
Protecting Data In-Use from Firmware and Physical Attacks

Stephen Weis

PrivateCore
Palo Alto, CA

ABSTRACT
Defending computers from unauthorized physical access, ma-
licious hardware devices, or other low-level attacks has proven
extremely challenging. The risks from these attacks are
exacerbated in cloud-computing environments, where users
lack physical control over servers executing their workloads.

This paper reviews several firmware and physical attacks
against x86 platforms, including bootkits, ”cold booting”,
and malicious devices. We discuss several existing tools and
technologies that can mitigate these risk such as Trusted
Execution Technology (TXT) and main memory encryption.
We will also discuss upcoming technologies that may help
protect against firmware and physical threats.

1. INTRODUCTION
In 2013, journalists revealed that the United States Na-

tional Security Agency’s (NSA) Tailored Access Operations
unit engaged in low-level attacks targeting platform firmware
and utilizing hardware implants [3]. These attacks were de-
tailed in an internal catalog of tools, exploits, and devices
referred to as the ANT catalog.

The NSA ANT catalog contained programs with code-
names such as DIETYBOUNCE, GOURMETTROUGH, and
IRATEMONK targeted the BIOS, system management mode
(SMM), and device firmware on platforms from vendors such
as Dell, Cisco, Huawei, and Juniper. Other programs, such
as IRONCHEF, GINSU, and COTTONMOUTH involved
hardware implants integrated in peripheral interfaces or on
the PCIe bus. Some of these hardware implants contained
two-way radios capable of bridging air-gapped systems.

The types of attacks illustrated by the NSA ANT reve-
lations were not new developments; similar attacks against
modern platforms have been publicly discussed among the
security community for at least 15 years. However, the NSA
ANT revelations do highlight that these attacks are not only
being used in practice, but are also low-cost and feasible for
even an individual attacker [25].

While low-level attacks are relatively easy to conduct,
there are limited defensive technologies available on x86 plat-
forms. The defensive technologies that do exist have not
been widely adopted. This paper will review several cate-
gories of attacks against x86 systems, discuss the pros and
cons of existing defensive technologies, and review several
technologies in the pipeline that may benefit platform secu-
rity.

To appear in BlackHat 2014. Generated June 25, 2014.

2. PHYSICAL ATTACKS
It is generally understood that physical access to an x86

platform can completely compromise software security. His-
torically, physical security controls such as cages, cameras,
and locks have been employed to prevent or detect physical
access. Yet with adoption of outsourced infrastructure and
cloud computing, x86 platforms are increasingly run outside
the physical control of the software owner.

This section briefly summarizes several well-known phys-
ical attack vectors against x86 platforms, including DMA
and physical memory extraction.

2.1 Direct Memory Access
By design, x86 architectures provide direct memory access

(DMA) from hardware subsystems to main memory without
invoking the CPU. DMA is generally used to improve per-
formance. For example, DMA allows disk, network, and
graphics devices to read and write data directly to memory
without incurring CPU cycles.

Yet, without proper controls, devices with DMA may ac-
cess arbitrary regions of memory. Access to runtime mem-
ory may compromise system security by exposing secrets or
allowing an attacker to modify running software in place.
Secrets from captured memory can be extracted easily with
forensics tools like Volatility [69].

Tribble [11, 28] is an early example of a device designed
for exfiltrating data via DMA, based on an off-the-shelf Intel
evaluation platform. Copilot [57] also used DMA with a
PCI device for the purpose of monitoring kernel integrity.
The Maux attacks [66, 67] exploited remote vulnerabilities
in a standard network interface device and accessed memory
via DMA. Off-the-shelf intelligent network adapters, such as
those made by Cavium, are able to exfiltrate DMA memory
over a network connection [35].

The IEEE 1394 Firewire interface also provides DMA by
design. This led to several demonstrations of memory ex-
traction to steal data or for forensics [5, 16, 17, 71]. The
Thunderbolt interface actually extends the PCIe bus, pro-
viding an easy way to use DMA attack devices through an
external interface [50, 59].

2.2 Physical Memory Extraction
While DMA may be mitigated by software-based coun-

termeasures or a hardware I/O memory management unit
(IOMMU) such as Intel VT-d [38], such countermeasures
do not mitigate physical extraction of system memory. For
example, memory bus analyzers can interdict memory traf-
fic. However, off-the-shelf bus analyzers are unwieldy. They

1



must be installed ahead of time, tend to be relatively expen-
sive, and are physically large.

A “cold boot attack” is a low-cost memory extraction at-
tack that involves literally freezing system memory modules
with an aerosol freeze spray [30]. The frozen memory con-
tents are preserved long enough to boot to a “scraper” image
such as bios-memimage or msramdump which can copy the
memory contents to persistent storage.

Cold booting disrupts a running system and data must be
recovered before the memory module thaws. Furthermore,
it does not reliably capture all memory contents, as there
is some degradation over time. Conducting the attack may
be further complicated by error-correcting memory which is
cleared on a reset or by data scrambling for power supply
noise suppression [52].

Persistent or non-volatile memory (referred to as NV-
RAM), designed to persist data after a power loss. NV-RAM
is now available in DIMM form-factors used by standard x86
servers. An attacker installing NV-RAM modules in a server
may remove them once the server is in use by a victim. Since
contents are preserved like a disk, attackers can recover all
data in memory without loss at a later time. If a mem-
ory mirroring mode is configured, an attacker could remove
an NV-RAM module from a running system and replace it
without disrupting service.

Persistent memory will likely see increased adoption in
the near future as production systems move toward fully in-
memory architectures. As memory is essentially used like
a disk, there will be an increased risk of physical memory
extraction.

3. BOOT INTEGRITY ATTACKS
Modern x86 platforms depend on multiple pieces of firmware

to load prior to or during the execution of the operating sys-
tem. Attackers with either logical or physical access may be
able to compromise boot integrity with bootkits or platform
malware. We use the term “platform malware” to distin-
guish from malware functioning in the operating system or
hypervisor level. Since platform malware persists outside
the operating system, it may re-infect new operating system
installations. Platform malware may also run higher levels
of privilege and be invisible to an OS, such as within system
management mode (SMM).

Attacking boot integrity is well-trod research territory.
Firmware dependencies are typically vendor- or hardware-
specific, so offer many fragmented targets. Consequently,
researchers have discovered numerous attacks against nearly
every piece of firmware used in the boot process.

As a brief sample, researchers have found and exploited
vulnerabilities in the BIOS and associated data structures
[8, 49, 61], UEFI [42], master boot records (MBR) [43], NIC
firmware [14, 15, 20, 21, 66, 67], hard drive firmware [74],
PCI device option ROMs (OptROMs) [13, 31, 48], keyboard
controllers [27], CPU management engines [60, 62, 65] or
System Management Controllers (SMC) [40], ACPI [19, 32],
and SINIT authenticated code modules [72]. This list is
by no means exhaustive and largely represents more recent
work.

These many, varied attack vectors illustrate the difficulty
of securing an execution environment on x86 platforms. Any
piece of code that is executed during the lifetime of a system
must be measured, verified, or otherwise isolated to establish
trust in a system.

4. DIAGNOSTICS TOOLS
Diagnostics tools are available for assessing BIOS and

platform security, or performing forensics on a potentially
compromised system. For example, Flashrom [33] is a gen-
eral purpose tool for reading and modifying a large variety
of devices, but does not have any security-specific function-
ality.

Intel’s CHIPSEC [47] provides a set of utilities and mod-
ules for conducting firmware forensics and detecting known
vulnerabilities. CHIPSEC’s modules address issues such as
BIOS protection, SMRAM locking, and SMRR configura-
tion.

MITRE’s Copernicus [10] provides similar functionality.
Copernicus can dump the BIOS of a system to be compared
against a known, clean copy. Copernicus also checks the sta-
tus of the system configuration to determine whether a BIOS
can be modified. MITRE’s researchers have developed at-
tacks to evade Copernicus, and integrated countermeasures
into a new version, Copernicus 2 [44].

5. DEFENDING THE BOOT PROCESS

5.1 Verified Boot
One approach to ensuring that a boot process has not

been compromised is to verify a chain of signatures on each
component as it is loaded. This chain-of-signatures approach
is used for Windows 8 secure boot and ChromeOS verified
boot. We’ll use the latter term for convenience.

Verified boot typically involves a root public key that re-
sides in some non-volatile and tamper-resistant component.
This key may be referred as a platform key and reside in
SPI flash, read-only firmware, or a trusted platform mod-
ule (TPM). For flexibility in updates, the root platform key
typically will be used to verify a sub-key, which might be
referred to as a “key exchange key”, “firmware data key”,
or “kernel data key”. These sub-keys will be used to ver-
ify signatures on the actual firmware and kernels which are
loaded.

Verified boot does raise the bar against bootkit and plat-
form malware, but as with all software, may itself be sus-
ceptible to vulnerabilities [9]. In practice, verified boot may
be disabled to allow users to boot to arbitrary operating
systems. Attackers with physical access may also replace or
modify whatever component the root public keys reside in,
allowing them to circumvent the verified boot process.

5.2 Measured Boot and Attestation
Verified boot doesn’t provide any mechanism to know

what actually booted. Users must trust that the boot pro-
cess completed as expected, but do not have an independent
measurement of what code executed. Providing this mech-
anism is the core concept behind a measured boot.

For x86 platforms, the Trusted Computing Group (TCG)
[29] specified the predominant measured boot technology,
which employs a trusted platform module (TPM) as an in-
dependent auditor. The TPM contains special platform con-
figuration registers (PCRs) which are used to record mea-
surements of firmware and configuration loaded during the
boot process. These measurements are intended to mea-
sure every piece of firmware or software required to boot
an operating system. PCRs may only be updated in spe-
cific conditions, so they cannot be arbitrarily overwritten by
malicious software.

2



Following a boot, a remote agent can interrogate the TPM
via a challenge-response protocol and recover a signed set of
measurements called a quote. This process is referred to
as remote attestation. The remote attestor will verify the
TPM’s signature on the quote, then evaluate whether the
quoted values abide by a known policy or whitelist.

Originally, the TCG specifications relied on a static root of
trust measurements (SRTM). SRTM relies on a static root of
firmware to initially measure other boot modules into TPM
PCRs. Besides having to trust that initial firmware, in prac-
tice SRTM is inflexible to manage.

Changes like upgrading the BIOS or installing a new de-
vice would require updating corresponding policies. For
SRTM, another issue is that there was also no authorita-
tive source of the provenance of firmware. Users did not
know that a given firmware was “good”. They could only
accept it as-is and monitor for unexpected changes.

An alternate approach is a dynamic root of trust mea-
surement (DRTM), of which Intel Trusted Execution Tech-
nology (TXT) [26] is one implementation. The concept be-
hind TXT’s implementation of DRTM is that after platform
firmware has executed, a special SENTER instruction can
bring the system into a known, clean state.

At that point, the operating system and its configuration
can be measured into PCRs, then “late launched”. The idea
is to remove dependencies on the initially loaded firmware,
so that only the operating system level software would need
to be measured. An advantage is that users can know the
provenance of their operating system and can derive the ex-
pected measurements on their own.

In theory, the late launched OS should be isolated from the
prior executed firmware. In practice, system management
mode (SMM) code remains resident after SENTER and can
be a target for malware [72]. This makes it necessary to
check SRTM measurements of the SMM code, even when
using DRTM. That brings the management inflexibility and
provenance questions back into scope.

Another issue is that TXT still ultimately relies on soft-
ware in the form of a signed, authenticated code module
(ACM) from Intel called SINIT. This module may contain
exploitable flaws that could subvert the measured boot pro-
cess. At least one buffer overflow attack was demonstrated
against SINIT [73], although it has since been fixed.

When it comes to physical attacks, the TPM was not de-
signed to resist physical attackers. It is connected to the
CPU on a low pin count (LPC) bus which can be interposed
[46, 70]. Attackers could subvert TXT by modifying mea-
surements of malicious firmware with good measurements.

Additionally, the certificates and signing keys from within
a TPM can be compromised by a physical attacker [64].
Once the signing keys are exposed, an attacker can emu-
late a TPM to the remote attestation protocol and spoof
measurements.

6. PHYSICAL MEMORY DEFENSES
The risks of exposing plaintext memory highlighted in Sec-

tion 2.2 are well understood. While there do exist secure
processors such as the Dallas Semiconductor DS5002FP that
encrypt all data on the memory bus, x86 systems currently
do not support full memory encryption. As persistent mem-
ory technologies like non-volatile RAM, MRAM, or phase-
change memory come to market, this problem will become
more serious. Memory is becoming the new disk – and it’s

in plaintext.
Researchers have proposed numerous architectures with

encrypted, authenticated, and oblivious memory models to
address the issue [12, 18, 23, 22, 24, 37, 63]. These specific
proposals have not been adopted by either x86 or ARM ar-
chitectures, although there is some initial progress toward
hardware-based memory encryption discussed in Section 7.

In the absence of hardware-encrypted memory, there have
been several software-based proposals. Perhaps the most
well known, TRESOR [53] was designed with cold boot at-
tacks in mind. TRESOR works by using a CPU debug reg-
ister to store AES key material. Attackers able to obtain
memory contents would not recover the actual key. Unfor-
tunately, TRESOR only protects key material and is vul-
nerable to attacks able to modify memory, such as DMA
attacks [4].

Cryptkeeper [56] is another approach intended to min-
imize plaintext memory. It essentially keeps a small un-
encrypted portion of memory, while encrypting the rest of
memory. The issue of where to store keys is not adequately
addressed by Cryptkeeper; the authors allude to using TPMs
or exposure-resilient functions, but do not offer a conclusive
solution to where the keys will be kept.

The approach taken by FrozenCache [54] is to encrypt
sensitive memory and to keep the keys in the CPU cache.
To keep the keys resident in cache, the cache is then put
into non-evict mode (NEM), also known as Cache-as-RAM
mode. Using NEM resulted in significant performance degra-
dation in practice and is not feasible for general purpose use.

CARMA [68] is another approach that keeps keys and
trusted code entirely within the CPU cache. However, CARMA
is intended for a small trusted computing base that does not
support main memory, and thus is not suited for general
purpose use.

A Software Cryptoprocessor [36] is an approach that sup-
ports full-memory encryption on generic x86 platforms. It
is reminiscent of Cryptkeeper and CARMA in that it keeps
a small portion of unencrypted memory entirely within the
CPU last-level (L3) cache, while keeping main memory fully
encrypted. All key material and kernel code remains res-
ident in the L3 cache and is never exposed in memory as
plaintext. By using an authenticated mode of encryption
like AES-GCM, full-memory encryption can resist replay or
substitution attacks that modify memory contents.

7. UPCOMING TECHNOLOGIES
The boot integrity techniques discussed in Section 5 and

the physical memory defenses discussed in Section 6 do raise
the bar for attackers, but are not complete solutions.

Besides being exposed to SMM code, TXT-based attesta-
tion relies on a physical TPM connected to the LPC bus,
which are both vulnerable to physical attack. An improve-
ment would be to reduce the trust perimeter to a single
component. Fortunately, systems on a chip with TPMs or
TPM-like functionality within a single package help reduce
the exposure considerably and have started emerging on the
market.

As for software full-memory encryption technology, the
challenges are primarily around performance. Running a
software cryptoprocessor resident within the L3 cache ef-
fectively reduces the cache size, while encrypting memory
access introduces a new bottleneck on the critical memory
path.

3



While performance is not severely impacted for many ap-
plications with small or sequential memory access patterns,
applications with large or random-access memory can per-
form relatively poorly. One positive trend is that the cache
overhead is fixed, but cache sizes are growing rapidly, mean-
ing the relative cost is rapidly decreasing.

7.1 Software-based Attestation
Software-based attestation is an alternative approach to

using a separate, TPM-like device [10, 41, 45, 55, 58]. A
common approach to software-based attestation is to rely on
some performance or timing measurements which the pres-
ence of malware would negatively impact. The idea is that
the only way that a system can achieve the expected perfor-
mance measurements is if it’s running exactly the expected
code. This requires designing a metric such that even a
minor code change will have a large, remotely measurable
impact.

One weakness of software-based attestation is that steps
must also be taken to ensure that a device is not being em-
ulated by a faster, more powerful device. That would typi-
cally require some hardware-rooted key material to authen-
ticate that a device is legitimate.

7.2 Enhanced Privacy ID
Intel Enhanced Privacy Identification (EPID) [7] is a forth-

coming technology that could address the problem of au-
thenticating a device. EPID is a successor to the Direct
Anonymous Attestation (DAA) protocol [6] currently sup-
ported by TPM 1.2. DAA was designed to support attesta-
tion without uniquely identifying a piece of TPM hardware.
Previous to DAA, it was expected that a “Privacy Certifi-
cate Authority” (Privacy CA) would emerge as a trusted
third party to obscure TPM identifying material. In prac-
tice, neither privacy CAs or DAA were widely adopted.

EPID offers similar functionality to DAA, except that the
device key material resides in the CPU package and not an
external TPM. The presence of unique, per-CPU keys opens
up the possibility of remotely authenticating that a CPU is
legitimate.

Unfortunately, in the first iteration of EPID, the key ma-
terial will be written at manufacture time and is not user-
configurable. This means the manufacturer could retain keys
which may later be used to spoof or identify CPUs.

By design, EPID does not expose key material to soft-
ware. However, one concern is that if there is a flaw in
the enforcement mechanism, the existence of unique iden-
tifying keys could compromise user privacy. Concerns over
this type of functionality arose around the Pentium III pro-
cessor serial number. Allowing CPU keys to be provisioned
post-manufacture, ideally by an end user, would mitigate
this concern.

7.3 Software Guard Extensions
Perhaps the most notable security development on the

horizon are the Intel Software Guard Extensions (SGX) [2,
34, 39, 51]. At a high level, SGX provides isolated “se-
cure enclaves” that protect small, user-level programs from
malware running outside the enclave. This functionality is
somewhat similar to ARM TrustZones [1], which provides a
“secure world” region of memory that is inaccessible to the
“insecure world”.

Code loaded into SGX secure enclaves is attested using

key material within the CPU; perhaps with the same keys
as EPID. This attestation gives a remote user a means to
ensure that an enclave loaded with the code they expected.
Once loaded, access to secure enclaves from other software is
restricted through hardware controls, making it inaccessible
even to code running at higher privileges. Furthermore, the
enclave itself is backed by hardware-implemented encrypted
and authenticated memory.

These features of SGX address several of the issues brought
up with today’s defenses. Attestation functionality is en-
tirely within the CPU and does not rely on other compo-
nents. Meanwhile, memory encryption is implemented in
hardware, which reduces the performance overhead of en-
cryption.

Unfortunately, SGX is not a full solution and requires
rewriting applications to take advantage of new security
functionality. In the first generation, enclaves will be lim-
ited in size to perhaps 128 megabytes. They also cannot run
any privileged instructions, thus would need to depend on
an external kernel to make syscalls. This limits what types
of work can be performed within an enclave in practice.

What enclaves will be suited for loading a small applica-
tion, attesting it, establishing a secure transport, and provi-
sioning a secret key. That key would not be exposed to any
other code on the system or someone with physical access.
From that point, the enclave could offer very similar func-
tionality to a hardware security module; acting as a secure
place to perform cryptographic operations.

One of the applications that could easily make use of
this functionality is digital rights management (DRM). En-
crypted content could be remotely streamed into an enclave,
decrypted, then re-encrypted for use by a display technology
like Intel Protected Transaction Display.

8. FUTURE WORK
Regardless of the initial uses of SGX, it does hold signif-

icant potential to reduce the risk of physical and firmware
attacks. By embedding key material within the CPU and
providing hardware support for full memory encryption, it
can reduce the trusted components to solely the CPU.

Moving forward, several suggested developments could po-
tentially improve the firmware and physical security on x86
platforms:

• Provide a mature SMM transfer monitor (STM) or
some other means of isolating the SMM.

• Add a means to support for privileged instructions in
an SGX secure enclave.

• Extend support for hardware-based memory encryp-
tion, potentially for arbitrary regions of memory.

• Provide fine-grained L3 cache controls to lock lines in
the L3 cache or otherwise support cache coloring.

• Provide end users or at least vendors the ability to
write their own CPU-specific key material.

9. ACKNOWLEDGEMENTS
Thanks to Xeno Kovah for sharing a detailed low-level

attack bibliography.

4



10. REFERENCES
[1] T. Alves and D. Felton. TrustZone: Integrated

hardware and software security. ARM White Paper,
3(4), 2004.

[2] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata.
Innovative Technology for CPU Based Attestation and
Sealing. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for
Security and Privacy, HASP, June 2013.

[3] J. Appelbaum, J. Horchert, and C. Stöcker. Shopping
for Spy Gear: Catalog Advertises NSA Toolbox. Der
Spiegel, December 2013.

[4] E.-O. Blass and W. Robertson. TRESOR-HUNT:
attacking CPU-bound encryption. In ACSAC ’12:
Proceedings of the 28th Annual Computer Security
Applications Conference. ACM Request Permissions,
Dec. 2012.

[5] A. Boileau. Hit by a Bus: Physical Access Attacks
with Firewire. In RUXCON, Jan. 2006.

[6] E. Brickell, J. Camenisch, and L. Chen. Direct
anonymous attestation. In ACM Computer and
Communications Security, pages 132–145. ACM, 2004.

[7] E. Brickell and J. Li. Enhanced Privacy ID: A direct
anonymous attestation scheme with enhanced
revocation capabilities. Dependable and Secure
Computing, IEEE Transactions on, 9(3):345–360,
2012.

[8] J. Brossard. Bypassing pre-boot authentication
passwords. In Defcon 16, 2008.

[9] Y. Bulygin, A. Furtak, and O. Bazhaniuk. A Tale of
One Software Bypass of Windows 8 Secure Boot. In
Black Hat USA, 2013.

[10] J. Butterworth, C. Kallenberg, X. Kovah, and
A. Herzog. BIOS chronomancy: Fixing the core root
of trust for measurement. In ACM Computer and
Communications Security, pages 25–36. MITRE, 2013.

[11] B. D. Carrier and J. Grand. A hardware-based
memory acquisition procedure for digital
investigations. Digital Investigation, 1(1):50–60, 2004.

[12] S. Chhabra and D. Solihin. i-NVMM: a secure
non-volatile main memory system with incremental
encryption. In International Symposium on Computer
Architecture (ISCA), pages 177–188. IEEE, 2011.

[13] P. Chifflier. UEFI and PCI bootkits. In PacSec, June
2013.

[14] G. Delugré. Closer to metal: reverse-engineering the
Broadcom NetExtreme’s firmware. In Hack. lu, pages
27–29, 2010.

[15] G. Delugré. How to develop a rootkit for Broadcom
NetExtreme network cards. Technical report, Sogeti
ESEC Lab, 2011.

[16] M. Dornseif. 0wned by an ipod. In PacSec, 2004.

[17] M. Dornseif. Firewire – all your memory are belong to
us. In CanSecWest, 2005.

[18] G. Duc and R. Keryell. CryptoPage: an efficient
secure architecture with memory encryption, integrity
and information leakage protection. Computer
Security Applications Conference, 2006. ACSAC’06.
22nd Annual, pages 483–492, 2006.

[19] L. Duflot, O. Levillain, and B. Morin. ACPI: Design
Principles and Concerns. In Trust ’09: Proceedings of

the 2nd International Conference on Trusted
Computing. Springer-Verlag, Feb. 2009.

[20] L. Duflot, Y. Perez, G. Valadon, and O. Levillain. Can
you still trust your network card. CanSecWest/core10,
pages 24–26, 2010.

[21] L. Duflot, Y.-A. Perez, and B. Morin. What if you

canâĂŹt trust your network card? In Recent Advances
in Intrusion Detection, pages 378–397. Springer, 2011.

[22] R. Elbaz, D. Champagne, C. Gebotys, R. Lee,
N. Potlapally, and L. Torres. Hardware mechanisms
for memory authentication: A survey of existing
techniques and engines. Transactions on
Computational Science IV, pages 1–22, 2009.

[23] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin,
M. Bardouillet, and A. Martinez. A parallelized way
to provide data encryption and integrity checking on a
processor-memory bus. Proceedings of the 43rd annual
Design Automation Conference, pages 506–509, 2006.

[24] W. Enck, K. Butler, T. Richardson, and P. McDaniel.
Securing Non-Volatile Main Memory. Technical
report, Pennsylvania State University, 2008.

[25] J. Fitzpatrick. NSA Playset: PCIe. In Defcon 22,
August 2014.

[26] W. Futral and J. Greene. Intel Trusted Execution
Technology for Server Platforms: A Guide to More
Secure Datacenters, 1st edition. ApressOpen, Sept.
2013.

[27] A. Gazet. Sticky fingers & KBC Custom Shop. In
RECON, pages 180–193, June 2011.

[28] J. Grand. Patent US7181560 - Method and apparatus
for preserving computer memory. US Patent Office,
2007.

[29] T. C. Group. TCG Specification Architecture
Overview. TCG Specification Revision, 1, 2007.

[30] J. A. Halderman, S. D. Schoen, N. Heninger,
W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten. Lest we
remember: cold boot attacks on encryption keys. In
SS’08: Proceedings of the 17th conference on Security
symposium. USENIX Association, July 2008.

[31] J. Heasman. Implementing and detecting a PCI
rootkit. In Black Hat DC, page 3, 2006.

[32] J. Heasman. Implementing and Detecting an ACPI
BIOS Rootkit. In Black Hat Federal, 2006.

[33] U. Hermann and C.-D. Hailfinger. FLashrom.
http://flashrom.org/Flashrom, 2012.

[34] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using innovative instructions to create
trustworthy software solutions. In Proceedings of the
2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP,
June 2013.

[35] O. Horovitz and S. A. Weis. Physical Privilege
Escalation and Mitigation in the x86 World. In
CanSecWest, 2013.

[36] O. Horovitz, S. A. Weis, C. A. Waldspurger, and
S. Rihan. Software Cryptoprocessor. US Patent App.
13/614,935, 2013.

[37] Y. Hu, G. Hammouri, and B. Sunar. A fast real-time
memory authentication protocol. Proceedings of the
3rd ACM workshop on Scalable trusted computing,

5



pages 31–40, 2008.

[38] Intel Corporation. Intel Virtualization Technology for
Directed I/O, September 2013. Order number
D51397-006.

[39] Intel Corporation. Software Guard Extensions
Programming Reference, September 2013. Order
number 329298-001US.

[40] A. Ionescu. Apple SMC, The place to be definitely!
(For an implant). In Recon, 2013.

[41] M. Jakobsson and K.-A. Johansson. Practical and
secure software-based attestation. In Lightweight
Security & Privacy (LightSec), pages 1–9. IEEE, 2011.

[42] S. Kaczmarek. UEFI and Dreamboot. In Hack in the
Box, June 2013.

[43] P. Kleissner. Stoned bootkit. In Black Hat USA, 2009.

[44] X. Kovah, J. Butterworth, C. Kallenberg, and
S. Cornwell. Copernicus 2: SENTER the Dragon.
Technical report, MITRE, 2014.

[45] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog,
M. Albin, and J. Butterworth. New Results for
Timing-Based Attestation. Security and Privacy (SP),
2012 IEEE Symposium on, pages 239–253, 2012.

[46] K. Kursawe, D. Schellekens, and B. Preneel.
Analyzing Trusted Platform Communication. In
CRASH–CRyptographic Advances in Secure Hardware,
2005.

[47] J. Loucaides and Y. Bulygin. Platform Firmware
Security Assessment with CHIPSEC. In CanSecWest,
2014.

[48] K. Loukas. De Mysteriis Dom Jobsivs–Mac EFI
Rootkits. In Black Hat USA, 2012.

[49] A. L. Luksenberg and N. A. Economou. Deep Boot. In
CanSecWest, pages 1–54, Mar. 2012.

[50] C. Maartmann-Moe. Inception.
http://www.breaknenter.org/projects/inception/,
June 2011.

[51] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R.
Savagaonkar. Innovative instructions and software
model for isolated execution. In Proceedings of the 2nd
International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP,
June 2013.

[52] C. P. Mozak. Patent US7945050 - Suppressing power
supply noise using data scrambling in double data rate
memory systems. US Patent Office, 2011.

[53] T. Müller, F. C. Freiling, and A. Dewald. TRESOR
runs encryption securely outside RAM. In SEC’11:
Proceedings of the 20th USENIX Conference on
Security. USENIX Association, Aug. 2011.

[54] J. Pabel. FrozenCache Mitigating cold-boot attacks
for Full-Disk-Encryption software. In 27th Chaos
Communication Congress, 2010.

[55] C. Peiqiang, J. Bøegh, and Y. Yuyu. Software
behavior based trusted attestation. In Measuring
Technology and Mechatronics Automation
(ICMTMA), volume 3, pages 298–301. IEEE, 2011.

[56] P. Peterson. Cryptkeeper: Improving security with
encrypted RAM. In Technologies for Homeland
Security (HST), 2010 IEEE International Conference
on, pages 120–126, 2010.

[57] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A.
Arbaugh. Copilot - A Coprocessor-based Kernel
Runtime Integrity Monitor. In USENIX Security
Symposium, pages 179–194, 2004.

[58] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. Khosla. Pioneer: verifying code integrity and
enforcing untampered code execution on legacy
systems. ACM SIGOPS Operating Systems Review,
39(5):1–16, 2005.

[59] R. Sevinsky. Funderbolt: Adventures in Thunderbolt
DMA Attacks. In Black Hat USA, Aug. 2013.

[60] I. Skochinsky. Intel ME Secrets. In Code Blue, 2014.

[61] D. Soeder and R. Permeh. eEye BootRoot. In
BlackHat USA, 2005.

[62] P. Stewin and I. Bystrov. Understanding DMA
malware. In DIMVA’12: Proceedings of the 9th
international conference on Detection of Intrusions
and Malware, and Vulnerability Assessment.
Springer-Verlag, July 2012.

[63] G. Suh, D. Clarke, B. Gasend, M. Van Dijk, and
S. Devadas. Efficient memory integrity verification and
encryption for secure processors. Microarchitecture,
2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, pages
339–350, 2003.

[64] C. Tarnovsky. Deconstructing a ‘secure’processor.
Black Hat DC, 2010, 2010.

[65] A. Tereshkin and R. Wojtczuk. Introducing ring-3
rootkits. Black Hat USA, 2009.

[66] A. Triulzi. Project Maux Mk. II, I Own the NIC, now I
want a shell. The 8th annual PacSec conference, 2008.

[67] A. Triulzi. The Jedi Packet Trick takes over the
Deathstar (or:“Taking NIC Backdoors to the Next
Level”),”. CanSecWest, pages 24–26, 2010.

[68] A. Vasudevan, J. McCune, J. Newsome, and A. Perrig.
CARMA: A Hardware Tamper-Resistant Isolated
Execution Environment on Commodity x86 Platforms.
In AsiaCCS, 2012.

[69] A. Walters.
http://www.forensicswiki.org/wiki/Volatility Framework,
2014.

[70] J. Winter. Eavesdropping trusted platform module
communication. 4th European Trusted Infrastructure
Summerschool, ETISS, 2009.

[71] F. Witherden. Memory Forensics over the IEEE 1394
Interface. Tech Report, Sept. 2010.

[72] R. Wojtczuk and J. Rutkowska. Attacking Intel
Trusted Execution Technology. Black Hat DC, 2009.

[73] R. Wojtczuk and J. Rutkowska. Attacking Intel TXT
via SINIT code execution hijacking. Technical report,
Invisible Things Labs, 2011.

[74] J. Zaddach, A. Kurmus, D. Balzarotti, E.-O. Blass,
A. Francillon, T. Goodspeed, M. Gupta, and
I. Koltsidas. Implementation and implications of a
stealth hard-drive backdoor. In Computer Security
Applications Conference, pages 279–288, 2013.

6


