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Today’s Malware Landscape

● Excerpts from the Verizon 2015 Data Breach 
Investigation Report:
○ “170 million malware events”
○ “70-90% of malware samples are unique to an 

organization”
○ “Signatures alone are dead”



Today’s Malware Landscape

● Traditional approaches no longer keep up!
● Human analysis no longer scales
● Signatures are easily fooled
● We can engineer better ways to automatically tag 

samples as malware or benign



Addressing the Problem

● Distinguishing good from bad: Classic Pattern 
Recognition

● Other industries use pattern recognition with success
● Large databases of malware with associated labels exist! 

Why not put them to work?



Supervised Learning: Overview
Ingredients:

We have all of these things!



Supervised ML: Input Data

Input data (often denoted “x”) can be:

...Documents...

Executables / 
compiled code...

...or even scripts



Machine Learning – Labels

● Every sample must have a label (often denoted “y”)
● A label will determine if a sample is good or bad
● A label could also denote if a sample:

○ Belongs to a family of malware;
○ Is a certain kind of malware (adware, spyware, 

trojan...)



Machine Learning - Models

● A model (or classifier) takes in a sample and assigns it 
into an output class:

● Random forests, k-nearest neighbors, logistic regression, 
support vector machines, neural networks, …

● Parameters of the model are often denoted as “w”

bool classifier(float *input, int N)



Machine Learning – Model Training

● For a model to be useful, it must be “trained” to fit the 
training data

● The overall purpose of the model: to be able to 
“generalize” to unseen samples

● A good model has the ability to classify samples it has 
never seen before



Machine Learning – Feature Engineering

● Models don't often work directly on raw data
● Feature engineering distills raw inputs into a “feature 

space”, directing the model towards important 
information

● The most important part of machine learning!
● Better features almost always yield better models



Machine Learning – Feature Engineering

● Example features for an executable:
○ Filesize
○ Strings
○ n-grams

■ cat -> {“c”, “a”, “t”}, {“ca”, “at”}, {“cat”}
■ 0x68 0x65 0x6C 0x6C 0x6F ->

● {{0x68}, {0x65}, …},
● {{0x68 0x65}, {0x65 0x6C}, …},
● …
● {{0x68 0x65 0x6C 0x6C 0x6F}}

○ Entropy of sections



Do we really need feature engineering?

● Feature engineering is hard!
○ Requires LOTS of domain knowledge
○ Requires burdensome development and testing

● Are there ways around feature engineering?
● Yes!

○ Lots of data
○ Lots of computing power
○ Recent advances in representation learning 

algorithms



Deep Learning

● What is “Deep Learning”?
○ Learning parameters for a model that contains 

several layers of nonlinear transformations:

● Why Deep Learning?
○ Very powerful models
○ Responsible for redefining state-of-the-art in many 

domains



Deep Learning Success Stories

Object Recognition:

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 
"Imagenet classification with deep convolutional neural 
networks." Advances in neural information processing 
systems. 2012.



DNNs: Language Modelling

...trained on Wikipedia entries:

Naturalism and decision for the majority of Arab  
countries' capitalide was grounded by the Irish 
language by [[John Clair]], [[An Imperial Japanese 
Revolt]], associated with Guangzham's sovereignty. His 
generals were the powerful ruler of the Portugal in the 
[[Protestant Immineners]], which could be said to be 
directly in Cantonese Communication, which followed a 
ceremony and set inspired prison, training. The 
emperor travelled back to [[Antioch, Perth, October 
25|21]] to note, the Kingdom of Costa Rica, 
unsuccessful fashioned the [[Thrales]], [[Cynth's 
Dajoard]], known in western [[Scotland]], near Italy to 
the conquest of India with the conflict. 

Copyright was the succession of independence in 
the slop of Syrian influence that was a famous 
German movement based on a more popular 
servicious, non-doctrinal and sexual power post. 
Many governments recognize the military housing 
of the [[Civil Liberalization and Infantry Resolution 
265 National Party in Hungary]], that is  
sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official 
economics Adjoint for the Nazism, Montgomery 
was swear to advance to the resources for those 
Socialism's rule, was starting to signing a major 
tripad of aid exile.]]

All following examples are from Andrej Karpathy’s mind-blowing 
blogpost at http://karpathy.github.io/2015/05/21/rnn-effectiveness/



DNNs: Language Modelling

...trained on Shakespeare:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

All following examples are from Andrej Karpathy’s mind-blowing 
blogpost at http://karpathy.github.io/2015/05/21/rnn-effectiveness/



DNNs: Language Modelling

...trained on Linux kernel source:

/*

 * If this error is set, we will need anything right after that BSD.

 */

static void action_new_function(struct s_stat_info *wb)

{

  unsigned long flags;

  int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);

  buf[0] = 0xFFFFFFFF & (bit << 4);

  min(inc, slist ->bytes);

  printk(KERN_WARNING "Memory allocated %02x/%02x, "

    "original MLL instead \n"),

    min(min(multi_run - s->len, max) * num_data_in),

    frame_pos, sz + first_seg);

  div_u64_w(val, inb_p);

  spin_unlock( &disk->queue_lock);

  mutex_unlock( &s->sock->mutex);

  mutex_unlock( &func->mutex);

  return disassemble(info ->pending_bh);

}

static void num_serial_settings(struct tty_struct *tty)

{

  if (tty == tty)

    disable_single_st_p(dev);

  pci_disable_spool(port);

  return 0;

}

static void do_command(struct seq_file *m, void *v)

{

  int column = 32 << (cmd[2] & 0x80);

  if (state)

    cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 

1);

  else

    seq = 1;

  for (i = 0; i < 16; i++) {

    if (k & (1 << 1))

      pipe = (in_use & UMXTHREAD_UNCCA) +

        ((count & 0x00000000fffffff8) & 0x000000f) << 8;

    if (count == 0)

      sub(pid, ppc_md.kexec_handle, 0x20000000);

    pipe_set_bytes(i, 0);

  }

 

All following examples are from Andrej Karpathy’s mind-blowing 
blogpost at http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Deep Neural Networks
Output Layer

2nd Hidden Layer

1st Hidden Layer

Input Layer



Training Deep Neural Networks

● Trained by “backpropagation”
● Calculate the loss - any differentiable measure of how 

“close” the neural net output is to the target

● “Backpropagate” this error to the previous layer to 
calculate what the hidden units should have been

● Recursively repeat until the input layer is reached



Backpropagation, Cont’d

● We want to iteratively update the weights with a 
“gradient” - the direction to update the weights to 
maximally decrease the loss

● Backpropagation directly computes the gradient of the 
neural net weights with respect to the loss

● There are many variants of backpropagation
○ Stochastic...
○ Momentum...
○ Second-order…



Convolutional Networks

● What if the fully-connected structure is overkill?
● Can significantly simplify the model by sharing 

parameters
● Define the transitions between layers as convolution 

instead of matrix multiplication



...Convolution?

● Defined as:

● Maybe some animations would be more clear:

(Thanks to Brian Amberg for contributing these animations to Wikipedia!)



Convolution in 1 Dimension

Original Signal Filter Responses (5 Filter Bank)

Each filter detects frequencies at 500Hz, 1000Hz, 1500Hz, 2000Hz, and 2500Hz.



Application to Malware Detection

● Great, what does all of this have to do with malware 
detection??

● Convnets work well with data where there is spatial or 
temporal structure
○ Nearby pixels have a lot of meaning in image data;
○ Nearby samples have a lot of meaning in audio data;

● If we can assume some “local connectivity”, models are 
easier to train



Local Connectivity

● Why are models easier to train when local connectivity is 
assumed?
○ Significantly reduces the number of parameters in the 

model
● Why is this important?

○ Computing the output of the model is faster
○ Updating parameters is faster
○ There are fewer parameters, so the optimization 

problem is probably easier



Spatial Structure in Instructions

Some examples of the spatial structure in x86 instructions:



The Model - High Level View



Convolutional Layers

● A convolutional layer turns a d-dimensional sequence of i 
steps into a h-dimensional sequence

● Each convolutional layer has an associated “window 
size” and “stride”:
○ Window size: how many contiguous steps from the 

previous layer to consider
○ Stride: how many steps to skip between steps in the 

convolution



Convolutional Layers

Illustration of window length and stride:

Window length: 4. Stride: 1 Window length: 3. Stride: 2



Dealing with Variable-Length Sequences

● Fully-connected layers want an input of fixed size
● There is no constraint on:

○ How long or short the disassembly will be!
○ How many functions the disassembly will have!

● Padding the output to the largest conceivable size isn’t 
the best way to go.

● Need a way to distill the variable-length sequence into a 
fixed-length sequence the fully-connected layers can do 
something useful with



Solution: Max Pooling
For each filter in the final convolutional layer:

● Find the maximum filter response across 
all instruction and all functions;

● Pass this value to the next layer.

● Keep track of the (function,instruction) pair for 
each filter.  This bookkeeping allows 
backpropagation to only flow through the 
selected filters.



Max Pooling, Cont’d

● The max pooling can be interpreted as a saliency-
detecting operation

● Backpropagation only flows backwards to instructions the 
model deems “important”

● The model can be seen as combining instruction 
segments as evidence to convict a sample as good or 
bad.



The Experiment
● Subsampled data uniformly from our larger dataset of 

x86/x86-64 Windows PEs
● Disassembled ~2.2 million samples
● Discarded samples with too few (.NET) or too many (bad 

disassembly) instructions
● ~500k “Good”
● ~800k “Bad”
● Disassembly data is raw binary (not in human readable 

mneumonics)
● If an import is present and resolvable, the import name is 

given



Input Encoding

● x86 instructions are variable length! How to deal with 
this?

● Idea 1: Pad to 120 bits (15 byte maximum?)
○ Training is very slow; 

● Idea 2: Truncate to 64 bits
○ Convergence speeds up somewhat

● Idea 3: Truncate to 16 bits, encode as one-hot
○ No noticeable degradation from 64-bit truncation



Using Import Data

● Knowing what function a CALL is jumping into is very 
important information to reverse engineers

● Make a small tweak to the first fully-connected layer:



Using Import Data - Higher Layers

● Look through all of the data and get the import names
● Filter out the 8112 most common non-gibberish import 

names (chosen somewhat arbitrarily)
● If there is an import that does not match one of the 8112 

names, throw it in the “Misc. Import” bin
● Each sample has an 8113-dimensional vector
● Each non-zero element in this vector indicates the 

presence of an import



Using Import Data - Input Layer

● We can also use the import data on the input layer
● In addition to the input dimensions used for the 

instruction, we can have inputs for the import
● How to express the variable-length import name as a 

fixed-length vector?
○ Bag of characters
○ “Temporal” bag of characters (so “ctime()” and 

“emitc()” don’t have the same representation)



Future Work

● Static disassembly is problematic - discovered code 
paths are heuristic, and is difficult to trace out all 
executable code

● Important information can be buried elsewhere in the 
executable - how do we find it?

● Only applies to executable code - how to apply to scripts, 
code running in VMs (Java, C#, …)?

● Is training on raw bytes is tractable?



Questions?

Also, a special thanks to Derek Soeder!


