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  Abstract— In x86, beyond ring 0 lie the more privileged realms 

of execution, where code is invisible to AV, we have unfettered 

access to hardware, and can trivially preempt and modify the OS.  

The architecture has heaped layers upon layers of protections on 

these ‘negative’ rings, but 40 years of x86 evolution have left a 

labyrinth of forgotten backdoors into the ultra-privileged modes.  

Lost in this byzantine maze of decades-old architecture 

improvements and patches, there lies a design flaw that’s gone 

unnoticed for 20 years.  Exploiting the vast, unexplored 

wasteland of forgotten x86 features, we demonstrate how to jump 

malicious code from ring 0 into the deepest, darkest realms of the 

processor.  The attack is performed with an architectural 0-day 

built into the silicon itself, and directed against a uniquely 

vulnerable string of code widely deployed on modern systems. 

I. INTRODUCTION 

HE x86 architecture is traditionally divided into “rings” of 

privilege, with ring 3 designated the least privileged realm 

of execution, and ring 0 the most.  As the architecture evolved, 

and deeper levels of privilege became necessary, additional 

privilege separation mechanisms were developed to confine 

and restrict ring 0 code from even more powerful modes of 

execution, colloquially dubbed the negative rings.  Ring -1, 

more commonly known as the hypervisor, is capable of 

preempting and isolating ring 0 code.  Ring -2, System 

Management Mode (SMM), can further preempt ring -1, has 

unrestricted access to platform hardware, and in many cases 

can bypass Trusted Execution Technology (TXT), positioning 

it as the most privileged level of execution on modern x86 

processors.  Due to an extreme potential for abuse, SMM is 

protected through innumerable security mechanisms.  

However, the complexity of the architecture precludes the 

simple separations found in higher rings, and SMM security 

circumventions can be constructed through elaborate 

configurations of unexpected architectural features. 

II. SMM SECURITY OVERVIEW 

The System Management Mode security model is based 

upon the premise of a secure and protected region of memory, 

the System Management RAM (SMRAM).  In concept, SMM 

code resides exclusively within SMRAM, and SMRAM is 

accessible only while the processor is in SMM.  In this setup, 

SMM code can access everything else on the system, but 

nothing else on the system can access SMM code.  The 

Memory Controller Hub (MCH), sitting between the processor 

core and memory, enforces the SMRAM separation.  If the 

processor is not in SMM, the MCH blocks access to SMRAM.  

If the processor is in SMM, the MCH allows it. 

III. SECURITY VIOLATION 

The x86 Local Advanced Programmable Interrupt 

Controller (LAPIC, hereafter referred to simply as the APIC) 

is tasked with managing interrupt events sent to the processor.  

Originally a separate circuit, the APIC was integrated with the 

processor silicon in the P5 microarchitecture.  To allow rapid 

access and flexibility in managing the APIC, the chip’s 

registers were mapped into the processor’s memory at the 

4KB region between 0xFEE00000 and 0xFEE01000.  This 

inadvertently caused conflicts with software already using this 

memory range for other purposes.  To resolve this issue, the 

P6 family of processors extended the APIC, to allow 

remapping the registers to another region of memory.  This 

capability corrected a rare issue in legacy systems, and is 

neither used nor needed by modern processors; however, 

modern processors continue to support the remappable APIC 

feature. 

The ancient ability to relocate the APIC registers introduces 

a complex vulnerability in an entirely unrelated component of 

the processor architecture – System Management Mode.  If the 

APIC register window is moved to overlap the SMRAM 

range, memory accesses that should be sent to the MCH for 

adjudication are instead prematurely accepted by the APIC, 

and never received by the MCH.  This provides ring 0 code a 

small, indirect influence over SMM, and violates the 

fundamental architectural separation of the two execution 

modes. 

IV. THE MEMORY SINKHOLE 

The APIC register window is fixed to a 4KB range, and 

required to be aligned on a 4KB boundary.  The processor has 

some limited control over the APIC registers, but the vast 

majority of the 4KB register window is hardwired to 0.  In 

practice, this offers ring 0 code the ability to “sinkhole” a 

single page of SMRAM by relocating the APIC – memory 

reads from the region return 0, and memory writes are 

discarded.  The course granularity of the APIC position, 

combined with the inability to effectively control the APIC 

data, make the vulnerability extremely difficult, but not 

impossible, to apply in practice. 

V. THE SMM HANDLER 

In order to escalate execution from ring 0 to the far more 

powerful ring -2, it is useful to first examine SMM code for 

attack vectors.  SMM code is installed during the boot process 

by system firmware, the diversity of which typically precludes 
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a widespread attack.  However, select components of system 

firmware are derived from a set of Unified Extensible 

Firmware Interface (UEFI) template code provided by Intel.  

Such is the case for the initial SMM entry point, which is 

almost universally deployed on modern systems.  An attack 

directed against this specific code sequence achieves the 

widest possible coverage.  The template SMM entry point is 

provided in Figure 1. 

 
Fig. 1.  The template implementation of the SMM entry point, widely 

deployed on modern systems.  Commented for clarity. 

There are 2 to 3 common variations to the SMM template 

code shown above – it appears the SMM entry point has been 

updated once or twice in the past decade, and the attack needs 

to be adapted to other versions.  The SMM handler entry 

above appeared to be the most common in our research. 

VI. PRIVILEGE ESCALATION 

The template SMM handler is verifiably correct and secure 

from any normal attack vector, but is, by pure coincidence, 

uniquely vulnerable to the memory sinkhole attack.  Critically, 

the handler loads key data from a structure located at SMM 

address 0xFB00.  It does this at instructions 8003, 8022, 

802A, 804B, and 805A above.  As this structure resides inside 

SMRAM, ring 0 cannot access or modify it through any 

normal means.  However, prior to the SMI, if the local APIC 

is remapped to overlap this structure, these instructions will 

fetch registers from the APIC, rather than data from memory.  

These registers in the APIC are hardwired to 0, and cannot be 

changed, meaning the reads at 8003, 8022, 802A, 804B, and 

805A can be configured, from outside of SMM, to read only 

0’s.  This gives a very limited control over SMM execution, 

but designed correctly, allows forcing a malformed GDT and 

far jump generation in the SMM code, and causes execution to 

jump outside of SMRAM, permitting malicious ring 0 code to 

hijack SMM. 

With the APIC configured to overlap the SMM structure at 

0xFB00, execution proceeds as follows: the read at 8003 loads 

0 as the base address of the GDT; the subsequent instructions 

set up GDT descriptors in a non-existent GDT near physical 

address 0; the instruction at 8022 loads the size of the GDT 

from memory, and the APIC overlap causes the size to be 

incorrectly read as 0; the dec ax instruction at 8026 

recomputes the size of the GDT as 0xFFFF, and 8027 saves 

the size to a GDT descriptor; 802A loads 0 as the base address 

of the GDT, and saves it to the same descriptor; the lgdt 

instruction at 8034 loads the malformed descriptor, placing the 

new GDT outside of SMRAM, and under the attacker’s 

control.  With this, malicious ring 0 code can control the 

memory layout when new segment selectors are loaded in 

SMM, which will occur on the far jump at 8089.  After the 

self-modifying code at 8075 and the fetch from the sinkhole at 

805A, the final instruction is incorrectly generated as “jmp far 

ptr 0x10:0x8097”.  By placing a carefully crafted GDT at 

address 0, and configuring descriptor 0x10 to point outside of 

SMRAM, a payload at 0x8097 can intercept SMM execution 

to run with SMM privileges. 

VII. ATTACK PAYLOAD 

A prototype of the attack is provided in Figure 2, and has 

been validated on select processor models. 

 
Fig. 2.  A prototype sinkhole attack. 

The attack is delivered through a kernel driver running in 

ring 0, and assumes an identity memory mapping.  The 

example targets the BSP CPU core, on a system with 

SMBASE located at 0x1F5EF800.   The GDT address is 

adjusted based on which APIC register is read in the GDT 

descriptor creation.  The attack directs SMM execution to a 

secondary payload outside of SMRAM, at 

PAYLOAD_OFFSET.  The secondary payload is installed by 

ring 0, and runs with SMM privileges, after the SMM handler 

is hijacked through the sinkhole.  The specific effects of the 

secondary payload are left to the reader’s imagination, but 

commonly include deeply persistent rootkits, hardware 

modifications, and system destruction. 

8000 mov  bx, off:unk_8091  ; load offset to GDT descriptor 
8003 mov  eax, cs:0FB30h    ; load physical address of GDT  
8008 mov  edx, eax  
800B mov  ebp, eax  
800E add  edx, 50h ; 'P'  
8012 mov  [eax+42h], dx     ; initialize segments in GDT  
8016 shr  edx, 10h  
801A mov  [eax+44h], dl 
801E mov  [eax+47h], dh 
8022 mov  ax, cs:0FB38h     ; load expected size of the GDT  
8026 dec  ax                ; decrement total size 
8027 mov  cs:[bx], ax       ; save size to the GDT descriptor 
802A mov  eax, cs:0FB30h    ; reload GDT base address 
802F mov  cs:[bx+2], eax    ; save base address to descriptor 
8034 db   66h  
8034 lgdt fword ptr cs:[bx] ; load new GDT  
8039 mov  eax, 0 
803F mov  cr3, eax  
8042 mov  eax, 668h 
8048 mov  cr4, eax  
804B mov  ax, cs:0FB0Eh     ; load expected lmode cs selector 
804F mov  cs:[bx+48h], ax   ; patch selector into lmode jmpf  
8053 mov  ax, 10h           ; load hardcoded pmode cs selector 
8056 mov  cs:[bx-2], ax;    ; patch selector into pmode jmpf  
805A mov  edi, cs:0FEF8h    ; load smbase 
8060 lea  eax, [edi+80DBh]  ; compute offset of insn at 80db 
8068 mov  cs:[bx+44h], eax  ; patch offset into lmode jmpf  
806D lea  eax, [edi+8097h]  ; compute offset of insn at 8097 
8075 mov  cs:[bx-6], eax    ; patch offset into pmode jmpf  
807A mov  ecx, 0C0000080h 
8080 mov  ebx, 100011b 
8086 mov  cr0, ebx          ; switch to 16 bit pmode 
8089 jmp  large far ptr 0:0 ; switch to 32 bit pmode 

TARGET_SMBASE      equ 0x1f5ef800 
GDT_ADDRESS        equ 0x10000 
FJMP_OFFSET        equ 0x8097 
DSC_OFFSET         equ 0xfb00 
DESCRIPTOR_ADDRESS equ 0x10 
APIC_BASE_MSR      equ 0x1b 
SINKHOLE           equ ((TARGET_SMBASE+DSC_OFFSET)&0xfffff000) 
PAYLOAD_OFFSET     equ 0x1000 
CS_BASE            equ (PAYLOAD_OFFSET-FJMP_OFFSET) 
APIC_BSP           equ 0x100 
APIC_ACTIVE        equ 0x800 
 
wbinvd 
mov dword [dword GDT_ADDRESS+DESCRIPTOR_ADDRESS+4], 
    (CS_BASE&0xff000000)|(0x00cf9a00)|(CS_BASE&0x00ff0000)>>16 
mov dword [dword GDT_ADDRESS+DESCRIPTOR_ADDRESS+0], 
    (CS_BASE&0x0000ffff)<<16|0xffff 
mov eax, SINKHOLE | APIC_ACTIVE | APIC_BSP 
mov edx, 0 
mov ecx, APIC_BASE_MSR 
wrmsr 
jmp $ 


