
POACHER TURNED GATEKEEPER:
LESSONS LEARNED FROM EIGHT YEARS
OF BREAKING HYPERVISORS

Rafal Wojtczuk <rafal@bromium.com>

http://www.bromium.com/

ÅAbout the speaker

ÅTypes of hypervisors

ÅAttack surface

ÅExamples of past and present vulnerabilities

ÅMitigation techniques

Agenda

ÅMainstream, popular commercial, for x86, with
Windows OS VMs
ïThe talk is about them

ÅOthers
ïFor embedded systems

ïAcademic ones

ïSecurity guaranteed by formal software verification

Types of hypervisors

Å Type 1 Type 2

ÅDeepSafe is special and different, see later

Types of hypervisors, cntd

Source:
http://en.wikipedia.org/wiki/Hypervisor#mediaviewer/
File:Hyperviseur.png

Type 1&2 attack surface

ÅIf the goal of a virtualization system is to
maximize features, the attack surface grows

ÅIf the goal of a virtualization system is to
provide security via reliable isolation, care
must be taken to provide functionality in a
way that does not inflate attack surface

Functionality vs security

ÅApplication attack surface

ïBrowsers, document editors - hopeless

ÅKernel attack surface (relevant for sandbox)

ïOn Windows, ca 400 syscalls, 800 win32k.sys
syscalls, drivers ioctls/WDDM escapes

ï76 CVEs for Windows kernelmode in 2013

What we compare to

ÅThe complexity of input is the only sensible
metric ς but not easy to measure quantatively
ÅParticularly, LOC/TCB count is close to

meaningless; if you _really_ need numbers:
ïXen-4.4.0 ς ca 1.7 MLOC
ïYou can strip it to 110KLOC usermode and 60KLOC

ring0, still retaining useability
ïWindows7 kernel ς ca 2MLOC, likely win32k.sys larger

How can we compare?

ÅNeed to rely on experience ς most agree the
attack surface of a well-written hypervisor is
significantly smaller (see MS Drawbridge)

ÅOne hard fact ς vmexit boundary is much
stronger than syscall boundary, which makes
real exploitation difficult

How can we compare cntd?

Å ... Of memory corruption bugs
Å In case of browser vulnerabilities, attacker has a lot of control over memory layout, thanks to

javascript/other scripting
Å In case of broker-vulnerability-based sandbox escapes, on Windows attacker knows libraries bases
ς no ASLR protection

Å In case of kernel exploits, attacker can craft useful data structures in usermode that can be
misinterpreted by the kernel, because the address space is the same (unless SMAP ς but no SMAP
for Windows anytime soon);

Å Windows kernel hands out its memory layout for free to attacker (better on Windows8.1) [1]
Å No such powerful/troublesome things against the hypervisor ς usually one needs info leak + write

primitive (while in the case of browser, use-after-free usually provides both instantly)
ï Cloudburst [2] is a notable, exceptional example of a reliable VM-escape memory-corruption-based exploit
ï Other exploits rely on ASLR not functional (no ςfpie, non-ASLR-compatible dlls, etc)

Notes on exploitability...

Å... And assuming that hypervisor can be attacked only
after compromising the VM kernel
ïNote some products expose hypervisor services to VM

unprivileged usermode

Å... And assuming there is nothing valuable in VM...
Å... And assuming hypervisor-related drivers in VM do

not weaken VM kernel security...
ÅThen ς pure gain

If virtualization is another layer...

If virtualization is another layer...

ÅIsolation by virtualization improves security,
even with off-the-shelf products

ÅIn order to maximize security, hypervisor-
related code should be small

ÅOften, good design can provide functionality
not sacrificing security

The state of the Union

Case studies

Å4 issues, reported by the presenter in March
2014

ÅFixed in 2014 July CPU

New Oracle VirtualBox vulnerabilities

Shared folders

ÅSupports utf8 and unicode pathnames

ïDoes not check null-termination early

ÅCasing corrections

ÅGuest can specify path delimiter; host is
supposed to normalize path changing each
occurence to \

Vbox sf host code is large

Å Memory corruption in vbsfbuildfullpath()
Å 397 /* Correct path delimiters */
Å 398 if (pClient->PathDelimiter != RTPATH_DELIMITER)
Å 399 {
Å 400 LogFlow(("Correct path delimiter in %ls\n", src));
Å 401 while (*src) // src comes from VM, not null-terminated
Å 402 {
Å 403 if (*src == pClient->PathDelimiter)
Å 404 *src = RTPATH_DELIMITER;
Å 405 src++;
Å 406 }

S0434934

ÅNo idea by now

ÅIf such a vulnerability was in browser code,
the usual trick would work ς set up memory
layout so that javascript Array object is
positioned after the buffer; overwrite size field
of the Array

How to exploit for code execution

ÅHost service code should accept only narrow
input ς all conversions/normalization should
be done in the guest (if possible).

Lesson

ÅShared folders directory traversal

ÅObviously, just concatenating
αǊŜǉǳŜǎǘψǇŀǘƘƴŀƳŜέ ǊŜŎŜƛǾŜŘ ŦǊƻƳ ±a ǘƻ
shared folder root leads to directory traversal
Ǿƛŀ αΦΦ\ ..\ ..\ ..\ ..\ǊŜǉǳŜǎǘψǇŀǘƘƴŀƳŜέ ς service
needs to sanitize input

S0434968

ÅVbox sf sanitize algorithm:
ÅSplit the path into components (/ or \ is the path separator)
ïStart with depth_credit=0
ïFor each component do: Switch (component)
ïCase . : do nothing
ïCase ..: depth_credit-- //fail if negative
ïDefault: depth_credit++;

Å{ƻ αŘƛǊƴŀƳŜ\ΦΦέ iǎ ƻƪΣ αŘƛǊƴŀƳŜ\ ..\ΦΦέ Lǎ ƴƻǘ
ÅA bit untrivial? Bugs possible?

S0434968, cntd

ÅOn posix hosts (e.g. Linux), \ is NOT a path
separator

ÅMkdir /mnt/vboxsf/a\a\a\a\a\a\a\a\a\a

ÅAccess
/mnt/vboxsf/a\a\a\a\a\a\a\a\a\a/../../../../../.
./../../etc/passwd

S0434968, cntd

ÅLesson ς same as the previous one

ÅSanitization should be SIMPLE, e.g. just check
for (\ |/)..(\ |/) In the pathname and refuse it

ÅEven better, on Windows prefix with \ \?\

ÅOn Linux, use chroot

ÅBeware - portable code can be full of surprises

S0434968, cntd

ÅData leak in shared folders code

ÅWhen VM requests to read 1024 bytes from
zero-length file, host returns 1024 bytes-long
uninitialized buffer (plus information that 0
bytes have been read)

ÅLeaks contents of uninitialized malloced buffer

S0434952

S0434947:Frontend to kernel
escalation on the host

ÅInteger overflow in libext2fs

Å·ŜƴΩǎ tygrub runs in [privileged] dom0, uses
ƭƛōŜȄǘнŦǎ ǘƻ ŜȄǘǊŀŎǘ ƪŜǊƴŜƭ ƛƳŀƎŜ ŦǊƻƳ ±aΩǎ
filesystem ς bad!
ÅPvgrub runs in VM, does the kernel image

extraction within VM - good
ÅLesson ς again, offload to VM as much as possible

CVE-2007-5497

ÅUse-after-free in qemu/KVM (a talk at BH11)

ÅTriggered by emulation of PCI hotplugging, by
writing to emulated chipset registers

ÅAny generic mitigation? E.g. can we deny all
PCI config access to VMs?

CVE-2011-1751

ÅStart VM with all PCI config space access
granted, let it boot (no interaction with
malicious input)

ÅSave VM, restore VM

ÅDeny all PCI config space access to the
restored VM; let it interact with attacker

Delusional boot

ÅHeap-based buffer overflow in the
process_tx_desc function in the e1000 qemu
emulation

CVE-2012-0029

What to do with device emulation:
stub domain

What to do with device emulation:
guest PV driver

ÅWindows Kernel TCP/IP/IGMPv3 and MLDv2
Vulnerability, remote code execution

ÅHey, this is not a bug in virtualization
software?

CVE-2007-0069

ÅMove some privileged code (e.g. NIC/WLAN
driver, networking stack, dhcp client) to a
dedicated VM

ÅNeed to give the service VM direct access to
the relevant hardware via PCI passthrough

ïQubesOS, XenClient XT: network VM by default

Service VMs

