CREATING A SPIDER GOAT:
USING TRANSACTIONAL MEMORY
SUPPORT FOR SECURITY

lgor Muttik | PhD
Alex Nayshtut | CISSP-ISSAP
Roman Dementiev | PhD

1G!
SEIDER PIG

(does whatever a gpider pi

g does)

Spider Pig + Sacrificial Goat = Spider Goat

blgt’:k hat

=i

Monitoring memory: = = 7w
Transaction synchronizatidr‘i’ "problem
What is TSX?

Can we use TSX for security?

- Demo — detecting unauthorized memory changes
Potential applications: advantages and challenges
‘Memory monitoring approaches

Conclusions

blg’ck hat

T et

Monitoring Memory for Changes

\

1) Reading protected RAM cells in a Ioop

Malicious code (e.g. shellcode)

may have time to disable security \
CPU intensive

No reverting of changes

]

2) Setting up exceptions on memory pages (4k)

Mark protected pages read-only — any write creates a page fault

Software then has to check what exactly was changed

Reverting changes requires storing original data (up to 2*RAM)

blgc’:k hat

USA 2014

Transaction Synchronization Problem

Multiple threads accessing the same database record
is @ scenario very common in database software!

Example:
Alice has $S1000 in a database record in her account as a total value
Bob wants to transfer S100 to Alice T T

Carol also wants to transfer to Alice but S50

Depending on timing of reads and writes the end

result may be either or or

Typical solution — software lock (like a semaphore @; ht ht

other threads just wait for a “green light’ 9) 3 3
bad for multi-core CPUs Bob Carol

Read/write conflict of 2+ threads on a memory cell is the root problem

bIQ:k hat 5

USA 2014

Using Locks for Transactions (steps)

blg,ck hat

USA 2014

A Bit of Context

The basic idea was simple: if hardware suffers more

transient failures as it gets smaller, why not allow software to

detect erroneous computations and re-execute them? This idea
seemed promising until John realized THAT IT WAS THE
WORST IDEA EVER. Modern software barely works when the

hardware is correct, so relying on software to correct hardware

errors is like asking Godzilla to prevent Mega-Godzilla from
terrorizing Japan. THIS DOES NOT LEAD TO RISING PROP-
ERTY VALUES IN TOKYO.

Source: “The Slow Winter” by James Mickens
https://www.usenix.org/system/files/1309 14-17 mickens.pdf

Today, if a person uses a desktop or laptop, she is justifiably
angry if she discovers that her machine is doing a non-trivial
amount of work. If her hard disk is active for more than a sec-
ond per hour, or if her CPU utilization goes above 4%, she either

has a computer virus. or she made the disastrous decision to

run a Java program. Either way, it’s not your fault: you brought

the fire down from Olympus, and the mortals do with it what

they will.

bl&k hat

USA 2014

Transactional Synchronization Hardware

Commercial transactional memory
2011 — IBM Blue Gene/Q
2012 - IBM zEC12 mainframe
2013 — Intel® TSX (4th gen CPUs: Haswell+)
2014 - IBM Power8

Intel® Transactional Synchronization Extensions (TSX) is
an optimization to resolve threads’ conflicts. Two kinds:

Hardware Lock Elision (HLE - legacy compatible extension)
Restricted Transactional Memory (RTM - new instructions)

New instructions:
HLE: XACQUIRE, XRELEASE (instruction prefixes)
RTM: XBEGIN, XEND (instructions)
Auxiliary XABORT, XTEST
CPUID check for TSX RTM support: (EAX=07H, ECX=0H).EBX.RTM[bit 11]==1

blgc’:k hat

USA 2014

Coding Transactions with TSX

HLE

mov eax,l mov eax,l
Try: lock xchg [mutex], eax Try: lock xchg [mutex], eax
M cmp eax,0 1 cmp eax,0
jz Add100$ jz Add100$
Spin: pause » Spin: pause
T cmp [mutex],1 cmp [mutex],1
jz Spin jz Spin
jmp Try Jmp Try
Usual
Abort mov eax,1
§2PAéggggglro ?fy: i;ckezzhg [mutex], eax
OXFF P 4
jz Add100$
Abort: cmp eax,O0xFF Spin: pause . 1
jnz Try T cmp [mutex],
e jz Spin
cmp [mutex],0 Jmp Try
jnz release lock Fallback (Usual)
RTM N
Code example for illustration only.
Source: http://en.wikipedia.org/wiki/Transactional Synchronization_Extensions,
blackhat

USA 2014

10

The Effect of TSX

blgzk hat

USA 2014

Mechanics of TSX

What TSX is NOT:

Not related to virtualization

Not based on RAM page tables
(neither PT or EPT)

Transactional support is piggybacking on cache
So its granularity is a cache line (x86: 64 bytes)
Has its own dedicated memory (32kb+ per physical core)
Existing cache coherency protocols detect conflicts

blgt’:k hat

USA 2014

12

Detecting Conflicts between Threads

Works for threads in different cores and for hyper-threads
Modified data is not visible to other threads before a commit (XEND)
Requires a programmer to mark transactions in source code

Read/write conflict is resolved by the abort handler (only for RTM)

Similar to an exception handler (defined in XBEGIN parameter)

May re-run the transaction several times m

May call a fallback routine "5 0\‘.’."."\‘}:

(e.g. with the software lock) d"\ 5 Q\\
el L\

DS

blackhat

USA 2014

13

time

Typical TSX use

First Thread Second Thread

1)
2)

abort offsetl abort_offset2

<
c
o
2
&

time

RAM changes are reversed (modified memory cells D, C are all restored)
ABORT handler @ abort offset2 determines the nature of abort & takes necessary action

bi&ekhat)

USA 2014

time

Reverting RAM Modification with TSX

Security Assistance Thread Suspected Thread
abort_offset2

Monitored
Memory
Regions

time

1) RAM changes are reversed (modified memory cells D, C, B are/all réstored)
2) ABORT handler @ abort offset2 determines the nature of abort & takes necessary action

blgc’:k hat

USA 2014 15

time

Detecting RAM Modification with TSX

Security Assistance Thread Suspected Thread
abort_offsetl aport-offse =2
N
' Q
Monitored V&

Memory °<)5
) =,)
Regions c
g’

v v

1) No RAM changes are reversed (security thread had no writes)
2) ABORT handler @ abort offsetl determines the nature of abort & takes necessary action

blgc’:k hat

USA 2014 16

o
2
|

Runs on a real TS,

The timeline is expand

Two systems

Controls (big buttons)

blg’ck hat

bl = =L

Protecting kernel code/déta (ifké Microsoft’s Patché;uard)
Reverting unwanted memory changes in Guest OS (hypervisor)

Protecting critical data (e.g. System Call Table)

Software self-protection (ISVs)
Can detect patching of software

Raises the bar for attackers

blgt’:k hat

T et

Creates a hardwat andbox

defined by RAM

Works equally well wit physmal}a-r:qj&fizﬁaal RAM

RAM granularity is better than pages
(64 bytes vs 4k)

Instant reaction to RAM modification

No window for malicious code to disable security

Automatic roll-back of RAM changes is possible

blg’ck hat

T et

Aborts due to the'l
~ Context switc 1y an
Interrupts create “aborts noise” - ¥ - *"

Requires short threads or thread management

Injecting XBEGIN into a malicious thread (e.g. via hypervisor)

Malware operating in kernel (or in hypervisor)
may stop or modify the TSX security thread

DoS attacks on TSX buffers (32kb+ per physical core)

Bogus transactions may create random & frequent capacity aborts
TSX buffers are susceptible to cache attacks

blgt’:k hat

T et

Software

1 byte (or less)

Hypervisor, OS,
user mode

Slow
Any amount

Delayed

Unlimited

Hardware

4k
Hypervisor, OS

Medium
Any amount

Instant

Unlimited

Memory Monitoring Approaches

Hardware

64 bytes

Hypervisor, OS,
user mode

Fast
Small amount

Instant

Short

blgt’:k hat

USA 2014

Conclusions

Sensitive, unusual and novel security method

There are quirks

A bit of a Spider Goat!

Further research is
ongoing...

£a 1

oug;gg;g;l | ; 10100101 '_
')??i‘{gégi: _ -1 00111101“ 1
0000000110 0110000 10
"1}}33231; 43011111“**Ullgggg???i}---
122 S ERNTR01001 01 1
blzg:khat@

