BREAKING HTTPS WITH BGP HIJACKING

Artyom Gavrichenkov
Qrator Labs
ag@qrator.net
BGP Hijacking at a glance

• In the Internet, routing announcements are accepted without almost any validation

• This opens a possibility for a network operator to announce someone else’s network prefixes without permission
BGP Hijacking, a problem

• In the Internet, routing announcements are accepted without almost any validation

• This opens a possibility for a network operator to announce someone else’s network prefixes without permission
 • The prefix may be announced with the same origin
 • The prefix may be leaked
 • A malicious operator can steal prefixes and blackhole them or intercept and modify traffic in transit
 • A good operator can also steal someone’s network occasionally, by an error
BGP Hijacking, a problem

• In the Internet, routing announcements are accepted without almost any validation

• This opens a possibility for a network operator to announce someone else’s network prefixes without permission
 • The prefix may be announced with the same origin
 • The prefix may be leaked
 • A malicious operator can steal prefixes and blackhole them or intercept and modify traffic in transit
 • A good operator can also steal someone’s network occasionally, by an error
 • A malicious employee of a good operator is then able to read and modify incoming traffic as well
BGP Hijacking, a problem

• In the Internet, routing announcements are accepted without almost any validation

• This opens a possibility for a network operator to announce someone else’s network prefixes without permission
 • The prefix may be announced with the same origin
 • The prefix may be leaked
 • A malicious operator can steal prefixes and blackhole them or intercept and modify traffic in transit
 • A good operator can also steal someone’s network occasionally, by an error
 • A malicious employee of a good operator is then able to read and modify incoming traffic as well
 • Unauthorized access to operator’s equipment can also be used for hijacking
BGP Hijacking, a problem

- ~30,000 IPv4 prefixes leaked during last 2 weeks
 - ~5,000 of them in US
 - ~2,000 in Australia (far from US)
- ~5,000 IPv4 prefixes leaking right now
- Almost all this is likely to be caused just by human missteps
BGP Hijacking, a problem

• ~30000 IPv4 prefixes leaked during last 2 weeks
 • ~5000 of them in US
 • ~2000 in Australia (far from US)
• ~5000 IPv4 prefixes leaking **right now**
• Almost all this is likely to be caused just by human missteps
 • Why attackers don’t steal prefixes?
Detection of a hijacking

- Bogus AS Path at Routeviews or some providers’ looking glasses
- Change in TTL
- Increased RTT
Detection of a hijacking: hardly possible

- Bogus AS Path at Routeviews or some providers’ looking glasses
 - hard to discover without an advanced monitoring system
- Change in TTL
 - easy for a MitM to hide
- Increased RTT
“Global Hijacking”

1. Prefix X.Y.Z.0/22 belongs to AS A, which announces it to its upstream AS C
2. One day, AS M announces X.Y.Z.0/23 to its upstream AS B.
3. ?
“Global Hijacking”

1. Prefix X.Y.Z.0/22 belongs to AS A, which announces it to its upstream AS C
2. One day, AS M announces X.Y.Z.0/23 to its upstream AS B.
3. More specific route wins the battle (except IXs, where it may lose), and all traffic to X.Y.Z.1 starts to flow into AS M via AS B.
4. All users of X.Y.Z.1 immediately notice increased latency.
5. A bell rings, AS A and AS B figure out the problem and solve it somehow together during next 4-5 business days.
Detection of a hijacking: hardly possible

- Bogus AS Path at Routeviews or some providers’ looking glasses
 - hard to discover without an advanced monitoring system
- Change in TTL
 - easy for a MitM to hide
- Increased RTT
Detection of a hijacking: hardly possible

• Bogus AS Path at Routeviews or some providers’ looking glasses
 – hard to discover without an advanced monitoring system

• Change in TTL
 – easy for a MitM to hide

• Increased RTT
 – between what?
“Local Hijacking”

1. Prefix X.Y.Z.0/22 belongs to AS A, which announces it to its upstream AS C.
2. One day, AS M announces X.Y.Z.0/22 to its upstream AS B.
3. ??
“Local Hijacking”

1. Prefix X.Y.Z.0/22 belongs to AS A, which announces it to its upstream AS C
2. One day, AS M announces X.Y.Z.0/22 to its upstream AS B.
3. It depends on the relations between B and C
 - If B is C’s customer:
 - B will prefer the route originating from M
 - C will prefer the route originating from A or B(M)
“Local Hijacking”

1. Prefix X.Y.Z.0/22 belongs to AS A, which announces it to its upstream AS C
2. One day, AS M announces X.Y.Z.0/22 to its upstream AS B.
3. It depends on the relations between B and C
 • If B is C’s customer:
 • B will prefer the route originating from M
 • C will prefer the route originating from A or B(M)
 \[\Rightarrow\text{A global hijacking is possible}\]
“Local Hijacking”

1. Prefix X.Y.Z.0/22 belongs to AS A, which announces it to its upstream AS C.

2. One day, AS M announces X.Y.Z.0/22 to its upstream AS B.

3. It depends on the relations between B and C:
 - If B is C’s customer:
 - B will prefer the route originating from M
 - C will prefer the route originating from A or B(M)

 - If B is C’s provider:
 - C will prefer the route originating from A
 - B will prefer the route originating from C(A) or M

=> A global hijacking is possible
“Local Hijacking”

1. Prefix X.Y.Z.0/22 belongs to AS A, which announces it to its upstream AS C
2. One day, AS M announces X.Y.Z.0/22 to its upstream AS B.
3. It depends on the relations between B and C
 • If B is C’s *customer*:
 • B will prefer the route originating from M
 • C will prefer the route originating from A or B(M)
 • If B is C’s *provider*:
 • C will prefer the route originating from A
 • B will prefer the route originating from C(A) or M

=> A global hijacking is *possible*
=> Hijacking is *local to B* (at best)
That was an easy part.
“Local Hijacking”

1. Prefix X.Y.Z.0/22 belongs to AS A, which announces it to its upstream AS C

2. One day, AS M announces X.Y.Z.0/22 to its upstream AS B.

3. What happens in B and C, depends on the relations between B and C

4. What if B and C aren’t directly connected?
 Things get more complicated in other AS all over the world
“Local Hijacking”

• Things get more complicated in other AS all over the world

• It is possible to steal a prefix “locally” – in a part of the Internet, perfectly isolated by inter-AS relations
 • In fact, that’s why BGP Anycast works
 • RTT will not increase significantly, so no one will notice
 • Looking glasses of *major* network operators will show valid announces
“Local Hijacking”

- Things get more complicated in other AS all over the world
- It is possible to steal a prefix “locally” – in a part of the Internet, perfectly isolated by inter-AS relations
 - In fact, that’s why BGP Anycast works
 - RTT will not increase significantly, so no one will notice
 - Looking glasses of major network operators will show valid announces
- But why would we need that?
Obtaining a TLS certificate from CA

• The procedure is generally as follows:
 1. An account is created at the Web site of a certificate authority
 2. A CSR is created and uploaded
 3. CA offers plenty of options to verify domain ownership:
 • WHOIS records
 • A specific HTML page under a specific URL
 • Custom token in DNS TXT Record
 • ...
 4. After the ownership is verified, you get your signed TLS certificate for your money (or sometimes for free)
Stealing a valid TLS certificate, pt. 1

Prerequisite: you need to find a CA close to your AS in topological sense

1. A prefix hosting an IP for the victim’s Web site is hijacked \textit{locally}, so that the following conditions apply:
 • At this time victim’s AS should notice nothing
 • The chosen CA’s traffic is routed to the hijacker

2. Go on: register with the chosen CA, upload a CSR, get an HTML page, upload HTML \textit{to your own server}, pay and obtain the signed certificate
Stealing a valid TLS certificate, pt. 2

Prerequisite: you need to find a CA close to your AS in topological sense

1. A prefix hosting an authoritative DNS for the victim’s Web site is hijacked locally, so that the following conditions apply:
 • At this time victim’s AS should notice nothing
 • The chosen CA’s traffic is routed to the hijacker

2. Go on: register with the chosen CA, upload a CSR, get a token, set up DNS TXT on your own server, pay and obtain the signed certificate
Stealing a valid TLS certificate, pt. 3

Prerequisite: you need to find a CA close to your AS in topological sense

1. A prefix hosting a WHOIS server for the victim’s domain registrar is hijacked locally, so that the following conditions apply:
 • At this time victim’s AS should notice nothing
 • The chosen CA’s traffic is routed to the hijacker

2. …
Stealing a valid TLS certificate

• **The hijack is local**: victim’s AS should notice nothing or almost nothing
 – Haha, some guy in Kerbleckistan experiences problems connecting to our site!

• However, **the resulting TLS certificate is perfectly global**: Kerbleckistanian CA is not *that* worse than GoDaddy or Comodo, the certificate would be valid anywhere

• The resulting TLS certificate can be used for MitM attacks anywhere in the world
Certificate Authority Hijacking

Vice versa:

- We can steal victim’s prefix near selected CA’s AS
- We can steal CA’s prefix near victim’s AS as well
 - The implementation is just a bit more complex
Stealing a valid TLS certificate

• It’s not very hard to do a local hijacking. You only need this:
 • A border router under your control
 • Information about your BGP peers: their customers, providers, peerings.
 This is not a top secret: http://radar.qrator.net/ figures out this
 information on a hourly basis, using public data only: traceroute, AS Paths, etc.
 • That’s all
Mitigating the problem.
Mitigating the problem.

...yuck.
Mitigating the problem.

...yuck.

• There’s obviously a problem with current SSL/TLS PKI
 • But that’s not something we can fix tomorrow

• There’s obviously a problem with Internet routing
 • But that’s not something we can fix in a decade
Mitigating the problem.

• We have to stick to workarounds:
 • BGP monitoring, able to detect hijacking in Kerbleckistan
 • http://radar.qrator.net/ (it’s free, by the way)
 • http://research.dyn.com/
 • http://www.bgpmon.net/
 • Watch your prefixes!
 • RFC 7469 [draft]
 • Browser plug-ins restricting certificate updates (Certificate Patrol etc.)
 • DANE?
 • …
Mitigating the problem.

• We have to stick to workarounds:
 • Browser plug-ins restricting certificate updates (Certificate Patrol etc.)

Good idea but limited usefulness
★★★★☆ or chrcoluk
At first I thought this is great, but now I have been made aware because of this addon that sites like google, twitter and amazon seem to change certificates at a rapid rate, I dont know why these companies have unusual certificate policies but it makes the purpose of this addon void, it
Mitigating the problem

• There’s obviously a problem with current SSL/TLS PKI
• There’s obviously a problem with Internet routing
• Maybe it’s high time to discuss and fix those problems
Black Hat Sound Bytes

• There are flaws in Internet routing and in TLS PKI concept. There are also corresponding risks
• Those risks could be mitigated. However, the better PKI design will help to do it easier
• BGP monitoring systems are really useful! If you are in charge of network security in a large ISP, please start using them right away

Thank you!
mailto: Artyom Gavrichenko <ag@qrator.net>