
DISTRIBUTING THE RECONSTRUCTION OF HIGH-LEVEL
INTERMEDIATE REPRESENTATION FOR LARGE SCALE

MALWARE ANALYSIS

Alexander Matrosov (@matrosov)
Eugene Rodionov (@vxradius) 1

Gabriel Negreira Barbosa (@gabrielnb)
Rodrigo Rubira Branco (@BSDaemon)

{alexander.matrosov || gabriel.negreira.barbosa || rodrigo.branco}
noSPAM intel.com

1 rodionov *noSPAM* eset.com

1

Disclaimer

We don’t speak for our employer. All
the opinions and information here are
of our responsibility (actually no one
ever saw this talk before).

So, mistakes and bad jokes are all

OUR responsibilities

2

Previous years…

3

We learned! (Pictures from the back

intentionally omitted) …

4

… Or Not! (Thanks to the smoke and

fire detection mechanism)

5

Agenda

 Introduction / Motivation

 Objectives

 Methodology

 Distributing IDA Pro (with Decompiler)

 Results

 Validating the Methodology and Toolset

 Resources

 Conclusions

 Acknowledgments
6

Introduction / Motivation

 Number of new malware samples grows at an absurd pace

 We still see words such as ‘many’ instead of the actual
number of analyzed samples

 Assumptions without concrete data supporting them

 INDUSTRY-RELATED RESEARCH NEEDS RESULTS, THUS NOT
PROMISING POINTS ARE NOT LOOKED AFTER

7

Objectives

 Demonstrate the possibility of in-depth large-scale
malware analysis

 Distribute and scale IDA Pro (with Decompiler) to
leverage its functionalities for automated malware
analysis

 Share with the community the obtained results:

 IDA Pro IDBs, plugins and scripts

 Intermediate representation

 MS Visual C++ reconstructed types

 And more... 8

Methodology: Highlights

 Analyzed 32-bit and x86-64-bit PE not-packed
samples from public sources

 No malware size limitations at all

 Preference on MS Visual C++ samples because of
HexRaysCodeXplorer OO types reconstruction
feature

 Details on the infrastructure already discussed
in Black Hat Las Vegas 2012 presentation

9

Collect
samples

Extract
information

Analyze and
parse

information

Generate
statistics
and charts

Phase 1 Phase 2 Phase 3 Phase 4

Pre-process

samples and

collect millions

of 32-bit and

x86-64-bit not-

packed PE

malware

samples

Run different

malware analysis

algorithms on the

collected samples

and store results

on the filesystem.

Parse and

structure the

results.

Generate

statistics and

charts based on

structured

information.

Methodology: Overview of the process

10

Methodology: Only static analysis

 We only used static analysis

 Not detectable by malware… unless it exploits
the analysis environment!

 Prone to anti-disassembly tricks

 Has some limitations… but powerful tools and
techniques are available

 IDA Pro rocks!!

11

Methodology: Malware analysis algorithms

 HexRaysCodeXplorer (by @REhints) used for:

 Ctrees* for some IDA-recognized functions

 MS Visual C++ object-oriented types REconstruction

 Ctrees depth analysis

 Highly-modified version of pathfinder by @devttyS0

 AES-NI and GETSEC detection

 OO “this” usage study

 Crypto usage detection based on IdaScope by
@push_pnx

* - ctrees is the intermediate representation in Hex-Rays decompiler12

Constraints and Limitations:
Dumping Ctrees

Enumerate
routines

• Iterate through recognized routines in idb
• Process first 60 routines of size larger than 0x160 bytes
• Process first 30 crypto (using AES-NI) routines
• Process first 40 other functions bigger than 0x60 bytes

Obtain IR
• Decompile routine to get ctree (IR)
• Serialize ctree to string

Ctree
normalization

• See implementation of
ctree_dumper_t::filter_citem()

• Use normalized ctree for
comparison

13

Detect
VTBL

• Find all calls with “this” pointer to an offset
within “.rdata”/”.data” and data sections

• Find all xrefs to virtual tables

Recognize
layout

• Calculate size of virtual tables
• Recognize all virtual methods

Add new
VTBL Type

• Create new structure for VTBL
layout representation

Constraints and Limitations:
VTBL reconstruction algorithm

14

Detect
Type

• Find pointers to possible type instances
• Find initialization routine entry point

Recognize
Type
layout

• Find all references to possible type address
space

• Find all xrefs to the attributes of the
identified type

• Reconstruct data flow for the identified type

Add new
Type

definition

• Create new local type
if it has more than 3
attributes

Constraints and Limitations :
Complex types REconstruction algorithm

15

Constraints and Limitations:
Ctrees Depth Analysis

Enumerate code
xrefs to the

routine

• Use breadth-first search algorithm
• Limit: 100 nodes

Get

statistics

• Distance from entry point
• depth counter
• number of xrefs

16

Constraints and Limitations:
AES-NI and GETSEC Detection

Analyze
code

sections

• Entry point section is always analyzed

Scan first
512 Kb of
sections

• Disassemble with linear sweep
• Reject if disassembly > 20 Mb

Detect
instructions

• Check for GETSEC and all AES-NI
instructions

• Reject match if a “bad” is
present in 15 surrounding
instructions

17

Constraints and Limitations:
C++ “this” usage study

Scan entry
point section • Check up to 5000 call instructions

Detect
“this”
usage

• Scan 5 instructions preceding the call
• Check ECX loads (“mov” and “lea”)

Gather
statistics

• Compute percentage of calls
“loading” ecx

18

Distributing IDA Pro: Highlights

 Unexpected performance benefits on IDA because the
information is structured

 But we also came across some disadvantages: SDK is complex,
function signatures change from version to version and is not
fully documented

 Good performance in commodity hardware

 C-based plugins are usually not compatible with
Linux/Mac

 Portability efforts are required

19

 IDA plugins are usually not made to scale

 Target single-sample analysis

 Focus on users interacting with IDA Pro interface

 Automated malware analysis exercises much more

the internal plugin flows than manual analysis

 As a result, corner cases and bugs were identified in many plugins

including HexRaysCodeXplorer

Distributing IDA Pro: Highlights

20

Results

21

Pre-processing – Total: 7,829,441

69%

31%

Packed x Not-packed

Not-packed

Packed

13%

87%

Not-packed MS Visual C++ prevalence

Visual C++

Other compilers

22

AES-NI Usage (IDA Pro x standalone)

0

2

4

6

8

10

12

14

16

18

20

IDA Pro AES-NI identification Linear sweep approach

IDA Pro x Linear sweep approach

23

GETSEC Usage

4%

96%

GETSEC Usage

Using GETSEC

Not using GETSEC

24

C++ “this” Usage Study – Top 10
Percentages

% calls loading ECX Prevalence (%)

4 7.420991619

18 5.845574961

30 5.810101164

10 5.247588099

16 4.788962581

5 4.468431488

3 4.348707424

19 3.988901769

20 3.905284962

46 3.193908642

25

Ctrees: Top 10 repeated ctrees (with
repetition number). Total: 8,422,576

Number of repetitions Percentage

40606 0.482109036

38800 0.460666665

34718 0.412201683

20190 0.239712886

19999 0.237445171

17635 0.209377749

17060 0.202550859

14959 0.177605996

14439 0.171432113

14072 0.167074776

Total 232478 2.760176934

26

Unique Ctrees: Repeated x Not-Repeated

70%

30%

Ctrees repetition

Ctrees with no repetitions

Ctrees with repetitions

27

Ctrees: samples with repeated x non-
repeated ctrees

9%

91%

Malware with repeating ctrees

Malware with repeated ctrees

Malware with no ctrees repetition

28

Ctrees reaching EP + avg + std of their
depth

44%

56%

EP reached

EP reached

EP not found

EP reached Average depth: 5.1940 (standard deviation: 2.3588)
82,646 or 0.98% of ctrees are directly under the EP

29

Ctrees max parents (code xref) – Top 10

Top 10 - Max number of parents
Number of parents Occurrences

11126 1

10989 3

9463 1

9023 1

8907 1

8837 2

8794 1

8226 1

7536 1

6917 5

30

VALIDATING THE METHODOLOGY AND TOOLSET

ANALYSIS OF C++ TARGETED MALWARE

31

Modern C++ Malware in Targeted Attacks

-- Stuxnet relations

-- Duqu relations

-- Equation relations

-- Animal Farm family
32

Animal Farm Case Study

33

 Discovered by CSEC
as operation
SNOWGLOBE

 Samples: NBOT,
Dino, Babar,
Bunny, Casper

 Written in MS
Visual C++

* - “Totally Spies”, Joan Calvet, Marion Marschalek, Paul Rascagnères, http://recon.cx/2015/slides/recon2015-01-joan-calvet-marion-marschalek-paul-rascagneres-Totally-
Spies.pdf

Animal Farm* Case Study

34

Casper’s virtual
function tables:

Dino’s virtual
function tables:

Casper vs. Dino in HexRaysCodeXplorer

35

Defines how the dropper interacts with the Windows
Registry:

 API – call Windows Registry APIs directly

 BAT – modify Windows registry in a batch file using “reg” commands

 REG – modify Windows registry by using “reg” command in a command
prompt

 WMI – modify Windows registry by using StdRegProv class

struct IRunkeyHandler

{

LPVOID addKey;

LPVOID deleteKey;

LPVOID queryKey;

LPVOID destructor;

};

RunkeyApi
Handler

RunkeyBat
Handler

RunkeyReg
Handler

RunkeyWmi
Handler

IRunkeyHandler

Casper vs. Dino: RUNKEY

36

Defines how dropper removes itself from machine

after its execution

 DEL – remove itself by using command prompt

 API – remove itself by calling MoveFileEx

 WMI – remove itself by using command prompt created

through create method of the Win32_Process WMI class

struct IAutoDelHandler {

LPVOID delete;

LPVOID deleteAscii;

LPVOID destructor;

};

AutoDelApi
Handler

AutoDelDel
Handler

AutoDelWmi
Handler

IAutoDelHandler

Casper vs. Dino: AUTODEL

37

Casper’s RUNKEY constructor: Dino’s RUNKEY constructor:

Object Instantiation: Constructors

38

Casper’s RUNKEY constructor: Dino’s RUNKEY constructor:

!=

Object Instantiation: Type REconstruction

39

Dino’s virtual function
tables:

NBOT’s virtual
function tables:

Dino vs. NBOT in HexRaysCodeXplorer

40

Exploring NBOT’s RTTI

41

Type REconstruction:
CTFC_HTTP_Form_Multipart

Dino NBOT

42

Dino NBOT

=

Type REconstruction:
CTFC_HTTP_Form_Multipart

43

Animal Farm: Shared C++ Types

NBOT Casper Bunny Babar Dino

wmiException X X X

basic_AvWmiManager X X X

basic_WmiManager X X X

CTFC_HTTP_Form X X X

CTFC_HTTP_Forms X X X

CTFC_HTTP_Form_Multipart X X X

CTFC_HTTP_Request X X X

CTFC_AbstractSocket X X X

CTFC_StandardSocket X X X

RunKeyApi X X

RunKeyBat X X

RunKeyReg X X

RunKeyWmi X X

RunKeyDefault X X

AutoDelApi X X

AutoDelDel X X

AutoDelWmi X X

AutoDelDefault X X

44

NBOT Casper Bunny Babar Dino

NBOT
6 shared
custom
types

3 shared
custom
types

3 shared
custom
types

6 shared
custom
types

Casper
15 shared
custom
types

Bunny
3 shared
custom
types

Babar

Dino

Animal Farm: Shared C++ Types

45

Conclusions

 We demonstrated that IDA Pro scale really well and all
its powerful features can be used in automated malware
analysis systems

 CALL TO ACTION: IDA Pro plugin developers to start adding batch mode
switches and optimize the algorithms

 Want to run your IDA plugin on millions of malwares? Let
us know!

46

Resources

Presentation, code and instructions on how

to download samples, IDBs and outputs will

be available at:

https://github.com/REhints/blackhat2015

47

 Finally plugin support Linux/Mac/Windows

 Options for analysis in IDA batch mode

 Multiple bug fixes and code review

 Improvements for Types and VTBL’s reconstruction

 New Features:

 dump Ctrees information for additional analysis

 dump all reconstructed types information

CodeXplorer v2.0 [BH Edition]

https://github.com/REhints/HexRaysCodeXplorer48

Acknowledgements

Personally to Ilfak Guilfanov (@ilfak) and
Hex-Rays team for supporting this research

All the researchers releasing malware-related
techniques!!!

49

The new RE book is coming soon!

https://www.nostarch.com/rootkits
50

THE END ! Really !?

Alexander Matrosov (@matrosov)
Eugene Rodionov (@vxradius) 1

Gabriel Negreira Barbosa (@gabrielnb)
Rodrigo Rubira Branco (@BSDaemon)

{alexander.matrosov || gabriel.negreira.barbosa || rodrigo.branco}
noSPAM intel.com

1 rodionov *noSPAM* eset.com

51

