implemented an initial set of tracing features based on
the ARM two-stage paging mechanisms that will be available
as part of the Xen Project Hypervisor 4.6 release. For execu-
tion tracing the Secure Monitor Call (SMC) instruction has
already been proposed as a viable method to further improve
the monitoring capability [1], [9], but there is no hypervisor
support present for it yet. Furthermore, at this time there is
no singlestepping support available for ARM platform which
forms another obstacle to porting our prototypes to the ARM
platform. As such, further research is required to properly
identify all the capabilities of the ARM platform.

C. Data-only malware

As new and thus far unknown forms of malware appear,
malware analysis systems will also need to adapt. In recent
research Vogl et al. [23] demonstrated the feasibility of
persistent data-only malware, capable of performing arbitrary
computations without inserting any new code into the system.
The detection and analysis of such malware will pose a
particular challenge in the future, albeit some proposals
have already been made to potentially detect such malware
using performance monitoring counters [27]. These counters
have been shown in prior research to be trappable to the
hypervisor [22], thus malware analysis systems will need to
adopt its monitoring strategy accordingly.

VI. CONCLUSION

Cyber crime is a problem that will continue to plague us
for the foreseeable future. The criminals have evolved into
sophisticated organizations with vast infrastructures, complex
software development operations, and sophisticated supply
chains. The sheer complexity and volume of information
currently required for analysts to attempt understanding and
perform mitigation against this activity is simply overwhelm-
ing. Unfortunately, this problem is steadily growing and
shows no signs of abating anytime soon.

We need to learn from our peers in the financial and
organized crime sectors if we wish to thwart cyber crime.
Simply put, our analysts need to be empowered. We need to
provide them with the tools that allow them to effectively do
the jobs and identifying the 5Ws (Who, What, Where, When,
Why, and How) of cyber criminal activity. Only then will
we be better equipped to disrupt the infrastructure used and
hinder the actors behind the development, distribution, and
financial/informational gains associated with cyber crime.
The previous path of only trying to protect our systems
from an arguably infinite number of possible ways they
could be exploited and hijacked has only provided little if
any observable results. If we do not change our ways and
look towards our analysts, will we be stuck in an arms race
between malware and defensive software, without an end
anywhere near in sight.

To this end we developed the Skald model and two
implementations, Totem and Drakvuf. We have shown how
these tools can overcome many of our current challenges
and provide a solid platform to enable our analytic teams.

Our implementations can scale easily in the millions, easily
incorporate new and old techniques, and gracefully handle
failures. Yet our systems are only the beginning and we hope
others adopt our techniques to create competitors and assist
us with developed of our open products.
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