
1

Bringing Software Defined Radio to the
Penetration Testing Community

Jean-Michel Picod, Arnaud Lebrun, Jonathan-Christofer Demay

Abstract—The large adoption of wireless devices goes further than WiFi networks: smartmeters, wearable devices, etc.
The engineers behind these new types of devices may not have a deep security background and it can lead to security and
privacy issues when a particular technology is stressed. However, to assess the security of these devices, the only current
solution would be a dedicated hardware component with an appropriate radio interface for each available technology.
Such components are not easy to engineer and this is why we developed Scapy-radio, a generic wireless monitor/injector
tool based on Software Defined Radio using GNU Radio and the well-known Scapy framework. In this paper, we present
this tool we developed for a wide range of wireless security assessments. The main goal of our tool is to provide effective
penetration testing capabilities to security auditors with little to no knowledge of radio communication systems.

Keywords—Penetration Testing, Software Defined Radio, Smart Grid, Wireless.

F

1 INTRODUCTION
High-technology industries are increasingly de-
pending on the Internet of Things: advanced
metering infrastructures, home and building
automation, personal health and fitness mon-
itoring, etc. These new types of devices can be
portable, part of a mesh network or just located
in a spot where wiring is not an option. For
these very reasons, they rely on radio commu-
nications to send and receive data.

Historically, except for the overwhelmingly
adopted WiFi technology, threats to radio com-
munication systems are confined to individuals
with very specific knowledge or in possession
of even more specific hardware. However, that
is also the reason why reliably assessing the
security of a particular wireless technology is
no easy task for an independent third party,
especially when time or resources are limited.

Nonetheless, with threats to information se-
curity becoming more and more sophisticated,
these new types of devices need to become part
of any security assessment policy. The lack of
specific tools, covering both hardware and soft-
ware aspects, is a problem that is already being
tackled: affordable dedicated testing compo-
nents have begun to emerge. For example, we
have RfCat [3] for sub-GHz ISM radio bands,
Ubertooth [4] to work on Bluetooth equipments
and Api-Mote [5] to stress ZigBee ones.

These are not enough to level the playing
field and we argue that we need to go one
step further. With high-technology industries
regularly coming up with new wireless proto-
cols, we cannot afford to wait for radio com-
munication specialists to design tools such as
those previously mentioned. It should be noted
that this fact has already been highlighted by
the NIST in their guidelines for smart grid
cybersecurity [1].

In this paper, we introduce Scapy-radio, a
tool that provides effective penetration testing
capabilities to security auditors with little to no
knowledge of radio communication systems. To
be able to carry out a wide range of wireless
security assessments, it is designed as a generic
wireless monitor/injector tool based on Soft-
ware Defined Radio using GNU Radio and the
well-known Scapy framework.

2 REVIEW OF COMPONENTS

Not being confined to a set of wireless protocols
is a challenging goal: we need to be able to deal
with multiple bands, multiple modulations,
multiple bitrates and many different types of
network packets. This has lead us to choose a
modular solution rather than a monolithic one.

Before digging in the next section into the de-
tails of Scapy-radio, we first here briefly present

2

the three main components on which our tool
is relying to achieve that goal:

• Software Defined Radio;
• GNU Radio;
• Scapy.

2.1 Software Defined Radio
A radio communication system where the
signal-capturing components are software-
configurable and the signal-processing com-
ponents are software-implemented is called a
Software Defined Radio (SDR). This is exactly
what we need in order to be able to capture
and process a broad range of radio signals.

The most notorious opensource-friendly and
affordable computer-hosted SDR boards are
HackRF [6], bladeRF [7] and USRP2 [8]. Because
they are full-duplex, dual-channel and they
offer large radio spectrum capabilities as well
as a great amount of bandwidth, we chose to
work with two USRP B210 boards.

Fig. 1: Ettus USRP B210 board

2.2 GNU Radio
GNU Radio [9] is an opensource software de-
velopment kit that provides a great number of
signal processing blocks to implement SDRs.
It is already widely used with the previously
mentioned SDR boards but it can also act as a
simulation-like environment.

While performance-critical signal-processing
blocks are written using C++, GNU Radio
is designed to write radio applications using
Python. More specifically, radio applications
can be prototyped with a graphical UI, the
GNU Radio Companion (GRC). We are going
to rely on GRC flow graphs to capture signals
and turn them into network packets.

Fig. 2: Example of a GRC flow graph

2.3 Scapy
Scapy [10] is an interactive packet manipula-
tion framework written using Python. It can
capture, decode, forge and inject packets while
matching requests and replies for a broad range
of network protocols. It can also handle vari-
ous network tasks such as probing, scanning,
tracerouting, fuzzing, etc.

Because it gives security auditors the capa-
bilities to quickly prototype new networking
tools without the need to go into the details of
creating raw packets from square one, Scapy is
already widely used by the penetration testing
community. This is exactly what we wanted to
achieve for wireless protocols and that is why
we chose Scapy for protocol dissection and user
interaction.

3 SOFTWARE ARCHITECTURE

Figure 3 shows how all the previously men-
tioned components interact with each other.
In this section, we talk about the software
development that was necessary to make that
happen.

Scapy

IN socket OUT socket

GRC flow graph (GNU Radio)

OUT socket IN socket

Software Defined Radio

layer
layer

layer
layer

Scapy UDP SuperSocket

layer
layer

layer
layer

layer
layer

layer
layer

UDP + GNU Radio

custom encapsulation

XMLRPC

C
o

n
tro

l

Fig. 3: Scapy-radio architecture

3

It should be noted that, whenever an archi-
tectural decision was made, it was done keep-
ing in mind that one day either GNU Radio or
Scapy could be replaced by a new and more
suitable component.

3.1 GNU Radio encapsulation
To be consistent with network encapsulation,
Scapy relies on layer classes to understand and
process network packets. Each layer will either
be the payload of another layer or chained to
multiple other ones.

To determine the first class layer to use,
Scapy relies on the underlying network inter-
face. However, in our case, this interface is
going to send and receive different types of
network packets depending on the wireless
protocol GNU Radio is asked to work with.

To address this issue, we chose to add an-
other layer on top of every network packet. It is
a simple network header called GnuradioPacket
and it is laid out in the following manner:

protocol 0x00 0x00 0x00 0x00 0x00 0x00 0x00

• 1 byte for protocol identification;
• 7 bytes reserved for future use (such as

channel, RSSI or anything that would be
packet-dependant).

In addition, we have already defined IDs for
several wireless protocols:

Z-Wave 802.15.4 BT4LE wM-Bus DASH7
1 2 3 4 5

Here after is the corresponding Python code on
Scapy’s side:

from scapy . l a y e r s . zwave import ∗
from scapy . l a y e r s . dot15d4 import ∗
from scapy . l a y e r s . b t 4 l e import ∗
from scapy . l a y e r s .wmbus import ∗

c l a s s GnuradioPacket (Packet) :
name = ”Gnuradio header ”
f i e l d s d e s c = [

ByteF ie ld (” proto ” , 0) ,
HiddenField (X3BytesField (” reserved1 ” , 0)) ,
HiddenField (I n t F i e l d (” reserved2 ” , 0))

]

b ind layers (GnuradioPacket , zwave , proto =1)
b ind layers (GnuradioPacket , dot15d4 , proto =2)
b ind layers (GnuradioPacket , b t4 le , proto =3)
b ind layers (GnuradioPacket , wmbus, proto =4)
b i n d l a y e r s (Gnurad ioPacke t , dash7 , p r o t o =5)

user−d e f i n e d DLT f o r pcap f i l e s
conf . l 2 t y p e s . r e g i s t e r (1 4 8 , GnuradioPacket)

Since this encapsulation also needs to happen
on GNU Radio’s side, we have implemented

two blocks that respectively strip and add our
custom network header:

3.2 Scapy UDP SuperSocket
The process of sending packets in and out of
Scapy is abstracted using a super-socket class.
This makes the process of switching IO layers
or even writing new ones very easy.

We did write a new one to establish bidi-
rectional communications between GNU Radio
and Scapy. It is called GnuradioSocket and it re-
lies on two standard UDP sockets, one for input
and one for output. Our choice was motivated
by the following reasons:
• This does not require to be run as root

(unlike TUN/TAP devices for example);
• Using UDP sockets in GNU Radio and

Scapy is easy and it limits the amount of
code that needs to be added on both ends;

• This may help us if we ever need to use
multiple SDR boards at the same time
(to tackle some of the limitations of SDR-
based approaches).

To send packets in and out of Scapy, three
main commands are natively supported: sr to
send or receive multiple network packets, sr1 to
send or receive just one and sniff to gather ev-
ery possible packets from the network interface.
Therefore, based on GnuradioSocket, we have
implemented their radio counterparts, srradio,
srradio1 and sniffradio:

@conf . commands . r e g i s t e r
def s r r a d i o (pkts , i n t e r = 0 . 1 , ∗args , ∗∗kargs) :

s = GnuradioSocket ()
a , b = sendrecv . sndrcv (s , pkts , i n t e r = i n t e r , ∗args , ∗∗kargs)
s . c l o s e ()
return a , b

@conf . commands . r e g i s t e r
def s r r a d i o 1 (pkts , ∗args , ∗∗kargs) :

a , b = s r r a d i o (pkts , ∗args , ∗∗kargs)
i f len (a) > 0 :

return a [0] [1]

@conf . commands . r e g i s t e r
def s n i f f r a d i o (l s o c k e t =None , radio=None , ∗args , ∗∗kargs) :

i f radio i s not None :
swi tch radio protoco l (radio)

s = l s o c k e t i f l s o c k e t i s not None e lse GnuradioSocket ()
rv = sendrecv . s n i f f (l s o c k e t =s , ∗args , ∗∗kargs)
i f l s o c k e t i s None :

s . c l o s e ()
return rv

3.3 GNU Radio remote control
Scapy is fully scriptable and this is a valuable
feature that we wanted to preserve with Scapy-

4

radio. To achieve this, the first requirement is
to be able to launch GNU Radio and execute a
particular GRC flow graph from Scapy.

To that end, we have implemented a spe-
cific command with no counterpart in Scapy:
switch radio protocol. Upon execution, this com-
mand will launch GNU Radio in a forked pro-
cess in background and run the corresponding
GRC flow graph after compiling it if this was
not already done or if it was outdated. It should
be noted that if this command is not called
for the first time, everything will be cleaned-
up before launching a new GNU radio process.

In addition, to do their work, GRC flow
graphs may need several variables to be set (for
example, an access code or a channel number).
Just like any GNU Radio application, it can be
done using the UI brought up by the execution
of the GRC flow graph. However, to preserve
scriptability, the second requirement is to be
able to get and set these variables from Scapy.

To that end, we have implemented XMLRPC
communications between Scapy and GNU Ra-
dio. For GRC flow graphs, we just added a
native XMLRPC server block to each one of
them. On Scapy’s side, we added two new
commands to abstract these communications,
gnuradio get vars and gnuradio set vars:

@conf . commands . r e g i s t e r
def gnuradio get vars (∗ args , ∗∗kargs) :

i f ” host ” not in kargs :
kargs [” host ”] = ” 1 2 7 . 0 . 0 . 1 ”

i f ” port ” not in kargs :
kargs [” port ”] = 8080

rv = {}
t r y :

import xmlrpcl ib
except ImportError :

print ” xmlrpcl ib i s missing to use t h i s funct ion . ”
e lse :

s = xmlrpcl ib . Server (” ht tp ://%s :%d” %
(kargs [” host ”] , kargs [” port ”]))

for v in args :
t r y :

r e s = g e t a t t r (s , ” get %s ” % v) ()
rv [v] = r es

except xmlrpcl ib . Faul t :
print ”Unknown v a r i a b l e ’%s ’ ” % v

s = None
i f len (args) == 1 :

return rv [args [0]]
return rv

@conf . commands . r e g i s t e r
def gnuradio set vars (host=” l o c a l h o s t ” , port =8080 , ∗∗kargs) :

t r y :
import xmlrpcl ib

except ImportError :
print ” xmlrpcl ib i s missing to use t h i s funct ion . ”

e lse :
s = xmlrpcl ib . Server (” ht tp ://%s :%d” % (host , port))
for k , v in kargs . i t e r i t e m s () :

t r y :
g e t a t t r (s , ” s e t %s ” % k) (v)

except xmlrpcl ib . Faul t :
print ”Unknown v a r i a b l e ’%s ’ ” % k

s = None

4 TYPICAL APPLICATION: Z-WAVE

Z-Wave is a proprietary wireless protocol de-
veloped by Zen-Sys, later acquired by Sigma
Designs. It is designed for home automation,
including access control and alarm systems.

The security of this protocol was assessed
for the first time last year [2]. It was relying
on a sub-GHz radio transceiver paired with
custom software and was successful at finding
a vulnerability in the key exchange protocol.

Because of its recent worldwide adoption, its
security-related applications and also because
its very first assessment was able to find a
critical vulnerability, Z-Wave was a perfect op-
portunity to put Scapy-radio to the test.

4.1 Test setup
To create a testing environment, we first de-
signed a realistic scenario:
• A magnetic sensor (Figure 4a) is placed

on a door so as to detect when someone
successfully breaks in;

• When that happens, it sends a signal to a
base station which, in return, sends a sig-
nal to turn an alarm device on (Figure 4b);

• When the rightful owner of the door
comes in and gives the right security code
to the base station, it sends a signal to
turn the alarm device off.

(a) Magnetic sensor (b) Alarm device

(c) Raspberry Pi and network controller

Fig. 4: Z-Wave components

5

To act as a base station, a Raspberry Pi
plugged with a Z-Wave USB network controller
(Figure 4c) was programmed using Open-
ZWave development kit [11]. One known lim-
itation of OpenZWave development kit is that
it does not yet support encryption. However,
this was not an issue since we did not plan on
targeting the encryption layer.

4.2 Work and results
Based on various documents that could be
found on the Internet, we quickly achieved
a first implementation of the following three
components:

• gnuradio/grc/zwave.grc: a GRC flow graph
that can modulate and demodulate Z-
Wave radio communications;

• gnuradio/gr-zwave/*: a GNU Radio packet-
sink block that can match and process Z-
Wave packets at the PHY level;

• scapy/layers/zwave.py: a Scapy layer that
can dissect and forge Z-Wave packets.

The goal now was to use Scapy-radio to
verify our ability to listen for Z-Wave packets
and refine our implementation. With this in
mind, we ended up writing a script to discover
Z-Wave devices and those they are communi-
cating with. Hereafter is the script code:

i f name == ” main ” :
main . load module (’ gnuradio ’)
swi tch radio protoco l (”zwave”)

seen = d i c t ()
i f len (sys . argv) > 1 :

n b r i t e r = i n t (sys . argv [1])
e lse :

n b r i t e r = 20 # D e f a u l t v a l u e

t r y :
while n b r i t e r > 0 :

pkt = s . recv ()
i f ZWaveReq in pkt :

i f pkt . homeid not in seen :
print ”New home id : ” + s t r (pkt . homeid)

seen [pkt . homeid] = d i c t ()
for dev in (pkt . src , pkt . dst) :

i f dev not in seen [pkt . homeid] :
seen [pkt . homeid] [dev] = Zwave device ()

i f dev == pkt . dst :
seen [pkt . homeid] [dev] . type = \

pkt [ZWaveReq] . g e t f i e l d (’cmd ’) . i 2 r e p r (pkt , pkt . cmd)
seen [pkt . homeid] [dev] . rec from = pkt . s r c

i f dev == pkt . s r c :
seen [pkt . homeid] [dev] . send to = pkt . dst

n b r i t e r −= 1
display (seen)

except KeyboardInterrupt :
d isplay (seen)
sys . e x i t ()

After multiple improvements of our Z-Wave
implementation in Scapy-radio, we finally de-
cided to attack our testing environment.

To that end, we listened for Z-Wave packets
when the alarm device went on and when
it went off. Thanks to the dissection capa-
bilities of Scapy, it was easy to see that a
simple SWITCH BINARY (0x25) command was
responsible for the change of state in both
cases. The value sent with the command would
accordingly be ON (0xFF) or OFF (0x00).

At that point in the analysis, to prevent
the alarm device from ever going on, we
only had to write an automaton that detects
SWITCH BINARY ON commands and replay
them as SWITCH BINARY OFF. Thanks again
to Scapy capabilities, we achieved that in a very
short time and, with this script running, no
matter what we did with the magnetic sensor
the alarm device never went on.

This result was expected, replaying packets
when the communication channel is not en-
crypted is nothing new. The real achievement
here is that we were able to carry out this
attack, starting from square one, in a little less
than a day. Hereafter is the automaton code:

from scapy . a l l import ∗

c l a s s Stop alarm (Automaton) :
def parse args (s e l f , ∗args , ∗∗kargs) :

Automaton . parse args (s e l f , ∗args , ∗∗kargs)

@ATMT. s t a t e (i n i t i a l =1)
def BEGIN(s e l f) :

swi tch radio protoco l (”zwave”)
s e l f . l a s t p k t = None
print ”BEGIN”
r a i s e s e l f .WAITING()

@ATMT. s t a t e ()
def WAITING(s e l f) :

print ”WAITING”

@ATMT. r e c e i v e c o n d i t i o n (WAITING)
def alarm on (s e l f , packe t rece ive) :

human = lambda p , f : p . g e t f i e l d (f) . i 2 r e p r (p , g e t a t t r (p , f))
i f ZWaveReq in packet rece ive :

s e l f . l a s t p k t = packe t rece ive
i f ZWaveSwitchBin in packe t rece ive :

i f human(packe t rece ive [ZWaveSwitchBin] ,
’ switchcmd ’) == ”SWITCH” :

i f human(packe t rece ive [ZWaveSwitchBin] ,
’ val ’) == ”ON” :

r a i s e s e l f .WAITING()

@ATMT. a c t i o n (alarm on)
def alarm off (s e l f) :

time . s leep (0 . 5)
print ”TURNING ALARM OFF”
pkt = s e l f . l a s t p k t [ZWaveReq] . copy ()
pkt [ZWaveSwitchBin] . val = ”OFF”
pkt . seqn += 1
pkt . c r c = None
s e l f . send (pkt)

i f name == ” main ” :
load module (’ gnuradio ’)
Stop alarm (debug = 1) . run ()

5 LIMITED APPLICATION: BT4LE
Bluetooth 4.0 Low Energy (BT4LE) is a wire-
less area network technology designed for

6

portable and wearable devices, including per-
sonal health and fitness applications.

This wireless protocol is famous for being
difficult to handle for SDR-based approaches.
Knowing that, we took that opportunity to
confirm these limitations and to see if Scapy-
radio could be any useful in tackling them.

5.1 Tested device
Figure 5 shows a health-related BT4LE device
we could get our hands on: an e-cigarette. From
the user manual that was supplied with this
device, we noted three interesting points:

• It records user consumption;
• It uses a smartphone application;
• Over-the-air firmware update is possible.

The following issues may therefore be at stake:
• Privacy violation;
• Cascade-based attacks (compromise of a

smartphone via the device);
• Over-the-air firmware corruption attacks

and thus potential health issues.

Fig. 5: BT4LE e-cigarette

5.2 Work done
Based this time on full and easy-to-find speci-
fications, we again quickly achieved a working
implementation of the following components:

• gnuradio/grc/bt4le.grc: a GRC flow graph
that can modulate and demodulate
BT4LE radio communications;

• gnuradio/gr-bt4le/*: a GNU Radio packet-
sink block that can match and process
BT4LE packets at the PHY level;

• scapy/layers/bt4le.py: a Scapy layer that can
dissect and forge BT4LE packets.

BT4LE devices have two modes of operation:
advertising and data. Advertising is the first
step so this is where we started. This mode does

not rely on channel hopping so listening for
advertising packets was straightforward and
there is nothing particular here to mention.

To establish a connection, we then forged
and sent CONNECT REQ packets. We knew
that this time responses would be sent on data
channels using a hopping sequence. To deal
with this issue, we wanted to listen to multiple
channels at the same time, thinking that with
several trials we could capture some responses.

However, even in the event of a successful
outcome, going any further would still be prob-
lematic: even with two SDR boards to work
with enough channels at the same time, the
mandatory response time for BT4LE data pack-
ets is 150µs. No matter what we did, we were
never able to achieve this and that is where we
stopped working for now.

5.3 Prospects
Because the information-processing chain will
cause long response times, a channel-hopping
sequence cannot be followed using SDR-based
approaches. To try to circumvent this issue, one
might want to listen to multiple channels at the
same time which, if the radio spectrum is very
large, may require multiple SDR boards.

Unfortunately, channel hopping also man-
dates short response times and for that there
are no circumvention methods. In the end, this
means the only way to solve this issue would
be to use onboard FPGAs to follow channel-
hopping sequences. This is not something we
will consider in the future: it would break
portability and take us back to the point where
only specialists can improve our tool.

Nonetheless, there is still work to be done
with BT4LE. For example, once a device
has been identified, should it be through
a SCAN REQUEST/SCAN RESPONSE dialog
or through advertising packets, our tool can
issue a CONNECT REQUEST. It may be inter-
esting to see how various devices handle bogus
CONNECT REQUEST packets.

In addition, this specific packet contains im-
portant parameters used to established the con-
nection, such as:
• CHAN MAP, a 40-bit field (1 bit per

channel) that specifies the channels that
can be used for communication;

7

• CRC INIT, a seed for the CRC algorithm;
• CONNECTION AA, an advertising ad-

dress that will be used for connection and
also as the access code that will allow us
to match packets at the PHY level.

Using CHAN MAP, it might be possible to
force the device to use a given set of consecu-
tive channels that we can listen with a single
SDR board. It would then be easier to cap-
ture responses to bogus CONNECT REQUEST
packets for further analysis. We did not tried
that because it would have required entirely
reworking the GRC flowgraph to share a list
of access addresses to look for at PHY level.

6 CONCLUSION

In this paper, we have presented Scapy-radio, a
generic wireless monitor/injector tool designed
for a wide range of wireless security assess-
ments. By testing our tool on two use cases,
we have demonstrated its effective penetration
testing capabilities.

However, one use case also showed the limi-
tations of SDR-based approaches when a radio
communication system relies on channel hop-
ping. This is known and this is why dedicated
tools such as Ubertooth [4] exist.

Nonetheless, between the time a new wire-
less protocol reaches the market and the time
a dedicated testing tool is released, we need to
be able to carry out a first security assessment
of the available devices.

In this paper, we have also demonstrated
that our tool can effectively reduce the current
complexity of carrying out such assessments.

7 CODE RELEASE

Scapy-radio is free, open and due to be main-
streamed in Scapy. In the meanwhile, get it at
http://bitbucket.cassidiancybersecurity.com. Here is
what we are releasing with this paper:

• A modified version of Scapy that includes
the following layers:
◦ 802.15.4, XBee, ZigBee, 6LoWPAN

(last two forked from Scapy-com);
◦ Z-Wave;
◦ BT4LE;
◦ wM-Bus.

• GRC flow graphs (that rely on UHD):
◦ 802.15.4;
◦ Z-Wave;
◦ BT4LE (advertising only).

It should be mentioned that support for pro-
tocols other than Z-Wave and BT4LE advertis-
ing have not been thoroughly tested. Do not
expected them to be fully functional.

8 ACKNOWLEDGEMENT

This work was funded by the cybersecurity
division of AIRBUS Defence & Space.

REFERENCES

[1] DRAFT NISTIR 7628 Revision 1, Guidelines for Smart Grid
Cyber Security, volume 3, Page 85.

[2] Behrang Fouladi and Sahand Ghanoun, Security Evalua-
tion of the Z-Wave Wireless Protocol, Black Hat USA 2013.

[3] http://code.google.com/p/rfcat
[4] http://ubertooth.sourceforge.net
[5] http://riverloopsecurity.com/projects.html
[6] http://greatscottgadgets.com/hackrf
[7] http://nuand.com
[8] http://ettus.com/product/category/USRP-Bus-Series
[9] http://gnuradio.org/redmine/projects/gnuradio/wiki
[10] http://secdev.org/projects/scapy
[11] http://openzwave.com

Jean-Michel Picod is currently working at
AIRBUS Defence & Space as the technical
leader for incident response, forensic ana-
lysis and reverse engineering activities. He
holds a master’s degree in computer engi-
neering, has contributed on several open
source projects and published several open
source tools such as DPAPIck, OWADE
and various forensic scripts.

Arnaud Lebrun is an electronics and au-
tomation engineer currently working on
wireless communications and industrial
network security at AIRBUS Defence &
Space. He holds a master’s degree in elec-
trical and electronic engineering and has
been conducting vulnerability research ac-
tivities on industrial control systems, private
mobile radio networks and smart grids.

Jonathan-Christofer Demay, PhD is an IT
security specialist with diverse professional
backgrounds. As an academic researcher,
he has been working on IDS bypassing,
intrusion detection and general network se-
curity. As a consultant for various strategic
industries and government bodies, he has
been working on incident response, pene-
tration testing and social engineering.

http://bitbucket.cassidiancybersecurity.com
http://code.google.com/p/rfcat
http://ubertooth.sourceforge.net
http://riverloopsecurity.com/projects.html
http://greatscottgadgets.com/hackrf
http://nuand.com
http://ettus.com/product/category/USRP-Bus-Series
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://secdev.org/projects/scapy
http://openzwave.com

	Introduction
	Review of components
	Software Defined Radio
	GNU Radio
	Scapy

	Software architecture
	GNU Radio encapsulation
	Scapy UDP SuperSocket
	GNU Radio remote control

	Typical application: Z-Wave
	Test setup
	Work and results

	Limited application: BT4LE
	Tested device
	Work done
	Prospects

	Conclusion
	Code release
	Acknowledgement
	References
	Biographies
	Jean-Michel Picod
	Arnaud Lebrun
	Jonathan-Christofer Demay, PhD

