
QSEE TrustZone Kernel Integer Overflow

Vulnerability

Dan Rosenberg
dr@azimuthsecurity.com

July 1, 2014

1 Introduction

This paper discusses the nature of a vulnerability within the Qualcomm QSEE
TrustZone implementation as present on a wide variety of Android devices. The
actual exploitation mechanisms employed in the proof-of-concept exploit are not
covered in this document.

2 Software Description

“ARM TrustZone technology is a system-wide approach to security for a wide
array of client and server computing platforms, including handsets, tablets,
wearable devices and enterprise systems. Applications enabled by the technol-
ogy are extremely varied but include payment protection technology, digital
rights management, BYOD, and a host of secured enterprise solutions.” [2]

3 Background

TrustZone segments both hardware and software into “secure” and “non-secure”
domains, referred to as “worlds”. The non-secure world includes the traditional
operating system kernel and its corresponding userland applications, while the
secure world often includes a trusted operating system referred to as a Trusted
Execution Environment (TEE). Software running in the secure world has privi-
leged access to all hardware and the non-secure world, but the non-secure world
is restricted from accessing device peripherals and memory regions designated
by TrustZone as protected. The non-secure world may issue requests to the
secure world via a number of mechanisms, including the privileged Secure Mon-
itor Call (SMC) ARM instruction. Further documentation on TrustZone may
be found on ARM’s website [1].

1



4 Affected Devices

The vulnerability described in this document affects Qualcomm’s implementa-
tion of the Trusted Execution Environment (“QSEE”) as present on a wide
variety of Android mobile devices. At the time of this writing, the vulnerability
is present on all known Android devices that support TrustZone and utilize a
Qualcomm Snapdragon SoC, with the exception of the Samsung Galaxy S5 and
HTC One M8, which have been patched. It is expected that by the time the
details of this document have been made public, a more extensive list of devices
will have been patched by their respective vendors.

This vulnerability is known to affect a wide range of flagship devices, includ-
ing the LG Nexus 4, LG Nexus 5, LG G2, HTC One series, Moto X, Samsung
Galaxy S4, and Samsung Galaxy Note 3.

5 Vulnerability Overview

Due to a flaw in bounds-checking Secure Monitor Call (SMC) requests, an at-
tacker with kernel-level privileges (SVC mode) may issue specially crafted SMC
requests to cause QSEE to write controlled data to arbitrary secure memory.
This may be exploited to execute arbitrary code in the context of QSEE.

6 Vulnerability Description

Privileged non-secure code (i.e. the Linux kernel) may request services of QSEE
by issuing a Secure Monitor Call (SMC) instruction. QSEE supports two calling
conventions when using the SMC instruction: a call-by-registers convention, and
a second convention that uses a command structure to provide arguments, as
depicted in Figure 1. Included in the command structure is a request header
which is populated by the non-secure world, and a response header which is
populated by QSEE on completion of the SMC request.

When QSEE receives an SMC request using a command structure, it per-
forms several checks on the request header to ensure validity. In particular, the
following conditions must be satisfied for a command header to be considered
valid (reverse engineered from a TrustZone image):

1. req.len >= 16 (“Is the command length larger than the fixed size of the
request header?”)

2. req.buf offset < req.len (“Does the request input buffer reside within
the command buffer?”)

3. req.buf offset >= 16 (“Does the request input buffer begin after the
request header?”)

4. qsee is ns memory(req, req.len) == true (“Does the entire command
buffer reside in non-secure memory?”)

2



Figure 1: QSEE command buffer.

5. req.resp hdr offset <= req.len - 16 (“Does the entire response header
reside inside the command buffer?”)

After sanity-checking the command structure, QSEE identifies and invokes
the desired SMC handler (if it exists). On completion, if the input flags for the
request indicate output is required, QSEE populates the output structure as
follows:

rsp.len = 12;

rsp.buf_offset = 12;

rsp.is_complete = 1;

In this case, the address of the response header rsp is calculated as req +

req.resp hdr offset.
The qsee is ns memory() function (this is not the real name of this func-

tion, since source code is not available) is designed to check whether a range of
memory has been marked as “secure” and is accessible only to TrustZone, or if
it is “non-secure” and should be accessible to the Linux kernel. This function
has a deficiency where it fails to handle integer overflows properly, and in fact
explicitly allows for them by reversing the order of the arguments when one is
unexpectedly greater than another. The following is approximate pseudocode
of the involved functions:

int qsee_is_ns_memory(long addr, long len)

{

return qsee_not_in_region(&region_list, addr, addr+len);

}

3



int qsee_not_in_region(void *list, long start, long end)

{

if (end < start) {

tmp = start;

start = end;

end = tmp;

}

// Perform validation

...

}

Note that if qsee not in region() is invoked with a start address greater
than the end address, this function will reverse the order of these arguments.
As a result, the following request header will cause QSEE to write the three
words of the populated response header, 0x0000000c 0x0000000c 0x00000001,
to arbitrary secure memory:

req.len = 0xfffff000

req.buf_offset = 0xffffe000

req.resp_hdr_offset = target - req

Glancing back at the validation, each sanity-checking condition is satisfied:

1. 0xfffff000 > 16

2. 0xffffe000 < 0xfffff000

3. 0xffffe000 >= 16

4. qsee is ns memory(req, 0xfffff000) == true

5. target - req < 0xfffff000 - 16

In particular, (4) is satisfied because an integer overflow will occur when
adding the address of the command buffer (req) and its supposed length (0xfffff000)
in the invocation of qsee not in region(), but this function will then reverse
the order of the arguments such that the entire region being validated lies in
non-secure memory and passes the check.

The ability to write these three words to arbitrary secure memory can be
leveraged to execute arbitrary code in the context of QSEE.

7 Impact

The ability to execute arbitrary code in the context of QSEE results in the com-
plete compromise of any applications leveraging TrustZone for security guar-
antees. In particular, this vulnerability may be used to compromise DRM

4



schemes, leak sensitive key materials, defeat operating system protection mech-
anisms, and in some cases (e.g. on some Motorola and HTC devices) manipulate
software-programmable fuses to defeat secure boot.

References

[1] ARM Ltd. TEE reference documentation.
http://www.arm.com/products/processors/technologies/trustzone/tee-
reference-documentation.php, 2014.

[2] ARM Ltd. Trustzone. http://www.arm.com/products/processors/technologies/trustzone/index.php,
2014.

5


