

Reverse Engineering Flash Memory for Fun and Benefit

Jeong Wook (Matt) Oh / 2014

oh@hp.com

oh.jeongwook@gmail.com

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

NAND Flash Memory is everywhere

NAND Flash is used in:

- USB Sticks
- Phones
- Cameras
- Embedded devices
- Smart appliances
- IoT
- ...

Even in the POS devices at the grocery store...

NAND Flash memory pins and names

5 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

De-soldering

6 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Failed attempt – want to avoid de-soldering?

Pins essential to advanced operations are missing and other chips on the board may be woken up by the electric current supplied by the external device:

• This interferes with our custom operations

Failed attempt – want to use de-solder wire?

8

It's tough to remove after de-soldering

Equipment & supplies

9

Use an SMT Rework station with a hot air blower:

- The solder alloy melts at around 180 to 190°C (360 and 370°F), but I recommend setting the temperature higher
- Use insulation tape to minimize heat damage

De-soldering

Apply heat over the pin area

• It usually takes 1 to 2 minutes to fully de-solder the chip

Too much heat?

Demo: The de-soldering process

FTDI FT2232H & NAND Flash Memory

13 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Failed attempt – modding an SD reader

FTDI FT2232H breakout board

A chip for USB communication

• Provides USB 2.0 Hi-Speed (480Mb/s) to UART/FIFO IC

Note: Put female pin headers on each port extension

FTDI FT2232H breakout board

16 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

MCU Host Bus Emulation Mode

FTDI FT2232H supports multiple modes

• Use 'MCU Host Bus Emulation Mode' for this case

The FTDI chip emulates an 8048/8051 MCU host bus

FT2232H commands

Commands	Operation	Address
0x90	Read	8bit address
0x91	Read	16bit address
0x92	Write	8bit address
0x93	Write	16bit address
0x82	Set	High byte (BDBUS6, 7)
0x83	Read	High byte (BDBUS6, 7)

By sending commands and retrieving results, the software reads or writes bits through I/O lines.

• See FTDI's <u>note</u> for more detail

Connection between FT2232H and NAND Flash Memory

The connections are mostly based on information from SpriteMod , but there is a slight modification between BDBUS6 and the CE (9) connection.

Data lines

FT2232H	Use	NAND Flash	Pin number	Description
ADBUSO	Bit0	I/00	29	
ADBUS1	Bit1	I/01	30	DATA INPUT/OUTPUT
ADBUS2	Bit2	I/02	31	Input command, address and data Output data during read operations
ADBUS3	Bit3	I/03	32	
ADBUS4	Bit4	I/04	41	
ADBUS5	Bit5	I/05	42	
ADBUS6	Bit6	I/06	43	
ADBUS7	Bit7	I/07	44	

Low byte

• 0x90,0x91,0x92,0x93 commands can be used to set values

Data control lines

FT2232H	Use	NAND Flash	Pin number	Description
ACBUS5	Bit13	WP	19	WRITE PROTECT Write operations fail when this is not high
ACBUS6	Bit14	CLE	16	COMMAND LATCH ENABLE When this is high, commands are latched into the command register through the I/O ports
ACBUS7	Bit15	ALE	17	ADDRESS LATCH ENABLE When this is high, addresses are latched into the address registers

High byte

• 0x91, 0x93 can be used to set values

I/O and strobe lines

FT2232H	Use	NAND Flash	Pin number	Description
BDBUS6	I/00	CE	9	CHIP ENABLE Low state means the chip is enabled.
BDBUS7	I/01	RB	7	READY/BUSY OUTPUT This pin indicates the status of the device operation. Low=busy, High=ready.
BDBUS2	Serial Data In (RD#)	RE	8	READ ENABLE Serial data-out control. Enable reading data from the device.
BDBUS3	Serial Signal Out (WR#)	WE	18	WRITE ENABLE Commands, addresses and data are latched on the rising edge of the WE pulse.

- BDBUS6 (I/O0), BDBUS7 (I/O1) is controlled by the 0x83, 0x82 command
- RD#, WR# is connected to the RE, WE pin on NAND Flash

Power lines

	Use	NAND Flash	Pin number	Description
3v3	POWER	3v3	12	POWER
GND	GROUND	GND	13	GROUND
3v3	POWER	3v3	36	POWER
GND	GROUND	GND	37	GROUND

• Power lines

Read operation example

ScanaStudio	- New workspace* 1	1 MHz														x
<u>F</u> ile <u>V</u> iew	Device <u>H</u> elp			_	-											
	<u> </u>	-	ାର୍	*	€		👂 - 🔏 -	- M	<u>i</u> • =	0						
vvaverorms U	ser comments				100 n	16								-	200 -	ne
	0.0ms +60.0ms +70.	.0ms +80.	0ms +90.0m	8	+10.	15 Oms +21).0ms +30	1.0ms +40).0ms +50.0)ms +60. T	Oms +70.0 ↓	ms +80.	0ms +90.0	ms	+10	1.0ms
CH1																
R/B																
CH2			7] [
CLE																
СНЗ					Π											
ALE																
СН4																
		Data r	etrieving do	ne			SCAN	ALOGIC-	2		С	ursor =	000 : 195 :	284 us		

- CLE and ALE go high the controller is sending commands and addresses
- The RE changes phases when page data is read from the NAND Flash chip
- The R/B line goes low during the busy state and back up to high when the NAND chip is ready

Basic command sets for usual NAND Flash memory (small blocks)

Function	1 st cycle	2 nd cycle
Read 1	00h/01h	-
Read 2	50h	-
Read ID	90h	-
Page Program	80h	10h
Block Erase	60h	D0h
Read Status	70h	

There are more complicated commands available depending on the chipsets.

- The pins and other descriptions presented here are mostly focused on small block NAND Flash models (512 bytes of data with 16 bytes 00B)
- The model with a large block size uses a different set of commands, but the principle is the same

Read operation

To read a page, it uses the Read 1 (00h, 01h) and Read 2 (50h) functions

To read a full page with OOB data from small block Flash memory, you need to read it 3 times:

- The 00h command is used to read the first half of the page data (A area)
- The 01h command is used to read the second half of the page data (B area)
- Finally, the 50h command is used to retrieve the OOB of the page (spare C area)

Read operation

CLE	1	0					
ALE	0	1	0				
R/B		1 (Ready)	R/B=0 (busy)	=0 (busy) 1 (Ready)			
RE		1		Falling for each bytes			
WE		Rising for each bytes		1			
I/O0~7	00h/01h /50h	Start Address A0 – A7 A9 – A25		Data Output			

- CLE is set to high (1) when commands (00h, 01h, 50h) are passed
- ALE is set to high (1) when addresses are transferred
- R/B pin is set to low (0) when the chip is busy preparing the data

RE and WE are used to indicate the readiness of the data operation on the I/O lines:

- When the WE signal is rising, new bytes (command and address in this case) are sent to the I/O pins
- When the RE signal is falling, new bytes come from the NAND Flash memory chip if any data is available

Reading data

- 1. First, the WE and CLE logic changes to send commands.
- 2. Next, the WE and ALE changes state to send addresses.
- 3. Finally, RE is used to signal the reading of each byte.

Reading a small block page

- NAND_CMD_READ0 (00h)
- NAND_CMD_READ1 (01h)
- NAND_CMD_READOOB (50h)

TSOP48 socket

Place your NAND Flash chip inside the TSOP48 socket:

- This socket is very useful
- Use it to directly interact with the extended pins and avoid touching and possibly damaging any Flash memory chip pins

NAND Flash reader/writer

You need an FTDI FT2232H breakout board, a USB cable, a TSOP48 socket and wires

DumpFlash – enhanced Flash reader/writer software

DumpFlash – Python implmentation of Flash reader/writer software

- <u>https://github.com/ohjeongwook/DumpFlash</u>
- Python implementation of original SpirteMod code and more
- Read/Write support
- Flash image manipulation tool (ECC, Bad block check)
- Fast sequential row read mode support
- More experimental code coming
- Automatic U-Boot image extraction
- JFFS2 parsing and extraction
- Uses enhanced schematics

Install prerequisite packages like <u>pyftdi</u> and <u>libusbx</u>.

- Pyftdi: a python wrapper around the FTDI library
- Libusbx: a library that provides USB level access to user applications

DumpFlash: Show basic information

NAND Flash\DumpFlash>c:\python27\python DumpFlash.py -i
NAND 64MiB 3,30 8-bit
Øx76
0×200
0×10
0×20000
0×40
0×4000
0
4
Samsung

With everything set up, you can query basic Flash information using the *—i* option

33 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

DumpFlash: Read data

C:\mat\Analysis\NAND Flash\DumpFlash>c:\python27\python DumpFlash.py -r flash.dm p Reading page: 436/131073 (58149 bytes/sec)

You can also read raw data with the *-r* option. It takes time to retrieve all the data depending on the size of the memory.

DumpFlash: Read data in sequential row read mode

C:\mat\Analysis\NAND Flash\DumpFlash>c:\python27\python DumpFlash.py -r -s flash .dmp <u>R</u>eading page: 1376/131071 (231092 bytes/sec)

DumpFlash supports sequential row read mode. Specify the –s option and it increases reading performance. Reading is 5-6 times faster than in normal page-by-page mode.

Demo: DumpFlash in action

Basic DumpFlash operations

Write operation pin states

CLE	1	0	1					
ALE	0	1		0				
R/B		1 (Ready)		R/B=0 (busy)	Ready)			
RE			1				Falling	
WE		Rising for each b		1	Rising	1		
I/O0~7	80h	Address Input A0 – A7 A9 – A25	Page + OOB data	10h		70h	I/O0=status	

The writing operation is done through sequence-in command (80h) and program command (10h):

- The read status command (70h) is used to retrieve the result of the write operation
- If I/OO is O, the operation was successful

Writing a small block page with spare C area

38 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Writing data

After the command and address are sent, WE fluctuates repeatedly to send bytes

Working with a bare metal image

Page+00B

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E OF ...é.oÿå.oÿå.oÿå 00000000 OF 00 00 EA 18 FO 9F E5 18 FO 9F E5 18 FO 9F E5 00000010 18 FO 9F E5 .oYā.oYā.oYā.oYā 9F E5 18 FO 9F E5 18 FO 9F E5 18 FO .oYāk...k...k... 00000020 18 FO 9F E5 CO 02 00 00 CO 02 00 00 C0 02 00 00 00000030 CO 02 00 00 CO 02 00 00 C0 02 00 00 C0 02 00 00 À...À...À...À... |...S. ä.. ä..€å 00000040 7C 01 00 00 53 04 A0 E3 00 10 A0 E3 00 10 80 E5 4.Ÿå..àä..€å,.Ÿå 00000050 34 01 9F E5 00 10 E0 E3 00 10 80 E5 2C 01 9F E5 ,.ٌ..ی(.Ÿå(.Ÿå 00000060 2C 11 9F E5 00 10 80 E5 28 01 9F E5 28 11 9F E5 00000070 00 10 80 E5 24 .. eå\$. Yå\$. Yå.. eå 01 9F E5 24 11 9F E5 00 10 80 E5 .. ã..Qâýÿÿ...Ÿå 00000080 01 1C AO E3 01 10 51 E2 FD FF FF 18 14 01 9F E5 00000090 00 10 90 E5 Å1 26 ¥0 E1 03 50 02 E2 00 00 55 E3 ...å;s á.P.å..Uå 00000040 05 00 00 0Å 01 00 55 E3 05 00 00 0Å 02 00 55 E3Uä....Uä 000000B0 05 00 00 OA FO 40 9F E5 05 00 00 E& EC 40 9F E560Ÿå...êì0Ÿå 00000000 03 00 00 EA E8 40 9F E5 01 00 00 El E4 40 9F E5 ...éè0Ÿå...éä0Ÿå 00000000 FF FF FF E5 DC 10 9F E5 00 10 80 E5 vvvê⊾.YåÜ.Yå..€å ΕÅ BC 00 9F 000000E0 CO 00 9F E5 02 19 AO E3 00 10 80 E5 CC 00 9F E5 À.Ÿå.. ä..€åì.Ÿå 000000F0 03 10 AO E3 00 80 E5 13 03 AO E3 FF EO E3 .. ã..€å.. ãÿ.àã 10 14 00000100 00 10 80 E5 B8 ..ی..Ÿå..Ÿå..€å 00 9F E5 B8 10 9F E5 00 10 80 E5 Data B4 10 9F E5 ′.Ÿå. `å...ã.... 00 AO 91 E5 O2 00 1Å E3 06 00 00 1Å 00000120 .. á.. ä4 €â.O.ä 04 00 AO E1 12 13 λO E3 34 20 80 E2 04 30 90 E4 .0.ä..Ráû∀∀....ã 00000130 04 30 81 E4 00 52 E1 FB FF FF 1Å 02 00 1A E3 00 00000140 58 00 00 OA 84 91 E5 OE 08 CO E3 X...".Ÿå..`å..Àä 10 9F E5 00 00 00000150 00 00 81 E5 04 ...å.. á.. ä4 €â 00 AO E1 12 13 10 E3 34 20 80 E2 00000160 04 30 90 E4 04 30 81 E4 OO 00 52 E1 FB FF FF 1A .0.ä.0.ä..Ráûÿÿ. 00000170 FE 10 AO E3 b. ã..Qâýÿÿ.P.Ÿå 01 10 51 E2 FD FF FF 1Å 50 10 9F E5 .``å.5 á.. á...J 00000180 00 60 91 E5 06 FO AO E1 00 00 AO E1 08 00 00 41 00000190 1C 00 00 00 60 00 56 00 FF ...Jÿ...`..V.ÿPA 00 41 FF 03 00 50 41 h..V~Ÿ..d..VØ... 00000140 68 00 00 56 98 9F 00 00 64 00 00 56 D8 01 00 00 000001B0 40 02 00 00 0C 02 00 00 74 02 00 00 00 FF 50 55 000001C0 ...L...À...´..V 14 00 00 4C 04 00 00 4C 11 CO 05 00 B4 00 00 56 80 00 00 56 B8 00 00 56 20 99 11 22 00 07 00 00 000001D0 000001E0 00 07 00 00 F0 7F 00 00 4C 1F 00 00 00 07 00 00ð...L..... 000001F0 00 07 00 00 09 80 01 00 05 80 01 00 E9 01 9E 00€...€..é.ž. 000002 š*-9999999999999999 **OOB** Area **Bad Block Marker** ECC

41 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

ECC (Error Correction Code)

Failures occur with data on memory:

• A checksum can be useful to detect these errors

ECC (Error Correction Code) is a way to correct one bit of failure from a page:

- Besides detecting errors, ECC can correct them too (if they are minor)
- Uses the concept of Hamming code

Modern Flash memories use various ECC algorithms that have their roots in Hamming code:

- Even similar chipsets from the same vendor may have slightly different ECC algorithms
- Differences are generally minor (tweaks of XOR or shifting orders or methods)
- You need to figure out the correct algorithm to verify the validity of each page and to generate ECC

ECC calculation table

byte[0]	Bit7	Bit6	Bit5	E
byte[1]	Bit7	Bit6	Bit5	E
byte[2]	Bit7	Bit6	Bit5	E
byte[3]	Bit7	Bit6	Bit5	E

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
3it7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

P8'		
P8	P10	022
P8'	D1C	P32
P8	P16	

•••

P16'

P16

P32'

P8'

P8

P8'

P8

...

oyte[508]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
oyte[509]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
oyte[510]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
oyte[511]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Representation of bits on a page with size of 512. Each bit is represented by a cell and each row is one byte. From this matrix, you can calculate various checksums across bits.

Example - P8' calculation

P8' checksum is calculated by XOR-ing all the bits in red

44 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Example - P16' calculation

- Uses bits from byte[0], bytes[1], byte[4], byte[5] and so on until byte[508] and byte[509] for checksum calculation
- Other column checksums like P8, P16', P16, P32', P32, P2048' and P2048 are calculated in the same manner

Code for calculating row checksums

86	if i & 0x01 == 0x01:
87	p8 = xor_bit ^ p8
88	else:
89	p8_ = xor_bit ^ p8_
90	
91	if i & 0x02 == 0x02:
92	p16 = xor_bit ^ p16
93	else:
94	p16_ = xor_bit ^ p16_
95	
96	if i & 0x04 == 0x04:
97	p32 = xor_bit ^ p32
	else:
99	p32_ = xor_bit ^ p32_
100	
101	if i & 0x08 == 0x08:
102	p64 = xor_bit ^ p64
103	else:
104	p64_ = xor_bit ^ p64_
105	
106	if i & 0x10 == 0x10:
107	p128 = xor_bit ^ p128

else: p128_ = xor_bit ^ p128_
<pre>if i & 0x20 == 0x20: p256 = xor_bit ^ p256 else: p256_ = xor_bit ^ p256_</pre>
<pre>if i & 0x40 == 0x40: p512 = xor_bit ^ p512 else: p512_ = xor_bit ^ p512_</pre>
<pre>if i & 0x80 == 0x80: p1024 = xor_bit ^ p1024 else: p1024_ = xor_bit ^ p1024_</pre>
<pre>if i & 0x100 == 0x100: p2048 = xor_bit ^ p2048 else: p2048_ = xor_bit ^ p2048_</pre>

Example - P2 calculation

byte[0]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
byte[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
byte[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
byte[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO

•••				••	•			
byte[508]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
byte[509]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
byte[510]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
byte[511]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO

47 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

The column checksums are calculated over the same bit locations over all the bytes in the page

The picture shows how P2 can be calculated by taking bits 2,3,6,7 from each byte

Row checksum calculation code

ECC calculation code

You need to calculate 3 ECC values based on the checksums calculated

The row and column checksum methods are very similar for different NAND Flash memory models, but ECC calculations tend to be slightly different across different models

Bad blocks

- The notion of 'bad blocks' is a very generic concept that is also used with hard disk technology
- With Flash memory, if errors are more than the ECC can handle, the entire block is marked as bad
- Bad blocks are isolated from other blocks and are no longer used
- According to the ONFI standard, the first or last pages are used for marking bad blocks

Example bad block check routine

Some vendors use their own scheme for marking bad blocks:

• Ex) If the 6th byte from the OOB data of the first or second page for each block has non FFh values, it is recognized as a bad block (Samsung and Micron).

How a bad block is marked

C:\mat\Analysis\NAND Flash\DumpFlash}c:\python27\python DumpFlash.py -B Checking Bad Blocks 9% block: 400/4096 Bad block: 400 (at physical offset 0x672000) Checking Bad Blocks 19% block: 780/4096 Bad block: 780 (at physical offset 0xc91800) Checking Bad Blocks 36% block: 1504/4096

U3A50	3890 FI	e FF	F.F.	Ŀ.F.	ĿĿ.	F.F.	Ŀ.Ŀ.	F. F.	F.F.	F.F.	Ŀ.F.	F.F.	F.F.	Ŀ.Ŀ.	ĿĿ.	F.F.	<u> </u>
03A50	CBAO FI	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	<u> </u>
03A50	BBO FI	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	<u> </u>
03A50	BCO FI	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	<u> </u>
03A50	BDO FI	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	<u> </u>
03450	BEO FI	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	$\mathbf{F}\mathbf{F}$	FF	FF	<u> </u>
03A50	BFO FI	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	$\mathbf{F}\mathbf{F}$	FF	FF	<u> </u>
03450	COO 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03.4	C10 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
O3A5C	C20 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A5	C30 00	00 (00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03450	C40 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	C50 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
of a bad block D3A50	C60 00	00 (00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03.850	C70 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03.850	C80 00	00 (00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03 A 50	C90 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03 850	CAO 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03.450	СВО ОС	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	CC0 00	00 (00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03.450	CDO O	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03.450	CEO 00	00 (00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03.450	CFO O	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	CDOO 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03.450	CD10 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	CD20 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	CD30 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	CD40 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	CD50 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	D60 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	CD70 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	D80 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03 850	CD90 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03 A 50	DAO O	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03 A 50	DBO O	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03 A 50	DCO O	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03A50	CDDO OC	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03 A 50	DEO O	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03 4 50	DFO O	00 (00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03 4 50	CEOO 00	00 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
						4											
OOB																	
										Ba	d b	loc	k m	ark	er_	!= 0	xFF 🚽
										Bu				or i i			

Star

Demo: DumpFlash for ECC and bad block detections

Reverse engineering Flash memory data

An example of Flash memory layout

Usual structure of NAND Flash memory used for booting up embedded systems:

- The first block is always loaded to address 0x0000000
- When boot loading, code and U-Boot images are read only

The JFFS2 file system is used for read and write:

• When a file is saved, it goes to the JFFS2 file system

Low level initialization of the system

ROM: 00000178 loc_178 ROM: 00000178 loc_178 ROM: 0000017C ROM: 00000180 ROM: 00000184 ROM: 00000184 ROM: 00000196 ROM: 00000196 ROM: 00000197 ROM: 00000197 ROM: 00000190 ROM: 00000184 ROM: 00000184 ROM: 00000186 ROM: 00000180 ROM: 00000184 ROM: 00000184	TST BEQ LDR BIC STR MOU ADD LDR STR CHP BNE MOU SUBS BNE	; CODE XREF: ROM:000001581j R10, #2 loc_2EC R1, =0x56000080 ; S3C2410X_MISCCR R0, [R1] R0, R0, #0xE60000 R0, [R1] R0, R4 ; R4: bytes to send to bus R1, #0x880000000 ; S3C2410X_BWSCON R2, R0, #0x800000 ; S3C2410X_BWSCON R2, R0, #0x80000 ; S3C2410X_BWSCON R2, R0, #0x8000 ; S3C2410X_MISCON R1, #0x80000 ; S3C2410X_MISCON R2, R0, #0x8000 ; S3C2410X_MISCON R1, #0x80000 ; S3C2410X_MISCON R1, #0x80000 ; S3C2410X_MISCON R2, R0, #0x8000 ; S3C2410X_BWSCON R2, R0, #0000 ; S3C2410X_BWSCON R2, R0, #0000 ; S3C2410X_BWSCON R2, R0, #0000 ; S3C2410X_BWSCON ; S3C2410X_BWSC	ROM:00000DF5 aNandBootloade ROM:000000F5 ROM:00000E16 ROM:00000E17 ROM:00000E19 ROM:00000E19 ROM:00000E28 ROM:00000E20 ROM:00000E20 ROM:00000E22 aUBootExit	er DCB "Nand Bootloader(ADAM) 3.2.4",0xA DCB " ",0 DCB 0 DCB 0 DCB 0xA DCB "Loading U-BOOT ",0xA DCB ",0 DCB 0 DCB 0 DCB 0 DCB 0xA DCB 0xA DCB 0xA DCB 0xA DCB 0xA
ROM: 00000188	LDR	R1, =0x56000088 ; S3C2410X_GSTATUS3		
ROM: 000001BC ROM: 000001C0	LDR MOU	R6, [R1] PC, R6		

This boot loader does low level initialization:

• It loads up the next level boot loader

Note: The image I worked on showed very interesting strings, like the name of the 1st boot loader and some log messages

U-boot boot code

🖬 🛤 🖾		
38F85584		
38F85584		
38F85584		
38E85584	hootun	
38E85584 E8 4E 20 E9	STMED	SP*. {R&-R7.R9-R11.LR}
38E85588 ED 29 88 EB	BI	SUD 30E8ECC4
30E8550C 13 1E 00 EB	BI	nrintenu setenu commands
38F85518 88 84 9F F5	LDR	RA. =aBootdelau : "bootdelau"
38E85514 40 10 88 EB	BI	check env var
38E85518 88 88 58 E3	CMP	R0. #0
38F8551C 82 48 68 83	MOVEO	R4, #2
30F85520 03 00 00 0A	BEO	1oc 30F85534
	· · · · · · · · · · · · · · · · · · ·	-
		
30F85524 00 10 A0 E3	MOV	R1, #0
30F85528 0A 20 A0 E3	MOV	R2, #0xA
30F8552C F7 32 00 EB	BL	sub_30F92110
30F85530 00 40 A0 E1	MOV	R4, R0
	Ý Ý	
💷 ≓ 🖂		
20505520		
30F85534	loc 30E85	53h · "hostend"
20E0EE21 E0 02 0E EE	100_30103	P8 ->Pootend
30F05534 E0 03 7F E5	DI	check opy upp
30E9553C 88 08 08 E1	MOU	
20E9EEL0 81 82 08 E2	MOU	D8 #8v18888888
20E9EE44 86 28 D8 EE	LDDD	P2 [D8 #61
20E9EEL9 62 88 E2 E2	CMD	D2 #8962 - 101
20E9EELC 00 20 00 92	MOULUT	P2 #8
30F95558 86 38 P8 95	STRATS	P3 FP8 #61
20E9EEE1 0E 20 C0 05	STRATE	D9 FD8 #C1
20005554 05 00 00 05 20000000 07 20 00 00	STRAID	D9 [D8 #71
20005550 07 30 C0 05		D2 [D8 #61
30585568 84 88 53 59	CMP	R3 #h
20E9EE61 0E 00 00 00		100 28595598
00r02204 02 00 00 9H	DLS	100_00100000
	<u> </u>	
🔟 🛤 🖾		
30F85568 07 30 D0 E5	LDRB	R3, [R0,#7]
30F8556C AC 23 9F E5	LDR	R2, =byte 30F9F930
30F85570 01 30 83 E2	ADD	R3, R3, #1
30F85574 05 10 A0 E3	MOV	R1, #5
30F85578 00 10 C2 E5	STRB	R1, [R2]
30F8557C 07 30 C0 E5	STRB	R3, [R0,#7]
L		

After the 1st stage boot loader, there is a next level boot loader that performs various, more complex operations:

• The kernel image and actual file system are placed inside

Custom boot code

U-Boot image header structure

168 169	#define IH_MAGI #define IH_NMLE	C 0x27051 N 32	.956 /*	/* Image Magic Numb Image Name Length	er	*/	*/
170							
1/1							
172	* Legacy forma						
173							
174							
175	typedef struct	image_header					
176	uint32_t	ih_magic;					
177	uint32_t	<pre>ih_hcrc;</pre>					
178	uint32_t	ih_time;					
179	uint32_t	ih_size;					
180	uint32_t	ih_load;					
181	uint32_t	ih_ep;					
182	uint32_t	ih_dcrc;					
183	uint8_t	ih_os;					
184	uint8_t	ih_arch;					
185	uint8_t	ih_type;					
186	uint8_t	ih_comp;					
187	uint8_t	ih_name[IH_	NML	EN]; /* Image Name			
188	} image_header_	t;					

• The header size is 0x40 and the image length is 0x28A03B in this case. This makes total image size 0x28A07B.

59 © Copyright 2014 Hewlett-Packard Development Company, L.P. The momentation contained herein is subject to change without notice.

U-Boot image disassembly

IDA doesn't do well with multi-file images

Multi-file image

This image has two images inside it with lengths of 0x000E9118 and 0x001A0F17

root@test:~ # n	nkimage -1 Dump-00031800-UBOOT.dmp
Image Name:	Mx0004US 03.00 011f Alt
Created:	Thu Jan 8 13:01:25 2009
Image Type:	ARM Linux Multi-File Image (uncompressed)
Data Size:	2662459 Bytes = 2600.06 kB = 2.54 MB
Load Address:	30108000
Entry Point:	30108000
Contents:	
Image O: 95	54648 Bytes = 932.27 kB = 0.91 MB
Image 1: 17	207799 Bytes = 1667.77 kB = 1.63 MB

DumpFlash – Extracting U-Boot images

C:\mat\Analysis\NAND Flash\DumpFlash>c:\python27\pyth<u>on DumpFlash.py -U</u> U-Boot Image found at block Oxc Magic: 0x27051956 HCRC: 0xa05da14d Time: Øx496669a5 Size: 0x28a03b Load: 0x30108000 EP: 0×30108000 DCRC: Øx2975d991 0S : 0x5 (Linux) Arch: 0x2 (ARM) Туре: 0x4 (Multi-File Image) 0x0 (None) Comp: Mx0004US 03.00 011f Alt Name: Found multi image of length 0xe9118 Found multi image of length 0x1a0f17 Extracting to U-Boot-00.dmp-00 Extracting to U-Boot-00.dmp-01 U-Boot Image found at block Øxcc Magic: 0x27051956 HCRC: Øxbbaceac7 Time: Øx496669a6 Size: Øxe9118 Load: 0x30108000 EP : 0x30108000 DCRC: Øx2855374a 0S : 0x5 (Linux) 0x2 (ARM) Arch: 0x2 (OS Kernel Image) Туре: 0x0 (None) Comp: Mx0004US 03.00 011f Name: Extracting to U-Boot-01.dmp-00

Mounting RAMdisk image

root@test:~# file 02.decompressed.img
02.decompressed.img: Linux rev 1.0 ext2 filesystem data, UUID=42ba98f4-ee44-494e
-bddf-22d139c313b8

oot@kali:~# modprobe mtdram total_size=65536 oot@kali:~# modprobe mtdblock

root@test:~# dd if=02.decompressed.img of=/dev/mtdblock0
16384+0 records in
16384+0 records out
8388608 bytes (8.4 MB) copied, 0.0928797 s, 90.3 MB/s

When image 0 looks like a code file, image 1 has more interesting contents:

- You can identify that it is gzip compressed
- After decompression, if you run the *file* command on the file, it shows that the file is an ext2 file system file

Mounting RAMdisk image

root ⁰ test w	f m	ount -	/dev/v	nt dh loc	~b0	$(\pm m)$	o/mtd .	_t evt2	
root@test	7 100 ¥ 12	1a	/+mn.	110000100 /mtd	5.00 /	CIU	p/ mou ·	-C EXCL	
LUULELESL	7 13	5 -1a	/ cmp/	mcu					
total 51									
drwxr-xr-x	17	root	root	1024	Jan	8	2009		
drwxrwxrwt	10	root	root	4096	Jun	10	08:46	· · ·	
drwxr-xr-x.	2	root	root	2048	Jan	8	2009		
drwxr-xr-x.	2	root	root	1024	Jan	8	2009		
drwxr-xr-x.	5	root	root	4096	Jan	8	2009		
drwxr-xr-x.	З	root	root	1024	Jan	8	2009		
drwxr-xr-x.	2	root	root	1024	Jan	8	2009		
drwxr-xr-x.	2	root	root	1024	Jan	8	2009		
drwxr-xr-x.	3	root	root	1024	Jan	8	2009		
lrwxrwxrwx.	1	root	root	11	Jan	8	2009	linuxrc ->	bin/busybo
drwx	2	root	root	12288	Jan	8	2009		
drwxr-xr-x.	5	root	root	1024	Jan	8	2009		
drwxr-xr-x.	2	root	root	1024	Jan	8	2009		
drwxr-xr-x.	2	root	root	1024	Jan	8	2009		
drwxr-xr-x.	2	root	root	2048	Jan	8	2009		
drwxr-xr-x.	2	root	root	1024	Jan	8	2009		
drwxr-xr-x.	4	root	root	1024	Jan	8	2009		
drwxr-xr-x.	2	root	root	1024	Jan	8	2009		

After pushing the image, you can mount the MTD block device using the mount command and browse and modify the file

mkimage information for the 2nd U-Boot image

root@test:~# n	nkimage -1 Dump-00349800-UBOOT.dmp	00002 F 90	6F	72	6D 63	1 74	20 2	8 65	5 72	72	3D 3	2 29	00 00	00	ormat (err=2)
Image Name:	Mx0004US 01.00 011	00002FA0	6F	75	74 20) 6F	66 2	0 61	65	6D	6F 7	2 79	00 00	00	out of memory
Created:	Mon Mar 31 11:30:37 2008	00002FB0	69	6E (76 63	1 6C	69 6	4 20	63	6F	6D 7	0 72	65 73	73	invalid compress
Image Type:	ARM Linux Kernel Image (uncommressed)	00002FC0	65	64	20 6	6 6F	72 6	D 61	. 74	20	28 6	F 74	68 65	5 72	ed format (other
Data Siza:	953052 Brites = 930.71 bB = 0.91 MB	00002FD0	29	00	00 00	5 63	72 6	3 20) 65	72	72 6	F 72	00 00	00 ()crc error
Jaca Size.	20108000	00002FE0	6C	65	6E 6'	7 74	68 2	0 65	5 72	72	6F 7	2 00	00 00	00 (length error
Load Address:	30108000	00002880	55	6E	63 61	F 6D	70 7	2 65	5 73	73	69 6	E 67	20 4C	69	Uncompressing Li
Entry Point:	30108000	Start of gzipped	6E	75	78 21	E 2 E	2E O	0 00	20	64	6F 6	E 65	2C 20	62	nux done, b
		kernel image	6F	6F	74 69	9 6E	67 2	0 74	ł 68	65	20 6	B 65	72 6E	65	ooting the kerne
		20L	-6C	2 E	<u>01 0</u>	▶ 1F	8B 0	8 00) 9F	A8	B4 4	7 02	03 EC	BD	1Ÿ¨´Gì*
		00003030	OF	7C :	94 C.	5 9D	3F 3	E CF	' FE	09	21 8	9 BO	21 89	86	. ″Å.?>Ïþ.!‰°!‰†
		00003040	24	CA :	E6 81	F 1A	35 B	6 4F	20	68	8A 5	1 17	8C 15	5 25	\$Êæ5¶O hŠQ.Œ.%
		00003050	6D	17	09 4.	A 2D	D5 O	0 C1	62	8B	1A 2	1 B6	B4 C7	' 5D	mJ−Ö.Áb<.!¶´Ç]
		00003060	97	24	40 C4	4 A8	91 8	4 3F	22	BA	AB 6	2 4B	3D 7A	L C7	-\$0Å`` <i>"</i> ?"°«bK=zÇ
		00003070	B5	78	A5 9	6 B6	8F 8	2 96	5 5 A	7A	87 8	A 95	F3 B8	76	µx¥−¶.,−Zz‡Š•ó,v
		00003080	FF	FO -	5C 22	2 CB	59 7	A AS	5 3 D	DA	A2 F	B 7B	BF 67	66	ÿð∖″ËYz¥=Ú¢û{¿gf
		00003090	93	4D	08 A8	3 D5	DE 9	F DF	77	9F	BC 2	6 CF	3C B3	FЗ	∾М. ÖÞŸßwŸ⊷sï<"ó
		000030A0	F7	33	33 91	F F9	CC 6	7 3E	9F	CF	08 2	B 14	79 4D	84	÷33ŸùÌg≻ŸÏ.+.yM"
		000030B0	62	E2 -	58 69	9 E4	16 2	1 E2	42	4C	89 B	5 88	90 F3	53	bâXiä.!âBL‰µ^.óS
		000030C0	42	64	7D 5:	1 7E	5F 1	E 9E	87	EF	EB F	1 5D	8E EF	CA	Bd}Q~>≠ïëñ]ŽïÊ

IDA loads this image up without any issues. There are no hidden images.

- Unfortunately the code shown by IDA is the bootstrapping code that decompresses following the gzipped kernel image
- To identify the start of the kernel image, search for the gzip image magic value (0x8b1f)

Kernel image disassembly

🗲 Functions 🗖 🗗 🗙	[] IDA View-A 🔀	😒 Strings window 🗵	O Hex View-A 🗵	\Lambda Structures 🗙	🗄 Enums 🗵	
Function name * Function name * f sub_C0215BFC * f sub_C0216BFC * f sub_C02176C * f sub_C02177F0 * f sub_C0217774 * f sub_C0218084 * f sub_C02183A4 * f sub_C0218358 * f sub_C0219188 * f sub_C0219188 *	Light View A Light All All All All All All All All All Al	LS Strings Window ▲ LTIbutes: bp-base C0217C74 2C= -0x2C 6= 4 4= 8 R12, D SP!, R11, SP, S R12, R14, R14, R18, R	SP {R4-R12,LR,PC} R12, #4 [R11,#arg_4] R0 R12,LSR#12 \$0000 R1 82 [R11,#uar_2C]	A structures 💌	Enums X	
Line 346 of 871	100.00* (81,-11)	(505,198) 0005FC7C	DR DR DDR DD DD DD DD CC CC C0217C7C: sub_C02.	R3, =dword_C01 R3, [R3] R3, R3, #0x300 R0, R3 loc C0217CCC 17C74+8	F7414 100	

Demo: Extracting and analyzing U-Boot code

JFFS2 erase marker location from a page and spare column bytes

85 19 02 E0 46 00 00 00 96 33 FE 32 81 00 00 00àF...-3b2.... 005E1A00 56 00 00 00 B6 21 00 00 00 00 00 00 00 00 00 00 005E1A10 D7 50 0C 46 D7 50 0C 46 13 CF 05 53 00 00 00 00 ×P.F×P.F.Ï.S.... 005E1A20 02 00 00 00 02 00 00 00 00 00 00 00 DA 97 40 2CÚ—@. 005E1A30 7C 61 97 98 03 04 FF FF 85 19 02 E0 44 00 00 00 la—~..ÿÿ…..àD... 005E1A40 005E1A50 .û÷~ø...T...íÅ.. 1D FB F7 98 F8 04 00 00 54 00 00 00 ED 41 00 00 005E1A60 F4 01 01 00 00 00 00 00 B5 B1 27 47 B5 B1 27 47 ô....u±'Gu±'G 005E1A70 . Ï.S..... 005E1A80 00 00 00 00 00 00 00 00 80 C6 6C 64 85 19 02 E0à 005E1A90 44 00 00 00 1D FB F7 98 F9 04 00 00 53 00 00 00 D....û÷~ù...S... 005E1AA0 ED 41 00 00 F4 01 01 00 00 00 00 00 B5 B1 27 47 íA..ô....µ±'G 005E1AB0 B5 B1 27 47 15 CF 05 53 00 00 00 00 00 00 00 00 u±'G.Ï.S..... 005E1AC0 00 00 00 00 00 00 00 00 00 00 00 00 72 83 05 8Frf.. 005E1AD0 85 19 02 E0 CF 02 00 00 49 1E 2B A1 F1 02 00 00àÏ...I.+;ñ... 005E1AE0 02 00 00 00 ED 81 00 00 00 00 00 00 C8 02 00 00È... 005E1AF0 31 00 00 00 31 00 00 00 31 00 00 00 00 00 00 00 00 <...È....»..Ú 005E1B00 8B 02 00 00 C8 02 00 00 06 00 00 00 BB 12 12 DA C5 EE 2D 1F 78 5E 32 68 62 3A 62 D0 C4 64 B8 80 Åî-.x^2hb:bĐặd.€ 005E1B10 89 89 CD DO C2 C2 OO O8 38 D9 58 ™‱`‱£ÍÐÂÂ..8ÙXuù 005E1B20 99 89 91 005E1B30 98 99 64 59 19 OC 54 OC 95 OC F8 D8 98 43 59 B8 "™dY..T.•.øØ"CY. "Ù•|#€ÒJ.. ¾.3'. 005E1B40 84 D9 95 7C 23 80 D2 4A 06 02 20 BE 2E 33 27 03 .#.GYÅön..a^.S.s 005E1B50 13 23 03 47 59 C5 F6 6E 03 05 71 5E 03 53 03 73 005E1B60 43 4B 23 03 53 4B 53 83 28 09 7E 23 43 A0 CK#.SKSf(.~#C 9t 40 08 06 51 06 86 86 FA 06 3C 10 73 58 C1 C6 0..0.ttú.<.sXÁR. 005E1B70 ð,xÜÂlJ;Á®AȆ2.. 005E1B80 FO 82 78 DC C2 6C 4A A1 C1 AE 41 C8 86 32 81 OC. DD D3 6E DO 38 1F A8 86 53 AB CD A3 ED 3B 2F 23 ÝÓnĐ8."†S«Í£í:/# 005E1B90 2F 83 41 63 27 53 63 23 C3 ##+.sc/fAc'Sc#ÄË 005E1BA0 23 23 2B 03 73 63 ÉŸ.Åq.ÏVÞqk[Ï`l-005E1BB0 C9 9F 8D C5 67 07 CF 56 DE 71 6B 5B CF 91 6C 96 005E1BC0 10 7D FD BF C2 41 AA 82 97 24 A7 9D 9A .) Ý/Â4ª,-\$§.šªùý 005E1BD0 B5 C6 23 27 2A 19 OF 3E 8B 38 29 E9 78 27 AC u£#'*..><8)éx'§ öØážB.5%-.ÔM.R¿Ô 005E1BE0 F6 D8 E1 9E DF OE 35 BE 97 15 D4 4D 8D 52 BF D4 19 CF F8 B9 73 C6 F7 47 33 2E 73 AB 3F F2 6F 8E .Ïø'sÆ÷G3.s«?òoŽ 005E1BF0 005E1C0 96 9A 59 FF FF FF FF FF -šYyyyyy.... OOB Bad block

indicator

(FF=Clean)

Identifying the JFFS2 file system from the raw NAND Flash image is relatively easy

Usually JFFS2 puts specialized *erasemarkers* inside the spare column of each page

68 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Frasemarker

Mounting JFFS2 file system using a MTD

oot@kali:-# modprobe mtdram total_size=65536 oot@kali:-# modprobe mtdblock oot@kali:-# modprobe jffs2

root@kali:-# dd if=jffs2.dmp of=/dev/mtdblock0
119328+0 records in
119328+0 records out
61095936 bytes (61 MB) copied, 0.899118 s, 68.0 MB/s
root@kali:-# mount /dev/mtdblock0 /tmp/jffs2 -t jffs2

Proot@kali: /	'tmp/	jffs2	-	a Passi				
root@kali:/	/ tum)jff:	2 # 1:	s -la				A
total 949								
drwxr-xr-x	18	root	root		Dec	31	1969	
drwxrwxrwt		root	root	4096	Mar		20:17	· ·
drwxr-xr-x		root	root		Dec		1969	bin
drwxr-xr-x		root	root		Mar		2007	boot
drwxr-xr-x		root	root		Dec		1969	dev
drwxr-xr-x		root	root		Nov		1999	etc
drwxr-xr-x		root	root		May	12	2008	home
drwxr-xr-x		root	root		Mar		2007	initrd
drwxr-xr-x		root	root		Dec		1969	ipkg
drwxr-xr-x		root	root		Dec		1969	lib
-rwx		root	root	966656	Jan		2009	linux-0x330000-Mx000403.img.tmp
lrwxrwxrwx		root	root		Dec		1969	linuxrc -> bin/busybox
drwxr-xr-x		root	root		Dec		1969	mnt
drwxr-xr-x		root	root		Mar		2007	proc
drwxr-xr-x		root	root		Dec		1969	root
drwxr-xr-x		root	root		Dec		1969	sbin
drwxr-xr-x		root	root		Mar		2007	aya E
lrwxrwxrwx		root	root		Dec		1969	tmp -> /var/tmp
drwxr-xr-x		root	root		Jan		2009	usr
drwxr-xr-x		root	root		Mar		2007	var
root@kali:			32 #					
								-

First, you need to create a MTD device:

• Load related Linux kernel modules like mtdram, mtdblock and JFFS2. This creates a MTD device on the system.

After successful mounting, you can navigate and modify the file system on the fly

69 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Writing JFFS2 data

- Dump mtdblock data to a file *dd if=/dev/mtdblock0 of=mtdblock0.dmp bs=512*
- 2. Program memory at JFFS2 location
 - python DumpFlash.py -w -b 135 0xffffffff -0 mtdblock0.dmp

coot@test:~# dd if=/dev/mtdblock0 of=mtdblock0.dmp bs=512
131070+0 records in
131070+0 records out
67107840 bytes (67 MB) copied, 2.90779 s, 23.1 MB/s

Demo: JFFS2 manipulation

SMT Re-soldering

After modifying the raw data and writing it back to the Flash memory, re-solder the chip:

- The re-soldering process is not very different from standard SMT soldering
- SMT was originally developed for the automatic soldering of PCB components
- The chips are usually small and the pitch of the pins is also relatively small
- Soldering these chips to the PCB manually is challenging, but not *impossible*
- There are many different methods, but I placed the chip on the pin location and heated the pins using the soldering iron

Bridge & damaged pins

There are many pitfalls with SMT soldering and one of the big issues is bridging:

• The pitch for NAND flash TSOP48 model is 0.5 mm (which is extremely small). The solder can go over multiple pins and create shorts

One of the big problems with re-soldering is possible damage to the board:

- Excessive heat is applied during de-soldering and it can damage the PCB board
- Be extra careful when you re-solder the chips!
- Luckily, with Flash memory, many pins are not used. If the damaged patterns are not used, then the chips operate normally
- Check with the chip datasheet to see if damaged patterns are used

Demo: Re-soldering

Making a development board – TSOP48 socket

Making a development board – TSOP48 socket

Tough to solder manually on the board

76

Making a development board – the hack option

77 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Flat flex cable to breakout board

Making a development board – the hack option

Making a development board - bidirectional

Full verifone kit, including full modified offline sof...

Advertisement from a modded POS device seller

Source: dailymotion

82 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Does security by obscurity work?

The SDK is not publicly available

- To access the SDK, you need to have training (which is expensive)
- There is demand on the underground market for tampered devices

Does security by obscurity work here?

- Even without access to the SDK, it is possible to tamper with the device by directly accessing NAND flash memory
- The internal system is plain embedded Linux system, nothing special
- Do we really have a good way to detect tampered devices?

Conclusion

Interacting directly with Flash memory is useful when JTAG can't be used:

- This is increasingly relevant as vendors obfuscate or remove JTAG interfaces to protect their intellectual property
- By directly interacting with the low level Flash memory interface, you can access data that sometimes can't be retrieved otherwise
- USB stick low data investigations do they clean up all remaining data when you format or erase the files?

The de-soldering method is referred to as destructive, but it is still possible to re-solder the chip to the system using SMT soldering methods:

• There is more chance of damaging the circuit board, but the chance of success is still high enough

Conclusion

There are many factors when extracting, modifying and reconstructing a bare metal image with your modification like ECC, bad blocks and JFFS2 erasemarkers:

• You might try to modify code from many places like the boot loaders, the kernel or the JFFS2 root image

Tamper detection can be sometimes security by obscurity:

• Easily defeated by modifying software components

Credits

Original design of NAND reader/writer SpriteMod

NANDTool

SpriteMod and Bjoern Kerlers

