NEOHAPSIS Multipath TCP

Breaking today's networks with tomorrow's protocol

Speakers - Who are we?

- Catherine (Kate) Pearce
 - Security Consultant / Pentester
 - Loves her wine the way she likes her RFCs (Dry)
 - New Zealand transplant
- Patrick Thomas
 - Senior Security Consultant / Pentester
 - Application Security focus

MPTCP changes fundamental assumptions about how TCP works*

Use it to break things today

Adapt to it for tomorrow

Not Layer 4? Totally the same.

Layer 4? Buckle Up.

4 Neohapsis 2014 – www.Neohapsis.com

🗗 192.168.88.165 - PuTTY

root@deb7min2:~# curl 192.168.88.164
<html><body><h1>ic workel</b1>
This is the default web page for this server.
The web server software is running but no content has been
</body></html>
root@deb7min2:~#

2 Simple Examples: #1

ے	💿 Snorby - Das	shboard - Chro 📧 [Ter	minal - pst@pst-virtual	Terminal	al - pst@pst-virtual 🕂 Capturing from Pseudo-dev
Ŧ					Capturing from Pseudo-device that captures on all interfaces [Wireshark 1.6.7]
File	Edit View	Go Capture Analyze	Statistics Telephony	Tools In	Internals Help
	i o e	i 🕍 🖾 🗙	ि 😫 । ९ 🖕		¯ E = • • • • • • 2
Filter	: tcp.port == 8	D		Expression	ion Clear Apply
No.	Time	Source	Destination	Protocol	DI Length Info
	80 12.27879	4 192.168.88.165	192.168.88.164	TCP	88 34668 > http [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=1249
	81 12.27883	9 192.168.88.164	192.168.88.165	TCP	88 http > 34668 [SYN, ACK] Seq=0 Ack=1 Win=28560 Len=0 MSS=1460 SACK_PERM=
	82 12.27892	1 100	192.168.88.164	ТСР	9634668 > http://www.seq-rokewisticscode22.len=0 TSval=12490113 TSecr=1243
	83 1 77900	3 192.168.88.165	192.168.88.164	HTTP	166 GET / HTTP/1.1 Mark Packet (toggle)
	84 12.27925	0 1921 1001	102 169 99 165	TCP	76 http > 24669 FAC Mark Facket (toggle) 0 TSval=12474351 TSecr=124
	85 12.28009	5 192.168.88.165	192.168.88.164	тср	88 39757 > http [S] Set Time Reference (toggle) 460 SACK_PERM=1 TSval=1249
	86 12.28011	1 192.168.88.164	192.168.88.165	TCP	92 http > 39757 [SY Set The Reference (toggle) Len=0 MSS=1460 SACK_PERM=1
	87 12.28022	2 192.168.88.165	192.168.88.164	TCP	92:39757 > http [AC Manually Resolve Address TSval=12490113 TSecr=124]
	88 12.28033	8 192.168.88.164	192.168.88.165	TCP	76 [TCP Window Upda Apply as Filter , ck=1 Win=85696 Len=0 TSva
	89 12.28398	4 192.168.88.164	192.168.88.165	HTTP	548 HTTP/1.1 200 OK Prepare a Filter
	90 12.28401	4 192.168.88.165	192.168.88.164	ТСР	76 39757 > http [AC =0 TSval=12490114 TSecr=12
	91 12.28404	5 192.168.88.165	192.168.88.164	ТСР	88 [TCP Dup ACK 90# Colorize Conversation k=461 Win=88576 Len=0 TSva
	92 12.28406	4 192.168.88.164	192.168.88.165	ICP	88 [TCP Dup ACK 89# Ack=1 Win=85696 Len=0 TSva
	93 12.28407	3 192.168.88.165	192.168.88.164	TCP	76:39757 > p F1 Follow TCP Stream
	94,12.28407	7 192.168.88.165	192.168.88.164		76: 34668 > Step [F] Pollow FCP Stream
	95 12.28408	1 102 168 88 165	192.108.88.104	TCP	76 [TCP Dup ACK 95] K=461 WIN=88576 Len=0 TSVa 76 [tcp = 0, TSva]=12474252, TSVa 76 [tcp = 0, TSva]=12474252, TSVa
	96 12.28409	1 192.108.88.104	192.108.88.105	TCP	76:10757 > http:///////////////////////////////////
	97 12.28409	9 192.108.88.105	192.108.88.104	TCP	76:39757 > http://copy -0.15Val-12490114 15ecr-12
	90 12.20410	5 192.100.00.104	102 160 00 164	TCP	76 24668 > http://www.acceleration.com/26/24/232/15e0
	99 12.20412	192.100.00.105	192.100.00.104	TCF	B Print
					Show Packet in New Window
					Show Packet in New York and

Frame 83: 166 bytes on wire (1328 bits), 166 bytes captured (1328 bits)

Linux cooked capture

Internet Protocol Version 4, Src: 192.168.88.165 (192.168.88.165), Dst: 192.168.88.164 (192.168.88.164)

Transmission Control Protocol, Src Port: 34668 (34668), Dst Port: http (80), Seq: 1, Ack: 1, Len: 78

vpertext Transfer Protocol

2 Simple Examples: #1

🕊	🌀 S	norby - Da	ashb	oard - Chro	🔄 [Term	inal - pst@ps	t-virtual 🛽	Terminal	- pst@pst	-virtual	. 📶 Capturir	ng from Psei	udo-dev	. 📶 Follow 1	CP Stream	
∇									Cap	turing fro	om Pseudo-dev	ice that cap	tures on a	II interfaces	[Wireshark	1.6
File	Ed	lit View	G	o Capture	Analyze	Statistics	Telephony	Tools Ir	nternals	Help						
Ð	ii.	0		🎽 I 🖆 I	× 🖻	C 😫	۹ 🔶					- 1	** 📔	¥ 🗹 🍢	•×	
Filte	r: to	p.stream	eq 2				•	Expression	n Clea	r Apply						
No.		Time		Source		Destinatio	n	Protocol	Length	Info						
	80	12.2787	94	192.168.88	.165	192.168.	88.164	TCP	88	34668 >	∙ http [SYN] Seq=0 W	Vin=2920	00 Len=0 M	ISS=1460 S/	АСК
	81	12.2788	39	192.168.88	.164	192.168.	88.165	ТСР	88	http >	34668 [SYN	, ACK] Se	eq=0 Ack	<=1 Win=28	560 Len=0	MS
	82	12.2789	24	192.168.88	.165	192.168.	88.164	TCP	96	34668 >	http [ACK] Seq=1 A	Ack=1 Wi	in=58432 L	en=0 TSval	1=1
	83	12.2790	03	192.168.88	.165	192.168.	88.164	HTTP	166	GET / H	ITTP/1.1					
	84	12.2792	56	192.168.88	.164	192.168.	88.165	TCP	76	http >	34668 [ACK] Seq=1 A	\ck=79 W	Vin=57152	Len=0 TSva	al=
	94	12.2840	77	192.168.88	.165	192.168.	88.164	TCP	76	34668 >	http [FIN press for the second sec	, ACK] Se	eq=79 Ac	:k=1 Win=8	8576 Len=(υт
	98	12.2841	03	192.168.88	.164	192.168.	88.165	TCP	/6	http >	34668 [FIN	, ACK] Se	eq=1 ACK	<=80 Win=8	5696 Len=0	1 0
	99	12.2841	20 :	192.108.88	. 105	Ŧ				Follow	v TCP Stream					+
					Ċ	Stream Cont	ent									
						GET / HTT User-Agen Host: 192 Accent	P/1.1 t: curl/7 .168.88.10	.26.0 54)+	N	ait,	W	/ha	at!	?!!	

NEOHAPSIS

2 Simple Examples: #1

迷 💿 Snorby - Dashboard - Chro" ~	P 192.168.88.165 - PuTTY
File Edit View Go Capture Image: Solution of the stress of	<pre>root@deb7min2:# curl 192 168 88.164 <ntml><body><h1>It works!</h1> This is the default web page for this server The web server software is running but p. con </body> root@deb7min2:~# 105 192.168.88.164 TCP 76:34668 > http [FIN, ACK] Seq=79 Ack=1 Win=88576 Len=0</ntml></pre>
98 12.284103 192.168.88. 99 12.284126 192.168.88.	.164 192.168.88.165 TCP 76 http > 34668 [FIN, ACK] Seq=1 Ack=80 Win=85696 Len=0 .165 Follow TCP Stream 4 Stream Content GET / HTTP/1.1 User-Agent: cur1/7.26.0
	Host: 192.168.88.164

nc 192.168.1.25 3000

9 Neohapsis 2014 – www.Neohapsis.com

10 Neohapsis 2014 – www.Neohapsis.com

 $\underset{\text{This makes none}}{Sense}$

Why did we see that?

Let's talk about MPTCP

...but first, why change TCP?

12 Neohapsis 2014 – www.Neohapsis.com

Current TCP is rather limited

Doesn't support use cases for:

- High Availability
- Link Aggregation
- Multihoming
- Mesh networking

Multipath TCP is an extension to TCP that adds the above functionality

AND: it works over existing infrastructure(it *IS* TCP... just more so)

BUT: nothing much else understands it – including security tools

MPTCP is more culture shock than security vulnerability

We like MPTCP We want MPTCP to succeed Network security isn't ready

Background **Technical Introduction Key Security Effects Perimeter Security Network Management MPTCP Future**

I saw this...

Y Hacker News new | comments | ask | jobs | submit login

Apple seems to also believe in Multipath TCP (uclouvain.be) 10 points by rhapsodyv 278 days ago | discuss | save to pocket

Which led to this...

Y Hacker News new | comments | ask | jobs | submit login

Oli Homepa	vier	Bo	onave	nture	•
Home	About	CV	Publications	Teaching	People

« Is your network ready for iOS7 and Multipath TCP ? Quickly producing time-sequence diagrams »

September 18, 2013

Apple seems to also believe in Multipath TCP

(What got me thinking about this?

Which contained this...

Y Hacker News new | comments | ask | jobs | submit login

	000				X si	ri-cap-long.	ocap	[Wiresh	nark 1.8.6	(SVN	Rev 481	42 from	n /trun	nk-1.8)]						
	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>(</u>	<u>io C</u> apt	ure <u>A</u>	nalyze (<u>S</u> tatistics	Telep	hony	Tools	<u>I</u> nter	rnals	<u>H</u> elp									
\mathbf{O}))	🏽 E		* 2		\	•	🂫 春	₹		3	⊕ `	Θ,	0	• 6	X 🛛] 💽	3E		
	Filter: tcp.stream eq 66					•	Expression Clear Apply Save														
	No. Tim	ne			Source		De	Destination Protoc					ocol Length Info								
	339981 467.769834000 1							4			TCP 90 49209			9 > https [SYN] Seq=0 Win=65535					35 Len=	c U	
	340012 467	.8010040	00		1				2		TCP		78	https	s > 49	9209 [s	SYN, A	CK] Se	eq=0 Ac	k=l Win	£1.
	340013 467	80231700	00		1				4		TCP		74	49209 Clior	9 > ht == Uol	tps [A	ACKJ S	eq=1 A	Ack=l ₩	/1n=6624	
1.1	340014 467	.81074600	0								TLSVI		214	CLIER	it met						
Home	N Enome 34	0012. 7/	hutes a	n ud no	(Eog hit	a) 74 hut		n+		; ital (on int	onfoco	0			-					-
	D Ethernet	TI. Src	: Apple	16:88:e	(392 bit	:99:16:88:	es ca ea).	Dst: N	Jetgear	d8:aa	:90 (a	0:21:b7	7:d8:a	aa:90))						
	▷ Internet	Protoco	l Versio	n 4, Sr	c: 192.1	68.0.2 (19	2.168	.0.2),	Dst: 1	7.170	.15.1	(5.16.	י)	,						
	▼ Transmission Control Protocol, Src Port: 49209 (49209), Dst Port: https (443), Seq: 1, Ack: 1, Len: 0																				
	Source port: 49209 (49209)																				
	Destination port: https (443)																				
	Sequen	nn index:	00] r·]	(relati	ve segur	ance number)														
	Acknow	/ledgment	number:	1	(relative	ack numbe	, r)														
	Header	· length:	40 byte	s																	
	▷ Flags: 0x010 (ACK)																				
Appl	Window size value: 8280																				
" "PP"	[Calcu	lated wi	ndow siz	e: 6624	10]																
11/1 14		wsi∠es sum•Ox7c	dl [vali	dation	disabler	41															
MUL	✓ Option	is: (20 t	vtes), M	Multipat	th TCP																
	∽ Mult	tipath T(:P: Multi	ipath C	apable																
	K:	ind: Mul	tipath T(CP (30)																	
		enath: 2	2																		

Then other media outlets started covering it...

Y Hacker News new | comments | ask | jobs | submit login

What got me thinking about this?

Then other media outlets started covering it...not always positively

Hacker News new | comments | ask | jobs | submit login

(What got me thinking about this?

And then...

SILENCE

BUT, the rate of progress was unprecedented for a major change to TCP

The security of MPTCP itself

What changes like this could mean for network security ... not so much

NEOHAPSIS

24 Neohapsis 2014 – www.Neohapsis.com

That's what this session is about

What does multipath TCP mean for security today?

What could it (or similar tech) mean to network security a decade from now?

With a couple of attacks and tools...

Background **Technical Introduction Key Security Effects Perimeter Security Network Management MPTCP Future**

Motivations and Advantages

TCP implements connections between IP:PORT & IP:PORT

NOT between endpoint A and endpoint B

In the past this was a distinction without a difference, but not any more

Backwards compatibility

Performance >= now

Security >= now

28 Neohapsis 2014 – www.Neohapsis.com

An MPTCP Connection is defined by a connection ID

 It is comprised of multiple streams, where each stream is a regular TCP connection (with an option strapped on)

MPTCP connection looks like TCP so far...

N different TCP connections, contributing to **ONE** logical data flow

logical data flow... data flows through any/all

Any subset of connections can drop, overall flow continues.

Connections can be re-added at any time

Un-ACK'd data can be quickly resent over a different flow... first ACK is good enough!

How is MPTCP implemented? – TCP Option

Bits 0 - 7		Bits 8 - 15	Bits 16 - 23		Bits 24 - 31	
Source Port			Destination port			
		TCP Sequer	nce Number			
		TCP Acknowledgemer	nt Number (if	Ack Set)		
Data Offset	Data Offset Reserved TCP Flags (Ack, Syn etc)			Window Size		
	Chec	ksum		Urgent Poin	ter (if URG Set)	
Ox1e (MPTCP	Option Type)	Length	Subtype	MPTCP Ver	MPTCP Flags	
Remaining MPTCP Subtype Data						
Packet DATA						

What does it look like? Packet Breakdown - WireShark

How is MPTCP implemented? – MPTCP Subtypes

- 8 currently defined (ones relevant in **bold**)
- MP_CAPABLE Signals MPTCP support
- MP_JOIN Add incoming subflow to the connection
- DSS How to map this stream's
 Mata against the overall data
 Mata flow

- ADD_ADDR This address is also a way to reach me
- REMOVE_ADDR Please stop using [address] to reach me
- MP_PRIO
- MP_FAIL
- MP_FASTCLOSE

Path Management - Linux

- The Linux Path Manager has two primary path managers at present
 - Fullmesh n:n (all to all)
 - Ndiffports 1-1 interfaces, n-1 ports

This is in the TCP stack... application layers get MPTCP for free (mostly)

EOHAPSIS

Path Management - fullmesh Client

All possible paths used

Deeper technical details

TCP Handshake with additional details

Data sequence numbering

- Truncation of SHA1 of host key
- Authentication
 - MP_JOIN Challenge-response HMAC of other host's key, Nonce, AddressID
 - MP_FASTCLOSE Other party's key in plaintext

More on this later...

Packet sender decides which data goes down which path

Routing

MPTCP Cheatsheet

MPTCP Header:

МРТСР	HEX	Flags?	Other Likely fields of interest
Subtype			
MP_CAPABLE	0x0		
MP_JOINs	0x1		
DSS	0x2		
ADD_ADDR	0x3		
REMOVE_ADDR	0x4		
MP_PRIO	0x5		
MP_FAIL	0x6		
MP_FASTCLOSE	0x7		

Getting the MPTCP Sequence Numbers:

Key	64 Bit number supplied by host	
Initial DSN (ISDN):	SHA1(key)[-64:]	Binary mode hash, network byte order

Initial DSS		
Subflow DSS	mapping likely starts at ISDN[0:32] + TCP ISN + 1	TCP Seq is 32 bits, + 1 for the SYN
MP_JOIN		

MP_JOIN Authentication (RFC 6824 Fig 8)

Detecting MPTCP things

	Usage Inbound Connection Attempts		Detect inbound connection attempts - Look for the SYN packets with MPTCP Header	TCP(SYN) TCP Option= 30 ** 00
		Successful Handshake	(Pre-viability) Look for Ack Packets with MPTCP Option header	TCP(ACK) TCP Option = 30 ** 00
		Valid Handshake	MPTCP Option header Look for Ack Packets with the MPTCP Option Header	TCP(ACK) TCP Option = 30 ** 00
ssive:		MPTCP Joins	TCP SYN Packets with MPTCP TCP Option and an MP_JOIN subtype	TCP(SYN) TCP Option = 30 ** 01
å	Attacks	MPTCP Simple	Non look for non sequential last	

So who's using it?

- Nearly no one is using it large scale (yet), with a few exceptions
 - Apple (Siri)
 - Some other experimental stuff?
- Given that, there's a surprising number of implementations
 - Implementations available for several OS's (including Linux, BSD, Android), and baked in some way into commercial kit (Citrix, Cisco, Apple, Oracle, F5)
 - NOT Windows

Availability – Getting it working Linux

- Linux reference implementation via apt-get (<u>multipath-tcp.org</u>) -- best way right now
- Can work in Kali, but ... challenges

- Nicolas Maître made *a ridiculously useful*, near complete, SCAPY implementation
 - We're based some tools on this code, and fixed some bugs along the way
 - <u>https://github.com/nimai/mptcp-scapy</u>

Background **Technical Introduction Key Security Effects Perimeter Security Network Management MPTCP Future**

MPTCP's Key Security Effects

Cross-path traffic fragmentation

- That's the whole point!
- Moving target
 - Ability to change source and destination addresses in the middle of a connection

Connection Resilience

- Has additional checksums that require capture of the initial packet to reliably fake
- Until every subflow is dead the overall connection keeps going

Reverse connections

Because of these...

- Cross-path
- Moving target
- Connection
 Resilience
- Reverse connections

- ... if your approach to security requires *any* of these...
- See all app layer data in a TCP stream
- Differentiate clients from servers based on connection direction
- Tamper with or close "bad" connections mid-stream
- Associate logical sessions to IP addresses

...then something is probably going to break

Now practical are these attacks?

Today? Extremely.

But only if both endpoints speak MPTCPOf which... there aren't many. Yet.

In an MPTCP world, a bit less But we have to change the way we do things in network security

MPTCP's Key Security Effects

All of those things can be partially mitigated with MPTCP aware infrastructure and security tools.

 But overall, there remain some interesting shifts in how network flows work – especially if we go in with "well meaning" intent

MPTCP's Key Security Effects

A few slides back...

The packet sender decides which data goes down which path.

 Normal/benign clients won't choose pathological fragmentation schemes
 But there's nothing stopping us...

Release Item #2: PoC tool for MPTCP IDS Evasion

Demo!

Snorby - Dashboard	Snorby - Dashboard - C	(hromium	- + ×
	Snorby threat stack	Welcome Administrator <u>Settinos</u> L	
	Dashboard My Queue (0) Events Sensors Search	Administrat	
	Dashboard	II More Optio	ons
ł	35/ JS53 Sensors Seventies Protocols Signatures Sources Destinations Event Count vs Time By Sensor 300 250 150 150	root@deb7min1:~/src/MPTCP_Cores Opening connection from port 10 Opening connection from port 10 Opening connection from port 10 Opening connection from port 10 Subflow 0 closed from port 10 Subflow 0 closed FIN Subflow 1 closed FIN Subflow 2 closed FIN Subflow 3 closed FIN Subflow 4 closed FIN Subflow 4 closed FIN	<pre># ./mptcp_fragment_http.py -n 5 192.168.88.165 001 002 003 004 005 flows [#]]</pre>
	50 UU	Policy Violation	0
	50	Reconnaissance	0
	0	Virus Infection	0

Background **Technical Introduction Key Security Effects Perimeter Security Network Management MPTCP Future**

MPTCP changes things for perimeters

How'd you like an outbound incoming connection?

55 Neohapsis 2014 – www.Neohapsis.com

MPTCP connection looks like TCP so far...

Still seems pretty standard, albeit with extra TCP OPTIONS

OK, so it's a TCP connection with an additional options... so what?

Well, what if the client tells the server about a new address?

Now, the "Internal" host <u>may</u> set up a connection to the advertised address

Is this new connection incoming or outgoing?

Is this new connection incoming or outgoing?

Server

Is this new connection incoming or outgoing?

IM CONFUS

Background **Technical Introduction Key Security Effects Perimeter Security Network Management MPTCP Future**

64 Neohapsis 2014 – www.Neohapsis.com

MPTCP and ... Network monitoring

If tool doesn't understand MPTCP, flows look like unrelated TCP streams

What does it look like? On the network: If you don't understand

Each yellow blob is actually part of an address label

What does it look like? HITP HITP TCP TC HUPTOP TOP TCP On the TCP 192.168 130.20 network: If TOPUT TCP HITPCP 192.168.140.31 192.168 140,20 TCP TOP 192.168 120.20 TCP HUTP HUTP TOP TOP TOP TOPTOP you don't TOP HITP HTTP TCP HUTP 192 168 120.30 HUTP TCP TCP TCP 192,168)140.21 HITP understand TCP it, but you 192.168 52.138 TCPTCPTCP TCP 192.168 130.30 HITP TOP HUTP TOP TOP HUPTOP TOP 192.168 52.128 HITP TCP TOP TOP 192,168)110.20 cluster IPs TOP HUP HUP TCP TCP TCP TCPTCP 92 168 110 30 HUP HITPHANKAN TCP TOP TOP

What does it look like? On the network: If you do understand

But you can only do this when you can see & correlate all related flows...

MPTCP Defense - Awareness

- People
- Technology
 - Check support
 - Look for use
- Architecture
 - Terminate it where you terminate SSL

Release Item #3 - MPTCP Scanner

root@psthomas-neo-dev:~/mptools# ./scanner.py usage: scanner.py [-h] [--ip SRC_IP] host port

Network scanner to test hosts for multipath TCP support. Requires root privileges for scapy.

positional arguments:

host	comma-separated IPs or ranges (globs allowed), eg
	"127.0.0.1,192.168.1-254,203.0.113.*"
port	comma-separated port(s) or port ranges, eg "22,80,8000-8999"

Release Item #3 - Scanner

Accomplishes three things

Test device for apparent support

 Test for *actual* support (as opposed to repeating the option blindly)

Test network path allows it to get there

Scanning Host

Target Host

1. SYN (MP_CAPABLE)

Send an MP_CAPABLE syn

72 Neohapsis 2014 – www.Neohapsis.com

Scanning Host

Target Host

We got an MP_CAPABLE response.. But is it genuine?

Scanning Host		Target Host
	3. SYN (MP_JOIN[Random])	

Send a join to an invalid connection ID

Scanning Host	Target	Host
	4. Either (RST) or (SYN,ACK)	

An MPTCP host will RST an invalid join,

An ACK reply indicates TCP only

MPTCP Stripping

- Transparent proxy on primary path
 - Either no MPTCP support, or only on the one interface

Firewall rules:

strip-options 30 - iptables,

tcp-options 30 30 clear - Cisco IOS

MPTCP and Active Network Security

To track & modify MPTCP, you must

1. Capture the initial handshake

- 2. Perform non-trivial calculations to determine
 - Connection membership
 - Correct checksum or modified traffic

Background **Technical Introduction Key Security Effects Perimeter Security Network Management MPTCP** Future

(MPTCP and ... Privacy

MPTCP shifts power towards endpoints, and away from infrastructure & ISP's

I don't trust my ISP or Cellular company...

But they probably don't trust each other either!

How do we gain these advantages securely when most things support MPTCP?

Some changes still need to be made

Some things will never be the same

How can the IDS make sense of traffic if it can only ever see fragments?

() The MPTCP Future

- What will change in a multipath future that simply cannot work with most existing security models?
 - Split trust crypto
 - Multipath agility

Some research into privacy effects already underway

Making proxy tools to undertake these attacks

- Stream hopping (ala FHSS)
- Mixing it with TOR
- Building distributed networks on MPTCP-like packets

Hijack connections on fastclose

- Multipath communications are awesome, and they're coming
- Multipath communication confounds business & security models relying on inspection
- Now is the time for network security to prepare

Participation/Competition PCAP info @

http://bit.ly/UYluPp

#BHMPTCP

Also see our workshop at DEFCON's Wall of Sheep (Sunday)

Questions?

Catherine PearcePatrick Thomas@secvalve@coffeetocode

cpearce@neohapsis.com pthomas@neohapsis.com

Downloads on Github:

https://github.com/Neohapsis/mptcp-abuse

More stuff will be released @ <u>http://labs.neophapsis.com</u>

- Implementations & vendors
 - Linux (UCLouvain, multipath-TCP.org) (<u>http://github.com/multipath-tcp/</u>)
 - MPTCP Scapy <u>https://github.com/nimai/mptcp-scapy</u>
 - BSD <u>http://caia.swin.edu.au/urp/newtcp/mptcp/</u>
 - Android <u>http://multipath-tcp.org/pmwiki.php/Users/Android</u>
 - Apple <u>https://opensource.apple.com/source/xnu/xnu-2422.1.72/bsd/netinet/mptcp*</u>
 - Cisco <u>http://www.cisco.com/c/en/us/support/docs/ip/transmission-control-protocol-tcp/116519-technote-mptcp-00.html</u>
- MPTCP Security
 - IETF MPTCP workinggroup Threat Analysis for TCP Extensions for Multipath Operation with Multiple Addresses - <u>http://tools.ietf.org/html/rfc6181</u>
 - Ford, A. (2010), 'Multipath TCP Security Issues : Current Solution Space Why we need security'.
 - Zhuang, R. 2013. Investigating the Application of Moving Target Defenses to Network Security. ISRCS, 2013 6th International Symposium on. Available at <u>http://people.cis.ksu.edu/~zhangs84/papers/ISRCS13.pdf</u>

References 2

- Theroretical backgrounds
 - Stability issues Kelly, F. & Voice, T., 2005. Stability of end-to-end algorithms for joint routing and rate control. ACM SIGCOMM Computer Communication Review, 35(2), pp.5– 12.
 - Routing and congestion control Key, P., Massoulié, L. & Towsley, D., 2006. Combining multipath routing and congestion control for robustness. In Information Sciences and Systems, 2006 40th Annual Conference on. IEEE, pp. 345–350.
 - Honda, M., Nishida, Y. & Raiciu, C., 2011. Is it still possible to extend TCP? Proc. ..., p.181. Available at: <u>http://conferences.sigcomm.org/imc/2011/docs/p181.pdf</u>.
- MPTCP Background & development:
 - Raiciu, C. et al., 2012. How hard can it be? designing and implementing a deployable multipath TCP. NSDI, (1). Available at: <u>https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final125.pdf</u>.
 - ACM Queue Multipath TCP, Decoupled from IP, TCP is at last able to support multihomed hosts - Christoph Paasch and Olivier Bonaventure, UCL -<u>http://queue.acm.org/detail.cfm?id=2591369</u>
 - IETF Working group <u>http://datatracker.ietf.org/wg/mptcp/</u>
 - IANA TCP Options <u>https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml</u>

- Other
- Multi Network Manager Evensen, K.R. MULTI Network Manager (MNM), 2013. <u>http://github.com/kristrev/multi</u>

See the Whitepaper for MANY more references

