
CREATING A SPIDER GOAT:
USING TRANSACTIONAL MEMORY
SUPPORT FOR SECURITY

Igor Muttik | PhD
Alex Nayshtut | CISSP-ISSAP
Roman Dementiev | PhD

Introducing Spider Goat…

Spider Pig + Sacrificial Goat = Spider Goat

• Monitoring memory

• Transaction synchronization problem

• What is TSX?

• Can we use TSX for security?

• Demo – detecting unauthorized memory changes

• Potential applications: advantages and challenges

• Memory monitoring approaches

• Conclusions

Agenda

Monitoring Memory for Changes

2) Setting up exceptions on memory pages (4k)

• Mark protected pages read-only – any write creates a page fault

• Software then has to check what exactly was changed

• Reverting changes requires storing original data (up to 2*RAM)

4

Bob

1) Reading protected RAM cells in a loop
• Malicious code (e.g. shellcode)

may have time to disable security

• CPU intensive

• No reverting of changes

Transaction Synchronization Problem

• Multiple threads accessing the same database record
is a scenario very common in database software!

• Example:
• Alice has $1000 in a database record in her account as a total value

• Bob wants to transfer $100 to Alice

• Carol also wants to transfer to Alice but $50

• Depending on timing of reads and writes the end
result may be either $1100 or $1050 or $1150

• Typical solution – software lock (like a semaphore ;
other threads just wait for a “green light”)
• bad for multi-core CPUs

5

Bob

 $1000

Alice

 + $100

Bob

 + $50

Carol

 $1100 $1000 $1100 $1000

Read/write conflict of 2+ threads on a memory cell is the root problem

Using Locks for Transactions (steps)

7

 $1000

Alice

 + $100

Bob

Bob

 + $50

Carol

 $1000 $1000

Alice

 + $100

Bob

 $1100 $1000 $1100

Alice

 + $50

Carol

 $1100 $1100 $1000

Alice

 + $50

Carol

 $1100 $1000 $1100 $1150

 + $50

Carol

Spin...

A Bit of Context

8

Bob



Source: “The Slow Winter” by James Mickens
https://www.usenix.org/system/files/1309_14-17_mickens.pdf

9

Bob

Transactional Synchronization Hardware

• Commercial transactional memory

• 2011 – IBM Blue Gene/Q

• 2012 – IBM zEC12 mainframe

• 2013 – Intel® TSX (4th gen CPUs: Haswell+)

• 2014 – IBM Power8

• Intel® Transactional Synchronization Extensions (TSX) is
an optimization to resolve threads’ conflicts. Two kinds:

• Hardware Lock Elision (HLE - legacy compatible extension)

• Restricted Transactional Memory (RTM - new instructions)

• New instructions:

• HLE: XACQUIRE, XRELEASE (instruction prefixes)

• RTM: XBEGIN, XEND (instructions)

• Auxiliary XABORT, XTEST

• CPUID check for TSX RTM support: (EAX=07H, ECX=0H).EBX.RTM[bit 11]==1

 mov eax,1

Try: lock xchg [mutex], eax

 cmp eax,0

 jz Add100$

 Spin: pause

 cmp [mutex],1

 jz Spin

 jmp Try

Fallback (Usual)

Code example for illustration only.
Source: http://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions,

Coding Transactions with TSX

10

Bob

 mov eax,1

Try: lock xchg [mutex], eax

 cmp eax,0

 jz Add100$

 Spin: pause

 cmp [mutex],1

 jz Spin

 jmp Try

Usual

 mov eax,1

Try: xacquire lock xchg [mutex], eax

 cmp eax,0

 jz Add100$

 Spin: pause

 cmp [mutex],1

 jz Spin

 jmp Try

HLE

 xbegin Abort
 cmp [mutex],0
 jz Add100$
 xabort 0xFF

Abort: cmp eax,0xFF
 jnz Try
 ...
 cmp [mutex],0
 jnz release_lock
 xend

RTM

The Effect of TSX

11

Bob

12

Bob

Mechanics of TSX

• What TSX is NOT:
• Not related to virtualization

• Not based on RAM page tables
(neither PT or EPT)

• Transactional support is piggybacking on cache
• So its granularity is a cache line (x86: 64 bytes)

• Has its own dedicated memory (32kb+ per physical core)

• Existing cache coherency protocols detect conflicts

13

Bob

Detecting Conflicts between Threads

• Works for threads in different cores and for hyper-threads

• Modified data is not visible to other threads before a commit (XEND)

• Requires a programmer to mark transactions in source code

• Read/write conflict is resolved by the abort handler (only for RTM)

• Similar to an exception handler (defined in XBEGIN parameter)

• May re-run the transaction several times

• May call a fallback routine
(e.g. with the software lock)

Typical TSX use

14

First Thread
XBEGIN abort_offset1

Read A

Read B

Read A

Read B

Read A

Write B

...

ti
m

e

A B C D E F

Memory

B

ti
m

e

Second Thread
XBEGIN abort_offset2

Read A

Read B

Write D

Write C

Read B

. . .

1) RAM changes are reversed (modified memory cells D, C are all restored)
2) ABORT handler @ abort_offset2 determines the nature of abort & takes necessary action

Reverting RAM Modification with TSX

15

Security Assistance Thread

Read A

Read B

Read A

Read B

Read A

Read B

...

ti
m

e

A B C D E F

Memory

B

ti
m

e

Suspected Thread
XBEGIN abort_offset2

Read A

Read B

Write D

Write C

Write B

. . .

Monitored
Memory
Regions

1) RAM changes are reversed (modified memory cells D, C, B are all restored)
2) ABORT handler @ abort_offset2 determines the nature of abort & takes necessary action

Detecting RAM Modification with TSX

16

Security Assistance Thread
XBEGIN abort_offset1

Read A

Read B

while(1){}

ti
m

e

A B C D E F

Memory

B

Monitored
Memory
Regions

ti
m

e

Suspected Thread
XBEGIN abort_offset2

Read A

Read B

Write D

Write C

Write B

. . .

1) No RAM changes are reversed (security thread had no writes)
2) ABORT handler @ abort_offset1 determines the nature of abort & takes necessary action

• Runs on a real TSX-capable notebook (vPro)

• The timeline is expanded for human eye to see

• Two systems

• Controls (big buttons)

Live Demo

Legacy TSX-
supported

• Memory monitoring and protection (VMM, OS vendors)

• Protecting kernel code/data (like Microsoft’s PatchGuard)

• Reverting unwanted memory changes in Guest OS (hypervisor)

• Protecting critical data (e.g. System Call Table)

• Software self-protection (ISVs)

• Can detect patching of software

• Raises the bar for attackers

Potential Applications

Advantages

• Creates a hardware-supported short-lived memory sandbox
defined by RAM reads
• Works equally well with physical and virtual RAM

• RAM granularity is better than pages
(64 bytes vs 4k)

• Instant reaction to RAM modification
• No window for malicious code to disable security

• Automatic roll-back of RAM changes is possible

Challenges

• Aborts due to the OS activities
• Context switches (practically any API)

• Interrupts create “aborts noise”

• Requires short threads or thread management

• Injecting XBEGIN into a malicious thread (e.g. via hypervisor)

• Malware operating in kernel (or in hypervisor)
may stop or modify the TSX security thread

• DoS attacks on TSX buffers (32kb+ per physical core)

• Bogus transactions may create random & frequent capacity aborts

• TSX buffers are susceptible to cache attacks

Memory Monitoring Approaches

Tight RAM
reading loop

Page-based
exceptions

TSX RTM

Implementation Software Hardware Hardware

Granularity 1 byte (or less) 4k 64 bytes

Intercept level Hypervisor, OS,
user mode

Hypervisor, OS Hypervisor, OS,
user mode

Speed Slow Medium Fast

RAM coverage Any amount Any amount Small amount

Response Delayed Instant Instant

Time span Unlimited Unlimited Short

22

Conclusions

• Sensitive, unusual and novel security method

• There are quirks

• A bit of a Spider Goat!

• Further research is
ongoing…

