
..

..

1

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

..TimeTrial
Racing Towards Practical Remote Timing Attacks

Daniel Mayer (daniel@matasano.com)
Joel Sandin (jsandin@matasano.com)

August 7, 2014

Abstract:
Attacks on software become increasingly sophisticated over time and while the community has a
good understanding of many classes of vulnerabilities that are commonly exploited, the practical
relevance of side-channel attacks is much less understood.

One common side-channel vulnerability that is present in many applications today are timing side-
channels which allow an attacker to extract information based on different response times. These
side-channel vulnerabilities are easily introduced wherever sensitive values such as credentials or
API keys are processed before responding to a client. Even though there is basic awareness of
timing side-channel attacks in the community, they often go unnoticed or are flagged during code
audits without a true understanding of their exploitability in practice.

In this paper, we provide both a tool ’time trial’ and guidance on the detection and exploitability
of timing side-channel vulnerabilities in common application scenarios. Specifically, the focus of
this paper is on remote timing attacks, which are performed over a LAN, in a cloud environment,
or on the Internet. To illustrate this, we first present experimental timing results that demonstrate
how precisely timing can be measured and, more importantly, which timing differences can be
distinguished remotely. Second, we compare our results with timing differences that are typi-
cally encountered in modern web frameworks and servers. The discussed attack scenarios include
database queries, message authentication codes, web API keys, OAuth tokens, and login func-
tions.

This paper has significance for a wide spectrum of the conference audience. Readers in defensive
security roles will gain a better understanding of the threat timing side-channel vulnerabilities pose
and, based on the demonstrated attacks, will be better able to evaluate the severity and impact of
a successful side-channel attack. Readers in a penetration testing role will learn how to distinguish
theoretical timing attacks from legitimately exploitable flaws by using our tool ’time trial’. Finally,
readers focused on research implications will receive a comprehensive update on the state-of-the-
art in exploiting timing attacks in practice.

mailto:daniel@matasano.com
mailto:jsandin@matasano.com

..

..

2

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

.. 0 Contents
1 Introduction 4
1.1 Side-Channel Attacks . 4
1.2 Timing Side-channel . 4
1.3 Previous Work . 5

2 Timing-Based Vulnerabilities 6
2.1 Branching . 6

2.1.1 Authentication . 6
2.1.2 Padding Oracles . 7

2.2 String Comparison . 8
2.2.1 MAC Authentication . 10
2.2.2 OAuth Tokens . 12
2.2.3 Web API Keys . 12
2.2.4 HTTP (Basic) Authentication Middleware . 13

3 Timing Attacks in Practice 15
3.1 Anatomy of a Timing Attack . 15

3.1.1 Response Time and Jitter . 16
3.1.2 Measuring with Precision . 17
3.1.3 Filtering . 17
3.1.4 Hypothesis Testing . 19

3.2 Parallelizing Timing Attacks . 20
3.2.1 Opportunities for Parallelizing Timing Attack 20
3.2.2 On Learning Multiple Bytes Per Round . 20

3.3 Black-Box Detection and Templating . 21
3.3.1 Black-box Detection . 21
3.3.2 Examining Percentile Filters . 21
3.3.3 Calibrating Our Hypothesis Test . 22
3.3.4 Smallest Detectable Timing Difference . 22
3.3.5 Selecting the Ideal Sensor . 23
3.3.6 Avoiding Detection . 23

4 Our Tool: Time Trial 24
4.1 Design Goals . 24
4.2 Implementation . 25

4.2.1 The Time Trial GUI . 25
4.2.2 The Racer . 25

4.3 Supported Trial Types . 28
4.3.1 Echo Trial . 28

..

..

3

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

4.3.2 HTTP Request Trial . 29
4.3.3 Timing Extraction Racer . 29

4.4 Planned Extensions . 30

5 Survey of Timing Attack Targets 31
5.1 Generic Feasibility Analysis . 31

5.1.1 LAN Results . 31
5.1.2 Loopback . 34
5.1.3 WAN Results . 34
5.1.4 EC2 Results . 36
5.1.5 Summary . 38

5.2 Real-World Targets . 39
5.2.1 String Comparison . 39
5.2.2 Microcontrollers and the Internet of Things 43
5.2.3 Branching . 43

5.3 Conclusions . 47

6 Preventing Timing Attacks 48
6.1 Branching . 48

6.1.1 Authentication . 48
6.1.2 Padding Oracles . 48

6.2 String Comparison . 49
6.2.1 Ruby . 49
6.2.2 Python . 50
6.2.3 PHP . 50
6.2.4 Java . 50
6.2.5 C# / ASP.net . 51
6.2.6 Node.js . 51
6.2.7 Clojure . 51

6.3 Password Comparison and Salted Hashing . 51

..

..

4

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

.. 1 introduction
Software can be affected by a wide array of security vulnerabilities. Many of these, such as memory
corruption flaws [DMS06] and web application flaws [SP11, Zal12] have been studied in depth and
are well understood by the information security community. However, even if systems do not
present any direct flaws, they often remain susceptible to side-channel attacks. These attacks
exploit secondary information from a system – things like execution time, power consumption,
and Radio Frequency (RF) emissions – to increase the effectiveness of attacks.

One common side-channel vulnerability that is present in many web or other network applications
today are timing side-channels which allow an attacker to extract information about a sensitive
credential from a system based on differences in the response time. In this white-paper, we provide
both guidance on the detection and exploitability of timing side-channel vulnerabilities in common
web application scenarios and a tool ’time trial’. Specifically, the focus is on remote timing attacks,
which are performed over a LAN, in a cloud environment, or over the Internet.

Outline: Below, we first introduce the topic of timing side-channels in more depth. In Section 2
we then present several timing side-channels with examples. Section 3 describes the process of
performing a timing attack in more detail and Section 4 introduces our new tool time trial. Finally,
Sections 5 and 6 present our results on using time trial in order to determine whether a system is
vulnerable to timing attacks and how to defend against them respectively.

1.1 SIDE-CHANNEL ATTACKS
When exploiting a side-channel, the adversary does not attack an explicit flaw but is able to lever-
age information that is exposed due to specific implementation details or even physical character-
istics of the overall system. Typically, the goal is to deduce some information about a secret kept
by the target system. Since cryptographic systems generally operate on such secrets (the keys) it
comes as no surprise that side-channel attacks have frequently been developed in order to break
cryptographic systems.

Despite a significant volume of (mostly) academic research, compared to traditional software vul-
nerabilities, the practical relevance of side-channel attacks is much less understood by the commu-
nity. Examples of side-channel attacks include power analysis (e.g. [KJJ99, KJJR11]), differential
fault analysis (e.g., [BDL97, Gir05]), acoustic analysis (e.g. [GST13]), involuntary transmission of
electromagnetic radiation (so-called Van Eck phreaking [vE85]), and timing side-channels—the fo-
cus of this paper.

1.2 TIMING SIDE-CHANNEL
Asmentioned, timing side channels are prevalent inmodern web applications. Using a timing side-
channel, one can deduce some information about the inner workings of the application based on
its response time. Let us look at a basic example to illustrate this. Listing 1 shows a simple login

..

..

5

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

..

LISTING 1: BASIC TIMING SIDE-CHANNEL IN RUBY SINATRA

.

post '/login' do
if not valid_user?(params[:user])

"Username or Password incorrect"
else

if verify_password(params[:user], params[:password])
"Access granted"

else
"Username or Password incorrect"

end
end

end

function written in Ruby and Sinatra which takes a user and password as parameters. To check
if valid credentials have been submitted, the code first checks if the username is valid and only
then verifies the password in a second step. Note that the returned error message does not give
an indication on whether the supplied username was valid. However, by measuring the response
time on such a system, we can distinguish between requests that triggered the password validation
function and requests that did not. As a result, we are in a position to enumerate valid users of
this application. We will look at this scenario in more detail later in Sections 2 and 5.

1.3 PREVIOUS WORK
The work in this paper builds upon the large body of prior work on timing side-channels. Timing
attacks have been studied by both academic and industry security researchers. Traditionally, the
academic side focused on (local) timing attacks against cryptographic systems. Notable early
results include Paul Kocher’s timing attack research [Koc96], as well as the David Brumley and Dan
Boneh 2003 attack on OpenSSL over a LAN resulting in successful private key recovery [BB03].
More recently, Crosby et al. [CWR09] did a comprehensive study on statistical methods that can
aid in mounting successful remote attacks. Empirical results include the talk by Nate Lawson and
Taylor Nelson presented at BlackHat 2010 [LN10] as well as Sebastian Schinzel’s presentations
at CCC [Sch11, Sch12]. Schinzel also developed a tool for attacking systems with timing side-
channels, but it is not publicly available. Our work builds on these empirical studies.

..

..

6

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

.. 2 timing-based vulnerabilities
Every programming language provides operations that demand caution when used. Some exam-
ples of common tasks that have developed a well-deserved reputation for being dangerous when
used incorrectly are copying memory, construction of database queries, and parsing of XML data.
In contrast, timing side-channels may even be introduced when a developer uses what can right-
fully be seen as “innocent” operators such as branching and string comparisons. The subtlety of
their manifestation may, in part, explain their prevalence in software products today.

The following discussion presents settings where timing side-channels are commonly introduced
by developers. This section is a purely theoretical source-code analysis and we do not imply that
each and every instance is exploitable by a remote attacker over the internet. We defer this analysis
to Section 5.

Below, the different timing flaws are grouped by the vulnerable underlying operation and each sec-
tion is accompanied by one or more modern code samples pulled from publicly available sources
that illustrate actual vulnerabilities. We canonicalized the examples as to not publicly expose par-
ticular projects. The ease in which these examples can be found in both classic and new languages
reflects the lack of general awareness among developers. In some cases, these examples are in-
cluded in publicly available tutorials or up-voted forum posts that may have served as templates
for other implementations. A discussion on how to remediate or limit the impact of timing flaws
is given in Section 6.

2.1 BRANCHING
We already have seen timing vulnerabilities based on branching in our introductory example in
Listing 1. The basic idea is that the application follows a different major code path based on a
secret value. Depending on the application, this flaw may occur in various different ways. Below
we discuss two of the more general kind: authentication and timing-based padding oracles.

2.1.1 Authentication

In the login example discussed in the Section 1, the verification of the password only occurs if the
supplied username is known to the system. Since the verification will involve additional computa-
tion time, this introduces a measurable timing difference.

Figure 1 illustrates this behavior. Here the attacker sends a request at the timemarked with “Start”.
The target then processes the request and either returns immediately after checking the username
(time t0) or after the password was verified (time t1). Note that even if the application returns the
same error message, we can distinguish the different execution paths due to the difference in
response time.

..

..

7

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

Attacker Target

POST /login with username, password

Username or Password incorrect valid_user?

verify_passwordUsername or Password incorrect

Access granted

Start

t_0

t_1

FIGURE 1: Illustration of timing differences for user authentication.

2.1.2 Padding Oracles

A padding oracle [Vau02, PY04] is a well-studied cryptographic vulnerability that, even without
considering timing, is considered a side-channel flaw. When encrypting data using a block cipher,
for most cipher modes of operation, e.g. CBC mode (see [Wik14b]), the plaintext has to be a
multiple of the block size. Since this is not always naturally the case, the plaintext in the last block
has to be padded such that it fulfills this requirement. There are different schemes that can be
applied but typically PKCS#5 or PKCS#7 is used [Hou09, Wik14c]. When decrypting, most libraries
verify that the last block had correct padding according the agreed-upon padding scheme. If this
is not the case, a padding error is raised.

If an attacker is able to learn whether a submitted ciphertext had correct padding, i.e., if the appli-
cation communicates padding errors to the attacker, they are in the position to decrypt arbitrary
ciphertexts without knowing the secret key. A full treatment of padding oracles is outside the
scope of this paper but [RD10a] and [Hol10] give a detailed review of the subject from an applied
perspective. In the past, many (prominent) software and hardware implementations were affected
by it, e.g., [RD10b, DR11, BFK+12].

Even when the application does not explicitly disclose whether the padding was correct (see List-
ing 2), timing side-channels may still allow an attacker to learn this information [San10] as illustrated
in Figure 2. When a padding error occurs during decryption, the application typically does not
process the decrypted data. Instead it is likely to return a (generic) error message (t0). If the
padding is correct, regular processing of the request will occur (t1), which itself may encounter an
error if the decrypted data mangled by the attacker is malformed. Therefore, an attacker may be
able to distinguish this timing difference and exploit the padding oracle.

..

..

8

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

..

LISTING 2: PADDING ORACLE IN RUBY

.

require 'openssl'
require 'sinatra'

get '/decrypt' do

begin
cipher = openssl::cipher::aes256.new(:cbc)
cipher.decrypt
cipher.key = $key #key is generated somehere
plain = cipher.update(params[:data]) + cipher.final
begin

process_data plain
rescue

return "an error occurred."
end
return "data processed successfully."

rescue
return "an error occurred."

end
end

Attacker Target

GET /decrypt?data=[encrypted data]

an error occurred. decryption_successful?

process_dataan error occurred.

data processed succesfully.

Start

t_0

t_1

FIGURE 2: Illustration of the timing difference for a padding oracle.

2.2 STRING COMPARISON
String comparison is one of the classic examples for timing vulnerabilities. While they may seem
trivial, they can have far-reaching implications depending on the values involved in the comparison.
Let us first examine the basic principle behind timing flaws in string comparison. As you can see
in Figure 3, string comparison functions tend to be implemented as a loop over all characters of

..

..

9

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

Attacker Target

e9aa
Start

t_0

Valid Credential: e993

Credential invalid

i = 0

i == len(cred)-1

cred[i] != input[i]

i++

valid

invalide

9

9

3

e

9

a

a

e9aa == e993

==

==

==

==
t_1

Credential invalid
String Comparison as Implemented in

Most Programming Languages

FIGURE 3: Illustration of the principle behind string-based timing attacks.

the input strings. Once the two strings differ in a character, the comparison function returns with
false. Only if all characters are identical, is true returned.

By simply looking at the return value for the string comparison function, one cannot tell which char-
acter causes the mismatched, i.e., the result generally does not say “The strings are not equal. The
first character they differ in is at position 3.”. However, by leveraging timing measurements, one
is able to learn exactly this information. In Figure 3, the target knows a valid credential of e993
(shortened for simplicity) and compares a user-supplied value to that secret value in order to au-
thenticate the user. In the depicted example, the attacker supplies the input e9aa and the internal
string comparison will proceed as shown in the center of the figure. As long as the characters in
both strings are equal, the next character is compared. As soon as one differs, the function returns.
Since each additional comparison takes extra time, an attacker can leverage this to brute-force the
character for each position one at a time as follows:

1. Start with a string aaaaa.

2. Take the first position and iterate over all valid characters (baaaa, caaaa, etc.). Once one of
the request for a certain character takes longer to process (t1) than the others (t0), this indi-
cates that the character was correct and that the server performed an addition comparison
for the following character (e.g., eaaaa).

3. Remember the string determined thus far, move to the next character, and repeat the process
(ebaaa, ecaaa, etc.) until all characters have been determined.

What is important to note is that the attacker can brute-force a single character at a time. Com-
pared to a regular brute-force attack this requires effort that is linear in the length of the secret
instead of exponential.

..

..

10

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

Below we discuss some common scenarios which involve the comparison of sensitive string values.
This includes Message Authentication Codes (MACs), OAuth tokens, API keys, and HTTP Basic
Auth usernames and passwords.

2.2.1 MAC Authentication

MACs are commonly used in order to cryptographically authenticate some piece of data in a
similar, yet more efficient, manner than cryptographic signatures do. The goal for applying MACs
is to ensure that the corresponding piece of data has not been tampered with since only the
originator is able to create the valid MAC. For this, both the server and the legitimate client share
a common secret value. This secret value is required to compute a valid MAC for arbitrary data.
In order to verify a MAC, the verifier computes the valid, expected MAC and compares it to the
value submitted by the client. If this comparison is performed using regular string comparison,
the MAC is prone to a timing attack in which the attacker is able to forge a MAC for arbitrary data.
By following the approach described above, the attacker is able to construct a valid MAC byte
by byte. One of the most common ways of implementing a MAC us by using Hash-Based MAC
(HMAC) algorithms such as HMAC-SHA1-256.

MACs are used in a variety of contexts such as authenticating ciphertexts, proving the origin of
data passed in an API request, etc. One frequent use case is to authenticate requests sent to
web APIs. When MACs are used with web APIs, a common pattern is to require the client to
“authenticate” their API request with an attached MAC value such that the server can verify that
the request comes from a legitimate client. If the server cannot verify the MAC in the manner
describe above, the server returns a 403 or otherwise indicates that the request is unauthorized.
The use of a regular (early terminating) string comparison function by the server in this context
introduces a timing side channel. A malicious client can adaptively infer the expected MAC value
for a given request and execute this request without authorization.

A perusal of publicly available libraries quickly identifies numerous examples of this antipattern.
Below, as an illustration, Listing 3 shows one example in PHP, Listing 4 for Java, and Listing 5 for
Ruby.

..

..

11

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

..

LISTING 3: HMAC TIMING VULNERABILITY IN PHP

.

function compareHash(){
$hash_client = hash_hmac('sha256', $string, $secret);
if($hash_client == $this->hash_server) {

$this->valid_hash = true;
return true;

} else {
$this->valid_hash = false;
return false;

}
}

..

LISTING 4: HMAC TIMING VULNERABILITY IN JAVA

.

public static Boolean checkRequest(final Request request, final String secretKey) {
final String requestSignature = request.getHeader(X_HMAC_AUTH_SIGNATURE);
final String generatedSignature = createRequestSignature(request, secretKey);
return generatedSignature.equals(requestSignature);

}

..

LISTING 5: HMAC TIMING VULNERABILITY IN RUBY

.

def authenticated?(request)
rx = Regexp.new("#{@service_id} ([^:]+):(.+)$")
if md = rx.match(authorization_header(request))

key_id = md[1]
hmac = md[2]
secret = @credential_store[key_id]
!secret.nil? && hmac == signature(request, secret)

else
false

end
end

Systems that authenticate session cookies using MACs may fall victim to the same vulnerabilities
given above (e.g., Listing 6).

..

LISTING 6: SESSION MANAGEMENT TIMING VULNERABILITY IN NODE.JS

.
if (originalHash == crc32.signed(val)) return debug('unmodified session');

..

..

12

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

2.2.2 OAuth Tokens

OAuth [HL10, Har12, JH12] is an authorization standard that can be used to delegate access to
a third-party resource without disclosing the main access key or password of the resource owner.
This delegation is performed by means of so-called OAuth tokens which are opaque identifiers
that are used by a third party in place of a user’s credentials to gain authorized access to a resource.
Implementors can choose to construct OAuth tokens in various ways. They often turn to HMACs,
leading to vulnerabilities similar to those shown in the HMAC section. A well known vulnerability
identified by Sebastien Martini [Mar] follows the anti-pattern in Listing 7 but similar flaws exist in
implementations in other languages such as, for example, PHP (see Listing 8).

..

LISTING 7: OAUTH TIMING VULNERABILITY IN PYTHON

.

def check(self, request, consumer, token, signature):
built = self.sign(request, consumer, token)
return built == signature

..

LISTING 8: OAUTH TIMING VULNERABILITY IN PHP

.

public function check_signature($request, $consumer, $token, $signature) {
$built = $this->build_signature($request, $consumer, $token);
return $built == $signature;

}

2.2.3 Web API Keys

In contrast to other identifiers discussed before, API keys typically do not have a internal struc-
ture but are long, randomly generated opaque blobs unique to a given API. While they serve
a similar function as passwords, due to their random structure, they are less likely to be stored
and processed securely. For instance, at least one online best practices guide [Sto13] actually
recommends against hashing API keys in the interest of performance without mentioning the se-
curity drawbacks of this approach. Similarly, side channels and secure storage of API keys aren’t
mentioned in the OWASP Cheat Sheet [OWA14].

As should be apparent from the discussion above, if a submitted API key is compared against a
valid one using regular string comparison, they may be prone to timing attacks. Listing 9 shows a
validation function for a request handler in C# ASP.net. In this example, the handler responds with
a “403 Forbidden” response if the key included in the client query doesn’t match the expected
key.

..

..

13

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

..

LISTING 9: API KEY TIMING VULNERABILITY IN C# ASP.NET

.

private bool ValidateKey(HttpRequestMessage message) {
var query = message.RequestUri.ParseQueryString();
string key = query["key"];
return (key == Key);

}

2.2.4 HTTP (Basic) Authentication Middleware

Newer “batteries not included” microframeworks (e.g., node.js, clojure, flask, sinatra) encourage
users to graft in various HTTP basic auth middleware implementations, or roll their own. The
example handlers below (Listings 10 to 12) are pulled from middleware documentation, and are
meant to be called in order to verify basic auth credentials when handling requests. If these
patterns are used directly, a timing side channel may be introduced. Note that similar patterns are
easy to introduce into regular authentication functionality for systems where the userbase is small,
account lockout is not implemented, and developers are unaware of the need to store passwords
securely (see Section 6 for a more detailed discussion).

..

LISTING 10: BASIC AUTH TIMING VULNERABILITY IN RUBY SINATRA

.

authorize do |username, password|
username == "john" && password == "doe"

end

..

LISTING 11: BASIC AUTH TIMING VULNERABILITY IN NODE.JS

.

connect.createServer(
basicAuth(function (user, password) {

return user === "admin" && password == "secret";
}),

function (req, res) {
res.writeHead(200);
res.end("welcome " + req.headers.remote_user);

}
);

..

..

14

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

..

LISTING 12: BASIC AUTH TIMING VULNERABILITY IN CLOJURE

.

(defn authenticated? [name pass]
(and (= name "foo")

(= pass "bar")))

Being aware of the various instances of timing vulnerabilities in difference languages and frame-
works, we discuss the details of how to perform an actual timing attack in the next section.

..

..

15

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

.. 3 timing attacks in practice
Now that we understand the different ways in which timing attacks can be introduced into applica-
tions, we’ll discuss how one would go about exploiting such timing vulnerabilities. As mentioned
above, at their core timing attacks boil down to an attacker being able to distinguish server re-
sponse times as a function of the input.

These attacks can be local or remote. In a local attack, the attacker either has access to a piece
of hardware and can interact with it directly, or is able to execute the attack on the same physical
host on which the target is running. In contrast, remote attacks are executed over a network which
may be a LAN or the Internet. In this paper, we focus on remote attacks but we point out settings
in which a remote attacker may take advantage of local computation.

Below, we first describe in detail how timing attacks are performed in practice. We then talk about
the potential and limitations of parallelized attacks and how to conduct black-box identification of
timing side-channels.

3.1 ANATOMY OF A TIMING ATTACK
In a successful timing attack, an attacker interacts with a remote server, measures the round-trip
time of messages, processes these round-trip times using statistical techniques to infer the remote
execution time at the target, and progressively learns the contents of a secret value one byte (or
many bytes) at a time.

In this process, the attacker attempts to elicit different response times by providing carefully crafted
input values to the server. The exact inputs to send depends on the attack scenario. In general,
the attacker will have a set of candidate values which cover potential inputs (e.g., usernames,
session tokens, signatures). The timing attack then proceeds in multiple rounds. In each round the
attacker learns one additional piece of data about the secret value (e.g., validity of the username,
byte of the session token or signature). To do so, the attacker iterates through all of the candidate
values and selects the value that results in the longest (or shortest) execution time. Note that this
process may terminate early when the desired candidate is found. In an ideal world, this question
can be answered by taking a single measurement for each candidate. In real systems, however,
there are multiple sources of variation– called jitter–involved in each measurement of time (see
Section 3.1.1). For this reason, real-world attacks require multiple messages to be sent for each
candidate value, and statistical analysis of the resulting response time distributions. The concrete
steps involved in each round are:

1. For each candidate, multiple measurements of the round trip time are collected using a
sensor able to precisely measure the elapsed time.

2. These measurements may then be filtered: filtering is an optional process which selects a
single value (or set of values) based on the measurements, that is (are) reliably correlated
with the remote execution time.

..

..

16

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

3. The (filtered) values are then evaluated using statistical hypothesis testing in order to iden-
tify whether they come from different statistical distributions, or more plainly, whether one
candidate resulted in a signficantly longer or shorter execution time than the others.

There are many approaches to filtering and hypothesis testing, and thus our discussion only covers
the techniques that previous empirical studies have found to be most effective. For an excellent
in-depth treatment of this topic, refer to Crosby et al.’s paper [CWR09] on which large parts of this
subsection are based.

3.1.1 Response Time and Jitter

When interacting with a remote target, the only variable we can directly measure is the round
trip time. This quantity includes propagation times for both the request and the response, along
with the variable we are actually interested in: the execution time used in processing the request
at the target. If the propagation time remained constant for all our requests, we could simply
compare two measurements and decide immediately if the execution time was different or the
same. However, interaction with a remote system introduces multiple sources of variation that can
cause the propagation time to differ significantly between requests. Network latency, caused by
varying delays at intermediate hops on the path to the target, and even varying system loads on
the target will introduce jitter into the overall response time. These distortions impede our ability
to estimate the execution time at the target.

The following model of propagation developed by Crosby et al. illustrates the terms that con-
tribute to the overall round-trip time [CWR09]:

response_time = processing_time+ propagation_time+ jitter (1)

Where the different terms are defined as follows:

response_time: The measured round trip time.

processing_time: Time the target used to process the request. Assumed constant for all requests
for the same message.

propagation_time: The average latency over the network link. Assumed constant over all re-
quests.

jitter Overall jitter.

Here the propagation time is the sum of the average request and response propagation times. The
jitter term can be positive or negative and, for the purpose of our analysis, this term encapsulates
the cumulative sources of variation in our measurements. The term we are actually interested in is
the processing_time at the remote target. If this processing time is significantly longer (or shorter)
for a given candidate value, we likely have identified another piece of the secret.

..

..

17

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

100.06100.065100.07100.075100.08
Time / [ms]

0

100

200

300

400

500
Fr

e
q
u
e
n
cy

localhost

FIGURE 4: Example of a typical response time distribution (100 ms processing time) on the same
host.

3.1.2 Measuring with Precision

As a prerequisite to performing a successful timing attack, we need to be able to preciselymeasure
time (the response_time) on the system executing the attack. While we don’t have any influence
on the amount of jitter introduced by propagation and at the target, we are able to reduce the
jitter added due to the measurement setup. This includes choosing a proper clock and reducing
outside interference with the timing measurement as much as possible. Crosby et al. have shown
that the network hardware may also have a measurable impact on the overall quality of the timing
results. All these parameters should be taken into consideration.

3.1.3 Filtering

As discussed above, by performing many measurements we build a statistical picture of the jitter
based on the measured response times. We can then use this data to compute a value that is
(hopefully) correlatedwith the execution time on the target. This step, known as filtering, processes
themeasurements and produces a value or set of values that act as a ”fingerprint” for the execution
time. Susbequently, this fingerprint can be used in comparisons when proceeding with the last
stage of the analysis.

One filtering approach would be to simply take the mean of all the measurements. The mean
is only a good correlation when one is dealing with a distribution that is symmetric around the
mean value (e.g. Gaussians/Normal distributions). While this may work for local attacks where
no network propagation is at play, as previous researchers have observed, response times in a
wide-area network can’t be modelled by such a distribution. As a result, the mean has a weak
correlation with the remote execution time.

Figure 4, Figure 5, and Figure 6 show typical timing measurement performed on the same host,
a LAN, and over the Internet (between broadband connection and an Digital Ocean droplet),

..

..

18

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

100.5 100.52 100.54 100.56 100.58 100.6 100.62 100.64
Time / [ms]

0

100

200

300

400

500
Fr

e
q
u
e
n
cy

LAN

FIGURE 5: Example of a typical response time distribution (100 ms processing time) on a switched
LAN (1 hop).

130 135 140 145 150
Time / [ms]

0

100

200

300

400

500

Fr
e
q
u
e
n
cy

Digital Ocean

FIGURE 6: Example of a typical response time distribution (100 ms processing time) from a broad
band connection to Digital Ocean.

respectively. As one can see, the distribution measured over the Internet shows a somewhat rapid
onset and a long decaying tail on the upper end. In particular, the actual distribution of response
times, as seen in these measurements, are clearly not normal-distributed but rather highly skewed,
asymetric, with more than one mode, with a long-tail.

Previous empirical studies found that low percentiles–the value below which a given percentage
of samples fall–are strongly correlated with the processing time on the target [CWR09]. Intuitively,
one might expect selecting the minimum response time (0th percentile) would yield an ideal filter,
as jitter can only add to this shortest response time. However, in practice this percentile filter turns
out to be noisier than other low-percentile filters. Armed with the knowledge of which values are
strongly correlated with the processing time, we can now construct a hypothesis test.

..

..

19

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6
Time / [ms]

0
20
40
60
80

100
120
140

Fr
eq

ue
nc

y
100 ms
105 ms

(a) Response Time Distribution.

0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6
Time / [ms]

0
20
40
60
80

100
120
140

Fr
eq

ue
nc

y

100 ms
105 ms

6%

(b) Lower Percentile (qi = 6%).

0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6
Time / [ms]

0
20
40
60
80

100
120
140

Fr
eq

ue
nc

y

100 ms
105 ms8%

(c) Upper Percentile (qj = 8%).

0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6
Time / [ms]

0
20
40
60
80

100
120
140

Fr
eq

ue
nc

y

100 ms
105 ms

(d) Both Distributions with both percentiles.

FIGURE 7: Illustration of the Box Test.

3.1.4 Hypothesis Testing

For our purposes, the best performing test identified in previous research is the so-called ”Box
test”. It is based on the observation discussed above, that certain percentiles are well-correlated
with the processing times. Developed by Crosby et al. [CWR09], this test has two parameters,
i and j, corresponding to low empirical percentiles extracted from the sample measurements.
The box test computes the percentiles qi and qj from both sets of samples, and declares the
samples as coming from different distributions (rejecting the null hypothesis) if the intervals are
non-overlapping and properly ordered.

The box test is illustrated in Figure 7: For a response time distribution (Figure 7(a)) the lower
percentile of qi = 6% (Figure 7(b)) represents the response time below which 6% of the samples
were recorderd. Similarly, the upper percentile qj = 8% (Figure 7(c)) indicates the response time
below which 8% of the samples lie. Finally, in Figure 7(d) the same percentile range is plotted for
both distributions. As one can see, the two “boxes” do not overlap and the one corresponding
to the shorter proessing time (blue) is located at lower response times than the one for the longer
processing time (red). Thus, in this case, the two distributions are assumed distinct with blue
corresponding to a smaller processing time than red.

By using this technique, one implicitly applies the filtering step discussed above as part of the
analysis. In fact, one can feed raw data sets to the box test and get reasonable results as we will
see in Section 5. In practice, low-percentiles (with i and j both less than 10 percent) yielded the
best results both in prior research [CWR09] and in our experiments. Crosby’s work also showed
that based on the assessed alternatives, this test has the lowest false negative rates while also
maintaining a low (less than 5 percent) false positive rate.

..

..

20

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

3.2 PARALLELIZING TIMING ATTACKS
In a scenario where an attacker has multiple targets to choose from and multiple sensors at his
disposal, a high degree of parallelism may be possible. There are many concrete situations in
which multiple targets are available. For example, e-Commerce sites, social networks, and content
delivery networks often have tens, hundreds, or even hundreds of thousands of machines that
process requests using the same sensitive credentials (e.g., API keys, SSL certificates). Imagine a
timing side channel in a popular library implementation of TLS. In this situation, an attacker can
perform measurements against any SSL terminating endpoint holding the certificate in use, and
can use multiple sensors to interrogate multiple endpoints in parallel.

3.2.1 Opportunities for Parallelizing Timing Attack

The problem of learning the next unknown byte (or multiple bytes) in a credential can be viewed
as a search problem. As mentioned above, the sensor tests each candidate value and selects the
value that results in the longest (or shortest) execution time at the target. This set of candidate
values can be divided among multiple sensors. Each sensor takes a slice of the set, and selects
pairs of candidates from within its individual slice. For each pair, the sensor performs the measure-
ments, filtering (if required), statistical analysis (e.g., the box test), and rejects both candidates if
their execution time is the same. At the end of the search, the ”lucky winner” among these sensors
has found two inputs which result in different response time distributions and can announce to the
others that the correct value has been identified. The sensors can then tackle the next round of
the attack.

Of course, this scenario assumes that there is only one valid value for each set of candidate values
such that they can be tested independently from another. Also, it is important to note that it is
generally not possible to combine the measurements from different sensors for the same candi-
date. This is due to the fact that different sensors will have different jitter distributions which makes
the later analysis challenging or impossible.

3.2.2 On Learning Multiple Bytes Per Round

Timing attacks resulting from early terminating comparisons (see Section 2.2) have historically
been studied in settings where a single attacker probes a single target and progressively learns an
unknown credential one byte at a time. But an attacker isn’t required to proceed a single byte at a
time. Multiple bytes can be probed as part of a single trial. Expanding our search space to chunks
of multiple bytes at a time causes the difference in execution time between a correct and incorrect
candidate at the target to increase, making it easier to detect when we have found our correct
candidate. But this increase comes at a cost: the set of candidate values increases exponentially
with the size of the chunk probed at once.

While a parallel timing attack can’t help us reduce the number of messages sent when testing
multiple bytes per round, it does allow us to reduce the total execution time of each round.

..

..

21

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

3.3 BLACK-BOX DETECTION AND TEMPLATING
In side-channel attacks, templating involves performing the initial measurements against a second,
attacker-controlled target (the ”template”) before launching the attack against the actual target
[CRR03]. An example of this is in an attack against a hardware device such as a Hardware Security
Module (HSM). The attacker can obtain an HSM with specifications that are identical to the target,
perform repeatedmeasurements to learn the exact attack parameters needed to extract the secret
from the target device, and then perform the attack against the live target. This allows the attacker
to reduce the required time and the message footprint of the actual attack.

In the context of web applications, a similar kind of templating is often possible. With a valid
credential, an attacker can perform detailed measurements and understand the exact properties
of the target system before an attack is launched. Knowledge of an existing credential allows us
to detect timing side channels remotely in a black-box fashion, and can significantly increase the
effectiveness of our attack in the following ways.

3.3.1 Black-box Detection

Timing side-channels are tranditionally identified through source code review. In situations where
source code is unavailable, an existing credential allows us to remotely identify endpoints that
may be susceptible to timing attacks. To detect a timing side-channel, we craft two inputs that
purposefully trigger the longest and shortest execution time. For this, we take our valid credential
and generate two candidates based on it. The first has the first byte mutated (shortest execution),
and the second has the last byte mutated (longest execution). Figure 8 illustrates this setting. We
can then compare the remote execution times of the endpoint in question for each of these two
candidates. If a side-channel exists, the execution times will be different and we can detect the
side channel remotely if this difference is large enough to be distinguishable.

3.3.2 Examining Percentile Filters

The box-test is effective in settings where low empirical percentiles are strongly correlated with
remote processing time on the target. An existing credential allows us to verify that percentiles
exhibit this correlation before we actually attempt to perform a timing attack. This optional verifi-
cation step can give us greater confidence that the attack will succeed.

To test percentile filters using an existing credential, we mutate this credential in each position to
cause the comparison to fail at that position, and collect many timing measurements for each of
these mutated credentials. We then confirm that the low empirical percentiles increase linearly as
more characters match.

..

..

22

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

Attacker Target

a9934586339c2f25b9c0446d3c2b4f5c

Credential invalid

Start

t_0

Valid Credential: e9934586339c2f25b9c0446d3c2b4f5c

e9934586339c2f25b9c0446d3c2b4f5a
Start

t_1 Credential invalid

i = 0

i == len(cred)-1

cred[i] != input[i]

i++

valid

invalid

FIGURE 8: Illustration of the short and long request for black-box detection.

3.3.3 Calibrating Our Hypothesis Test

The box-test, our hypothesis test used for comparing sets of measurements, uses a configurable
pair of percentiles extracted from each set of samples for testing. We can identify the best pairs
of low percentiles to reliably detect differences to a low false-negative rate and acceptable false
positive rate.

To calibrate our hypothesis test for a specific target, we againmutate our credential in each position
to cause the comparison to fail at that position, and collect many timing measurements for each of
these mutated credentials. We then try every i, j pair and select the pair that performs best over
our sample set. This effectively mimics the empirical study of Crosby et. al. when selecting an i,
j that formed an effective hypothesis test for all samples collected during their study, but here we
select the best hypothesis test for the specific system we are targeting.

3.3.4 Smallest Detectable Timing Difference

Our sensor may not be sensitive enough to detect differences in execution time at the resolution
of a single extra byte comparison. But it may be possible to detect larger timing differences.
By progressively mutating an existing credential starting from the last byte and performing our
hypothesis test on the resulting timing measurements, we can identify the smallest number of
characters that cause a timing difference that is remotely detectable. This quantity informs any
analysis on the expected message complexity of the attack.

..

..

23

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

3.3.5 Selecting the Ideal Sensor

In a situation where we have multiple sensors, an existing credential can be used to select the
sensor with the highest sensitivity of detection. We perform our analysis with all sensors, and
select the sensor that can detect the smallest difference in execution time.

3.3.6 Avoiding Detection

Using an existing credential associated with our account reduces the number of measurements we
need to perform against the unknown credential. This may assist an attacker in avoiding detection,
by generating fewer logging artifacts or security events for the unknown credential being attacked.

..

..

24

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

.. 4 our tool: time trial
During software assessments, the authors of this paper have encountered numerous potential
timing attacks through source code analysis (see Section 2). Without proper tools, it is challenging
to assess the exploitability of such flaws and discovery via blackbox testing is hard. Similarly, it
is difficult to communicate the exploitability of these flaws to open-source projects, clients, or
vendors. In particular, except for the most pronounced timing differences, providing proofs-of-
concept to illustrate the vulnerability is not feasible. In order to help the community to reduce the
gap between theoretical timing attack scenarios and provably exploitable ones, we developed
our tool time trial [MS14].

The core functionality of time trial is the ability to schedule, execute, and capture precise timing
data—each called a trial. When developing time trial, the focus was not on creating weaponized
attacks but to perform a feasibility analysis of the attack. Since a successful attack relies on the
ability to distinguish two different response times, time trial’s feasibility analysis takes two recorded
trials and performs a statistical analysis as previously discussed in Section 3.1.4.

We describe time trial’s implementation details in the following subsections.

4.1 DESIGN GOALS
As discussed in the Section 3.1 one crucial step in performing timing attacks is the capture of
precise timings. An attacker can only influence its own contribution to the overall jitter of the mea-
surement which means timing measurements should avoid introducing additional jitter as much
as possible. Moreover, in order to accommodate different attack scenarios, one should be able
to place the sensor capturing the timing data–called racer in the following–at an arbitrary posi-
tion relative to the target. For instance, one should be able to perform a trial from the local LAN,

1. Define Trials in the GUI

1

2. Redis-Backed RQ

Target

3. Racer Executes

4. Results in Queue

5. View/Analyze Results

FIGURE 9: Basic workflow and design of time trial.

..

..

25

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

against a target in a cloud environment, or over the Internet. At the same time, scheduling of trials
and the analysis of the timing data should be convenient and efficient.

4.2 IMPLEMENTATION
In order to achieve the goal of being able to place the racer on an arbitrary host (e.g., close to the
target) and still having a convenient way to analyze the data, time trial is implemented as a two
component system. The first is the racer which performs the actual timing measurements and the
second is a GUI application which is used for scheduling and analysis. For most trials it is necessary
to perform a large number of requests in order to obtain a reliable, statistical distribution of the
response times. The number of measurements to perform can be set in the GUI along with all
other parameters for the different trial types (see Section 4.3).

Both of time trial’s components communicate via a Python RQ [Dri] that is backed by the Redis
key-value store [Red].

4.2.1 The Time Trial GUI

TheGUI component is written in Python usingQt. The interface allows the specification of different
trials and their parameters (see Section 4.3 for details on which kind of scenarios time trial supports
at time of writing). All data about trials and the timing results are stored in a SQLite database. We
chose SQLite to make the setup as easy as possible and since we are using SQLAlchemy as an
ORM, we can easily switch to a more powerful database backend if needed.

Once a trial is defined in the GUI, it can be assigned to a racer and queued. Queuing pushes
the trial into an rq from which the corresponding racer retrieves the trial parameters and executes
them. After completion, the results are pushed back into rq, the GUI receives them, and persists
the results in the SQLite database.

Once the results are available in the time trial GUI, they can be plotted in the form of a his-
togram (frequency as a function of response time) and analyzed using the statistical tests (see
Section 3.1.4). As we will see in Section 5, the parameters going into the analysis, e.g. the box
test, are not fixed and should be tuned depending on the target.

4.2.2 The Racer

The main factor for an effective implementation of the racer is that it can capture precise timing
data. Specifically, we need to be able to capture the response times for each individual request
with high precision. It is not sufficient to determine the cumulative or average response time for a
large number of requests.

We have brainstormed various ideas on how to do this in the most effective manner. From using
a network interface which tags incoming packets with an arrival time (often used for IDS systems),

..

..

26

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

FIGURE 10: Screenshot of the time trial GUI.

over embedded devices with real-time operating system, to FPGAs. In the end we decided to go
with an optimized Linux setup for several reasons:

1. Most of the jitter is out of the control of the racer and we cannot do anything to reduce it.

2. There are many ways in which we can optimize a Linux host to significantly reduce the locally
introduced jitter.

3. When targeting cloud systems, in order to get close to the target, it is rather impractical to
deploy custom hardware in the target’s data center. A dedicated Linux host or at least a VM
are available most of the time.

Leaving operating system optimizations aside for now, the main property required of the Linux
host is a reliable source of time. Since our timing process will spend most of its time waiting for a
response from the target, we cannot rely on the user time, which captures the duration the process
is actually processing on the CPU, but need to use the real time, which corresponds to the actual
time passed. On a regular Linux system, a high precision timer is available via the clock_gettime

..

..

27

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

..

LISTING 13: PORTABLE HIGH-RESOLUTION TIMER ON LINUX AND OS X[jbe11]

.

#include <time.h>
#ifdef __MACH__
#include <mach/clock.h>
#include <mach/mach.h>
#endif

void current_utc_time(timespec * ts) {
#ifdef __MACH__ // OS X does not have clock_gettime, use clock_get_time

clock_serv_t cclock;
mach_timespec_t mts;
host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock);
clock_get_time(cclock, &mts);
mach_port_deallocate(mach_task_self(), cclock);
ts->tv_sec = mts.tv_sec;
ts->tv_nsec = mts.tv_nsec;

#else
clock_gettime(CLOCK_MONOTONIC, ts);

#endif
}

call using the CLOCK_MONOTONIC clock. Compared to the CLOCK_REALTIME clock the monotonic
clock is not adjusted due to Network Time Protocol (NTP) updates or other OS adjustments.

Despite clock_gettime being a POSIX-specified function, it is not available on OS X. However,
OS X has a similar system service which can be queried using clock_get_time and we integrate
it into the time trial racer using the code shown in Listing 13.

Given a suitable time source, there are still several ways to improve the precision of our mea-
surements. By default, the racer process will be preempted by the operating system in order to
schedule other processes to run. Even on a host that is dedicated for time measurements, there
are kernel and other processes that may be scheduled while running timing measurements. In
order to eliminate the influence of the scheduler as much as possible, we run the racer on a Linux
host that reserves one CPU core entirely for the racer. By using the grub boot options shown in
Listing 14, the kernel and all scheduled processes are only ever using a maximum of 2 “CPUs”.
On a host with hyper-threading and two cores (4 virtual “CPUs”), this leaves an entire core unused.
But this CPU core can still be assigned to processes by requesting it explicitly. Listing 15 shows
how to achieve this by means of the CPU_SET function. As a result we have a dedicated CPU core
that is not used by any other process such that the timing measurement should not be preempted
during its execution. To further ensure that the process remains scheduled, we run it with real-time
priority.

..

..

28

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

..

LISTING 14: LIMITING THE CORES AVAILABLE TO LINUX

.
GRUB_CMDLINE_LINUX_DEFAULT="maxcpus=2 isolcpus=1"

..

LISTING 15: C++ SCHEDULING OPTIMIZATIONS

.

#include <sys/resource.h>
#include <sched.h>
void set_cpu_affinity(int cpu) {

cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(cpu, &mask);

}

void enable_real_time(int priority) {
int which = PRIO_PROCESS;
id_t pid;
int ret;
pid = getpid();
ret = setpriority(which, pid, PRIO_MIN);

}

4.3 SUPPORTED TRIAL TYPES
Currently, time trial supports timing attacks in three different scenarios: a proof-of-concept echo
setup, and two HTTP scenarios.

4.3.1 Echo Trial

The echo trial serves basic feasibility testing purposes and can be used to create settings with
known timing delay. It consists of a custom TCP client and server. When executed, the client
sends a single integer (int) to the server who interprets the integer as a wait time in nanoseconds,
sleeps for said amount of time, and returns the same integer to the client. The client uses the
timing functionality shown above to record the time for each exchange.

The sleep was originally implemented using nanosleep(2). However, for delays below 1 µs this
sleep timer proved unreliable and could not be used to generate a constant delay for each request.
To remedy this, we implemented busy waiting based on Intel’s Time Stamp Counter (TSC) which
increments with every clock tick. The counter is kept in a 64-bit CPU register which was accessed
using inline assembly.

..

..

29

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

4.3.2 HTTP Request Trial

FIGURE 11: Configuring an HTTP Trial

Our work so far has focused on remote timing attacks in web services. With the HTTP request trial
type we are able to perform timing measurements against arbitrary HTTP hosts. To setup such
a trial, one needs to specify a target URL and a raw HTTP request to be sent. The racer parses
the HTTP request and then uses cpp-netlib [otcnp] to execute the request against the target. We
took special care to not include any HTTP parsing but only the execution of the request itself in
the timing measurements. If desired, we have the ability to remove certain HTTP error codes from
the set of response times.

4.3.3 Timing Extraction Racer

Many frameworks include the execution time at the server directly in the response. For instance,
some frameworks set the X-Runtime response header, while others include HTML comments that
indicate the time taken to process the request on the server. These debugging options can be
leveraged to obtain precise timing data which is not prone to distortion by network jitter. To
support analysis of these systems, time trial includes a racer that uses regular expressions to extract
the response time from a server response. This client can be configured to extract response time
from headers or the response body, and automatically formats the timing data in the form expected
by the GUI for analysis. This racer is easily extended in cases where additional processing of
responses is required.

4.4 PLANNED EXTENSIONS

..

..

30

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

There are various directions in which we plan to extend time trial’s functionality. As a major new
function we are working on implementing an actual attack feature that given a known-vulnerable
endpoint, a request, an injection point, and parameters for the statistical analysis, is able to auto-
matically exploit the target.

To make time trial applicable to a wider range of targets, additional trial types should be added
such that, e.g., custom TCP protocols or even local targets (e.g., cryptographic systems) can be
analyzed. Similarly, the import of externally captured timing data may be useful for settings where
time trial cannot be deployed directly and timing data is captured by other means.

While we currently have settled on a Linux host for performing timing measurements, it may be
worthwhile to explore other techniques such as FPGAs or networking interfaces with packet tag-
ging. In particular, if one wishes to get an upper bound on what the most sophisticated attackers
may be capable of, this is a valuable path of research.

..

..

31

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

.. 5 survey of timing attack targets
In this section, we discuss several practical results we obtained using our tool time trial. First,
in Section 5.1 we present a generic feasibility analysis on what response time difference can be
distinguished in different network settings. Following that, in Section 5.2, we discuss what these
results mean for practical attack scenarios such as string comparison and branching-based timing
side-channels.

5.1 GENERIC FEASIBILITY ANALYSIS
To determine which timing differences are exploitable in principle for different network settings,
we performed timing measurements using the Echo Trial described in Section 4.3.1. The method-
ology used for this basic feasibility analysis is similar to the one used by Crosby et al. in [CWR09].
However, instead of using UDP as Crosby did, we decided to use TCP connections as they are
more likely to be used by attacked targets. Due to the additional packets involved in TCP, our
approach may incur more jitter and thus reduce the measurement resolution as compared to UDP.

Armed with this setup, we investigated several scenarios. First, we configured a switched LAN
in our lab by connecting two computers with a NetGear Gigabit switch. Second, we simulated
Internet conditions by running experiments between a broadband cable connection and a Dig-
ital Ocean Virtual Private Server Droplet. Finally we looked at Cloud Computing Environments.
Modern cloud solutions such as Amazon’s EC2 make it much easier for an attacker to get closer to
the target. To analyze this, we used two Amazon EC2 instances in the same availability zone and
measured response times between those instances.

In the following sections, we will discuss the limits for distinguishing different processing times as
determined by our experiments in each environment.

5.1.1 LAN Results

We start our analysis with a rather long processing time difference of 1 ms (100 ms vs. 101 ms).
As shown in Figure 12, this long difference can easily be distinguished with the naked eye.

When the difference is reduced to 100 µs (100 µs vs 200µs), the two response time distributions
move closer together, but remain clearly distinct (see Figure 13).

As seen in Figure 14, for a difference of 10 µs (100µs vs. 110µs), the distributions start to overlap
but remain easily distinguishable.

The situation becomes less clear when looking at processing time differences of only 1 µs. Fig-
ure 15 shows the same processing time difference measured 1,000 times, 10,000 times, and
100,000 times. While the first two plots don’t show any clear separation of the two distribution,

..

..

32

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

100.4 100.6 100.8 101 101.2 101.4 101.6 101.8 102
Time / [ms]

0

100

200

300

400

500

600
Fr

e
q
u
e
n
cy

100 ms
101 ms

FIGURE 12: LAN: 100 ms vs. 101 ms using 1,000 repetitions.

450 500 550 600 650 700 750
Time / [µs]

0

20

40

60

80

100

120

140

160

Fr
e
q
u
e
n
cy

100 µs
200 µs

FIGURE 13: LAN: 100 µs vs. 200 µs using 1,000 repetitions.

500 520 540 560 580 600 620
Time / [µs]

0

20

40

60

80

100

120

140

160

Fr
e
q
u
e
n
cy

100 µs
110 µs

FIGURE 14: LAN: 100µs vs. 110µs using 1,000 repetitions.

..

..

33

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

for 100,000 measurements, one can see a clear shift between them. Furthermore, as indicated by
the two lines in the figure, the box test identified the two distributions as distinct.

500 520 540 560 580 600 620
Time / [µs]

0

20

40

60

80

100

120

140

Fr
e
q
u
e
n
cy

100 µs
101 µs

500 520 540 560 580 600 620
Time / [µs]

0

100

200

300

400

500

600

Fr
e
q
u
e
n
cy

100 µs
101 µs

500 520 540 560 580 600 620
Time / [µs]

0

500

1000

1500

2000

Fr
e
q
u
e
n
cy

100 µs
101 µs

FIGURE 15: LAN: 100 µs vs. 101µs using 1,000, 10,000, and 100,000 repetitions respectively.

For any shorter processing times we switched from nanosleep to busy waiting based on the TSC.
With this, we hit the limit of what can be resolved on a LAN somewhere soon below 100 ns (100 ns
vs. 200 ns) in Figure 16.

..

..

34

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

200 210 220 230 240 250 260
Time / [µs]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Fr

e
q
u
e
n
cy

100 ns
200 ns

FIGURE 16: LAN: 100ns vs. 200ns using 1,000,000 repetitions. Less repetitions would be sufficient
in order to distinguish the difference.

It should be mentioned that it may be possible for an attacker to resolve even smaller timing
differences but that our implementation of busy waiting on the target server is not stable enough
to produce the consistent processing delays to test this scenario.

5.1.2 Loopback

Local attacks are a less likely attack scenario that move an attacker even closer to the target and
eliminate the influence of the network. We measured how an attacker executing on the same
physical host would fare in a timing attack. This attack was still performed via the network interface
and not by measuring the execution time directly. As seen in Figure 17, distinguishing a 30 ns
difference is still possible. For anything below 30 ns, our measurements were not consistent. It
was unclear in testing if this was a limitation of the tool, technique, or noise in the simulated target
server itself due to variance in TSC values for such short delays.

5.1.3 WAN Results

Due to the increased jitter on a WAN connection, the resolution of our measurements via the
Internet at large was expected to be smaller. This was confirmed through active testing.

For the WAN environment, we performed a measurement with a 1 ms processing time difference.
In contrast to the LAN, the resulting distributions overlap significantly but can still be distinguished
easily (see Figure 18).

When the difference in response time is reduced, one quickly needs to add additional requests in
order to keep the noise low enough to be able to distinguish the results. Figure 19 shows that for
a 100 µs difference (100 µs vs. 200 µs) one can still distinguish when 10,000 repetitions are being
used.

..

..

35

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

13 13.2 13.4 13.6 13.8 14 14.2
Time / [µs]

0

500

1000

1500

2000

2500

3000

3500
Fr

e
q
u
e
n
cy

420ns
450ns

FIGURE 17: Loopback: 100ns vs. 200ns using 1,000,000 repetitions. Less repetitions would be
sufficient in order to distinguish the difference.

130 132 134 136 138 140 142 144
Time / [ms]

0

20

40

60

80

100

120

Fr
e
q
u
e
n
cy

100 ms
101 ms

FIGURE 18: WAN: 100 ms vs. 101 ms using 1,000 repetitions.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
Time / [ms]

0

50

100

150

200

250

300

350

Fr
e
q
u
e
n
cy

100 micros
200 micros

FIGURE 19: WAN: 100 µs vs. 200 µs using 10,000 repetitions.

..

..

36

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

For theWAN setting we determined that timing differences of 1 µs could still be distinguished (see
Figure 20) while 100 ns was generally infeasible. However, there is potential for achieving greater
resolution in-between. One limiting factor was that the network quality was rather inconsistent
which we speculate may lead to changes in jitter while the measurements took place. These
variations made it difficult to draw final conclusions. While it made our experiments more difficult,
this result illustrates that the selection of a high-quality vantage point is important in order to
gain maximal timing resolution. In Section 5.1.5 we discuss in some more detail how one could
compensate for the change in environment in future experiments.

32 33 34 35 36 37 38
Time / [ms]

0

1000

2000

3000

4000

5000

6000

Fr
e
q
u
e
n
cy

FIGURE 20: WAN: 100 µs vs. 101 µs using 100,000 repetitions.

5.1.4 EC2 Results

As we showed in the previous section, timing measurements quickly become unreliable over long-
distance Internet connections. If the target is located in a cloud environment, by renting a virtual
server in the same environment, the attacker can cut out large amounts of Internet jitter and put

100.5 101 101.5 102 102.5 103 103.5
Time / [ms]

0

10

20

30

40

50

60

70

Fr
e
q
u
e
n
cy

100 ms
101 ms

FIGURE 21: EC2: 100 ms vs. 101 ms using 1,000 repetitions.

..

..

37

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

themselves into a LAN-like environment. As it turns out, the network within an EC2 availability
zone is excellent. This is likely to high-quality networking hardware used by Amazon’s service.

The two main take-aways for our EC2 analysis are: 1) Attacks within the EC2 environment are
effectively as feasible as on a local network and 2) if we used better hardware for our LAN mea-
surements, we are likely to obtain better results in that environment as well. Below are the detailed
plots for different timing differences as obtained for EC2.

Similar to the LAN environment, the distributions for 1 ms timing difference (100 ms vs. 101 ms)
are clearly separated in Figure 21.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
Time / [ms]

0

50

100

150

200

250

300

350

Fr
e
q
u
e
n
cy

100 micros
200 micros

FIGURE 22: EC2: 100 µs vs. 200 µs using 10,000 repetitions.

0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time / [ms]

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Fr
e
q
u
e
n
cy

100 µs
110 µs

FIGURE 23: EC2: 100 µs vs. 110 µs using 100,000 repetitions.

For 100 µs (Figure 22) and 10 µs (Figure 23) processing time differences the distributions quickly
start to overlap but remain distinguishable with the naked eye.

Using the nanosleep timer, the resolution limit was reached at around 1 µs (101 µs vs. 100 µs)
where the box test is still able to distinguish the distributions (Figure 24).

..

..

38

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time / [ms]

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Fr
e
q
u
e
n
cy

101 µs
100 µs

FIGURE 24: EC2: 100 µs vs. 101 µs using 100,000 repetitions.

After switching to the more precise timer using busy-waiting based on the TSC, we were able to
distinguish even about 100 ns of timing difference in the EC2 environment (Figure 25).

200 300 400 500 600 700 800
Time / [µs]

0

1000

2000

3000

4000

5000

Fr
e
q
u
e
n
cy

100 ns
200 ns

FIGURE 25: EC2: 100 ns vs. 200 ns using 100,000 repetitions.

5.1.5 Summary

Table 1 summarizes our results discussed above and shows that the resolution for attacks over the
Internet is significantly lower than on a LAN. At the same time, the ability to move into the same
cloud environment as target may give a LAN-like advantage to the attacker. These results are
consistent with the ones obtained by Crosby et al. [CWR09]. For some environments we obtained
a slightly smaller resolution in our experiments which may be due to the use of TCP instead of
UDP.

Potential Improvements: As mentioned above, since we artificially introduced specific process-
ing times, the delay function itself may have added additional jitter to the measurement. While

..

..

39

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

1 ms 100 µs 10 µs 1µs 100 ns < 100 ns

Loopback

LAN

Amazon EC2

WAN

TABLE 1: Overview of the response time differences that could be distinguished in each network
environment

our CPU scheduling optimizations should minimize these influences, a better resolution may be
achievable in practice.

Moreover, especially for the WAN environment we saw rapid changes in the network quality
and propagation delays. For all of our experiments we first obtained the data for the longer
(or shorter) processing time before performing measurements for the other time. If the network
quality changes during this time, it is difficult to line up the resulting response time distributions.
In the future, the process could be improved by making alternating requests that switch between
short and long response times.

5.2 REAL-WORLD TARGETS
Now that we have gained a better understanding on which differences can be distinguished in
the different network settings, we will relate these to timing differences that are encountered for
different timing side-channels in practice. We first discuss string comparisons and then cover
branching-based timing flaws.

5.2.1 String Comparison

Objective and Methodology: Microbenchmarks were developed for popular languages and used
to better understand the timing measurement resolution required to exploit timing attacks against
early-exit comparison functions. These benchmarks compute a per-byte (or per-word, where ap-
propriate) time measurement representing the execution time difference that may be introduced
when an additional byte (or bytes) of an input match with the target value. For these measure-
ments, ”exploitation” is taken to mean adaptively learning the contents of a hidden credential on
a target in a reasonable time. These numbers are not meant to imply that information isn’t leaked
by the execution time, as it clearly is, they only illustrate the challenge faced by an attacker who
wants to perform the attack in a reasonable time frame.

..

..

40

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

In practice, it turns out that target platforms are not guaranteed to ”exit early” on the first non-
matching byte, andmay compare entire CPUwords (or larger values) in a single instruction [Law10].
To compute the per-word microbenchmark for our modern platform, measurements were taken
when comparing two strings that differed in the 128th and 256th position. The difference between
these two measurements was divided by the number of words and iterations to obtain an average
execution time.

These microbenchmarks are accompanied by an analysis of execution time as a function of match-
ing bytes in the first 32 bytes of buffers being compared. These positions were chosen in part
because many of the benchmarked platforms exhibited execution time behavior that didn’t vary
with the number of matching characters for smaller strings. This behavior makes timing attacks
against these platforms more difficult in practice, as discussed below in more detail. This behav-
ior is platform specific and other platforms may perform true ’early exit’ comparisons that make
attacks easier.

Microbenchmarking is a difficult art, and the challenges faced in capturing these benchmarks illus-
trates how small these timescales are on modern systems. Benchmarking challenges and limita-
tions are discussed in more detail in the results. These measurements will be improved in a future
version of this paper to provide a more accurate picture into the behavior of comparison functions
on current CPUs.

Environments: Benchmarks were implemented and run on a mid-range desktop as well as an af-
fordable embedded single-board computer. Benchmarks were also performed on an EC2 ”small”
instance (CPU Single Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz) but performance was similar to
the desktop and is omitted from the results reported below. Benchmarking platform specifications
are as follows:

Platform 1: Mid-2013 MacBook Pro
CPU: Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz (4 cores), 4 gigs RAM (DDR3)

OS: Ubuntu 14.04 Server

Linux kernel: Ubuntu 3.13.0-32-generic #57-Ubuntu SMP

libc version: 2.19-0ubuntu6

gcc version: 4.8.2 (Ubuntu 4.8.2-19ubuntu1)

Python: Python 2.7.6

Java: Java SE Development Kit 8 Update 11 for Linux 64

Clojure: Leiningen 2.4.2, but Clojure benchmarks were compiled as a standalone JAR

Ruby: ruby 1.9.3p484 (2013-11-22 revision 43786) [x86_64-linux]

Platform 2: BeagleBone Black Rev C
CPU: ARM Cortex-A8 1GHz (single core), 512 megs RAM

..

..

41

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

OS: Debian 7.6 (wheezy)

Linux kernel: 3.8.13-bone47

libc version: 2.13-38+deb7

gcc version: 4.6.3 (Debian 4.6.3-14), compiled -lrt

Python: Python 2.7.3

Java: Java SE Development Kit 8 Update 6 for ARM (1.8.0_06)

Clojure: Leiningen 2.4.2, but Clojure benchmarks were compiled as a standalone JAR

Ruby: ruby 1.9.3p194 (2012-04-20 revision 35410) [arm-linux-eabihf]

Early-Exit and Multi-Byte Comparison: Timing attacks on string comparison rely on the (often
unstated) assumption that execution time increases smoothly as each successive byte matches. If
multiple matching bytes do not cause an increase in execution time, an attackers job becomes
harder, as they must guess many correct bytes before inducing a measurable time difference in
the target. Modern CPU and compiler combinations may compare entire words at a time, and
thus leak no information about sub-word matches to the attacker.

Java was chosen specifically to study this due to its susceptibility to timing attacks in past studies.
On Linux, the execution time remains relatively constant within a word (of 64 bits), which makes a
remote attack unworkable for an attacker (see Figure 26.

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
First Non-matching Index

0

50

100

150

C
o
m

p
a
ri

so
n
 T

im
e
 /

 [
n
s]

FIGURE 26: String Comparison using Java on an Intel i5 CPU. Processing time within a CPU work
does not increase but once a word boundary is crossed, there is a corresponding jump.

Java on the ARM platform did not exhibit this behavior (see Figure 27, and execution time in-
creases smoothly with each successive byte. This helps an attacker, and along with the numbers
stated above, put these platforms within reach of a timing attack.

..

..

42

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
First Non-matching Index

0

500

1000

1500

2000

C
o
m

p
a
ri

so
n
 T

im
e
 /

 [
n
s]

FIGURE 27: String Comparison using Java on a BeagleBone Black. The procesing time increases
for each additional byte that is compared.

Per-Byte Microbenchmarks: All measurements are in nanoseconds and the i5 benchmarks are
per-word whereas the other platforms are per-byte.

Lawson 2010
Athlon X2 2.7GHz* Cortex-A8 i5-3210M 2.50GHz

C memcmp .719 1.3770 .243
strcmp - 4.0441 .41

ruby == .840 1.7586 .36
python == 1.4 1.4867 .224
java String.equals 40.594 18.91 7.65

* Benchmarks from the Lawson and Taylor 2010 Blackhat Presentation

The contrast between the Lawson data and our own microbenchmarks is striking. Part of the dif-
ference may be attributed to hardware: The Intel i5 can compare two 8-byte words atomically in a
single instruction, and has multiple execution units that allow multiple comparisons to be done in
parallel. Given the CPU frequency of 2. 7GHz, our results correspond to about 2 comparisons per
clock-cycle. While this may indeed be the case, it could also suggests possible limitations in the
microbenchmarking approach. Measuring the per-byte (or per-word) microbenchmark requires
us to run our comparison in a tight loop to reduce measurement error, but this may defeat its
own purpose in some cases (notably python) as it allows the processor to optimize and compare
multiple words in a single clock cycle. C exhibited the most striking behavior, with performance
counter-intuitively increasing as the first non-matching word increased, thus requiring the compar-
ison between differences of many words.

Regardless of these limitations, these benchmarks show that once a runtime has done everything
it needs in order to perform the comparison, the actual byte-to-byte timing differences are very

..

..

43

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

small. The numbers were daunting already in Lawson’s study in 2010 and timing attacks against
these languages on a modern platform are even less feasible today.

Java on the i5 remains somewhat of an exception, but because timing information is only leaked
at word boundaries, attacks remain intractable on modern systems. In contrast, the performance
of Java on the embedded system may put it in reach of a remote timing attack in certain environ-
ments.

Conclusion: Modern implementations still leak timing information, but increased hardware per-
formance and optimized comparison functions greatly reduce the remote exploitability of these
side channels. Against these implementations, an attacker must guess multiple bytes correctly,
instead of just a single byte, and the time difference the attacker must discern remotely. Embed-
ded systems remain vulnerable due to a lower performance, smaller word size, and the use of
unoptimized comparison functions in platforms like Java.

5.2.2 Microcontrollers and the Internet of Things

The rise of the Internet of Things brings a plethora of Internet-connected devices onto modern
networks. To understand the susceptibility of these platforms to timing attacks we performed ex-
periments against embedded microcrontrollers. The slower, low-power processors in use in these
devices allow us —in some way—to “travel back in time” to when processor speeds were lower.
Since these embedded processors perform less operations per second, they require more time
for each operation which leads to larger timing differences for different operations. We already
gave a glimpse at that with our BeagleBone Black discussed above. To take this a step further we
have also performed a basic analysis of the Arduino Mega.

The Arduino Mega is a popular device whose processor operates at 16 MHz. We measured the
processing time for string comparison on the device and determined that it takes approximately
0.46 µs per byte—significantly longer than on any other device we investigated. With such a large
difference per byte, it was worthwhile exploring whether this timing difference can be exploited
remotely over a LAN. As shown in Figure 28, there is a difference in the response times for strings
that differ in the first character vs. strings that differ only at the 10th character. This indicates
that timing attacks on regular string comparison have to be assumed feasible for any embedded
system.

5.2.3 Branching

In contrast to the string comparison discussed above, there is no generic analysis for branching-
based flaws. This is due to the fact that the difference in processing time for each branch depends
on the underlying application. We have studied a few common functions that are frequently used
in sensitive contexts and may disclose information via conditional branching.

..

..

44

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

21810 21815 21820 21825
Time / [µs]

0

500

1000

1500

2000

2500

3000
Fr

e
q
u
e
n
cy

1st char
10th char

FIGURE 28: Arduino: Comparing strings that differ at the first character and strings that differ at
the 10th character respectively.

Hash Functions Hash functions are frequently used in sensitive application areas that range from
login function, over HMACs, to data integrity checks. In order to determine whether one could
distinguish the execution of a hash function remotely, we implemented a basic web service in
ruby (sinatra using thin) which verifies a user’s password depending on whether the username
was correct (see Figure 1). The web service was configured to use OpenSSL’s implementation of
SHA1 and SHA256 or ruby’s bcrypt implementation. For SHA, we were able to detect whether the
function was executed in both the LAN and the WAN environments (Figure 29).

Bcrypt is hash function specifically designed for password storage. It’s runtime is intentionally be
slow in order to prevent rapid dictionary or brute-force attacks on compromised password hashes.
As a side-effect of it being slow, it is trivially possible to detect whether an execution of bcrypt
occurred. This is illustrated by the obvious separation of the two response time distributions for
the LAN and WAN environments in Figure 30.

Note: It is important to realize that this is not a flaw in the hash functions themselves, but rather
a timing side-channel introduced via the manner they are used in this case.

Database Queries The performance of database queries is dependent on both the query and
the data in the database. Due to the complex and optimized structure of data storage in modern
database systems, it is not trivially possible to draw conclusions about the stored data based on
the response time. This is a subject that certainly warrants future research as it has the potential
to disclose sensitive data.

Since a full study of the timing of database queries was outside the scope of this research, we only
assessed whether the execution of a simple query on an in-memory SQLite database could be
detected. In order to keep the query time as short as possible, the database included only a single
row. This attack is feasible in a LAN environment (see Figure 31) and, while not experimentally

..

..

45

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

1 1.5 2 2.5 3 3.5 4
Time / [ms]

0

100

200

300

400

500

600
Fr

e
q
u
e
n
cy

correct user
wrong user

60 65 70 75 80 85 90 95
Time / [ms]

0
50

100
150
200
250
300
350
400
450

Fr
e
q
u
e
n
cy

correct user
wrong user

FIGURE 29: SHA256: Detecting whether SHA256 was executed in a LAN (top) and WAN (bottom)
environment. Measured using 10,000 requests for each case (less are likely sufficient on the same
LAN).

verified, the timing difference appears large enough that it should be detectable over the Internet
as well.

CBC Padding Oracle In Section 2.1.2 we introduced the padding oracle attack on the CBC cipher
mode. As mentioned, the attack relies on the ability to distinguish a decryption with incorrect
padding from one with correct padding. When correct padding is encountered, the application
will typically attempt to process the decrypted data in somemanner. Which processing takes place
after decryption depends on the application but a wide-range of actions (e.g., those involving
I/O) will consume significant amounts of processing time and the difference can thus be detected
remotely. It is important to note that this can be exploited even if the application returns the same
message for both cases!

For example, assume the decrypted data includes an access token. Upon successful decryption,
the application looks up this token in a database in order to verify that it is valid. Other scenarios
include logging of the request, backend requests, XML parsing, or any other kind of processing.

..

..

46

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

0 20 40 60 80 100
Time / [ms]

0

200

400

600

800

1000

1200

1400
Fr

e
q
u
e
n
cy

wrong user
correct user

60 80 100 120 140 160 180 200 220 240
Time / [ms]

0

20

40

60

80

100

120

140

Fr
e
q
u
e
n
cy

wrong user
correct user

FIGURE 30: Bcrypt: Detecting whether bcrypt (work factor of 10) was executed in a LAN (top) and
WAN (bottom) environment. Measured using 1,000 requests for each case (less are likely sufficient
in both cases).

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
Time / [ms]

0

100

200

300

400

500

600

700

Fr
e
q
u
e
n
cy

query not performed
query performed

FIGURE 31:Database Query: Timing difference for a simple database query against an in-memory
SQLite database containing a single entry.

..

..

47

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

We implemented the padding oracle attack using the timing difference as the “oracle”. Figure 32
shows a screen shot of our attack running against a mock-up server.

FIGURE 32: CBC Padding Oracle: Screenshot of a CBC padding oracle attack solely based on
response time analysis.

5.3 CONCLUSIONS
The use of optimized string comparison functions and support for atomic comparisons of 64-bit
words makes exploitation of comparison-based timing side channels highly unlikely for applica-
tions that leverage those features on modern hardware. A very privileged network position or
attacks performed on the same host increase the resolution of attacks significantly and may give
an attacker an additional advantage. However, based on our analysis, this advantage appears
insufficient for practical remote attacks. Since regular string comparison of sensitive data still does
leak some information (even if not exploitable remotely) as part of a best practice approach one
should implement defenses as discussed in the next section. In particular, embedded systems
remain at greater risk due to their slower processing speeds, and Arduino and other embedded
systems appear to be feasible targets.

The impact of branching-based side-channels depends on application, but common complex op-
erations appear to introduce delays that are significant enough to distinguish by a remote attacker.
For instance, any form of I/O, database queries, even computation of hash functions adds enough
processing time for a remote attacker to detect and potentially exploit.

..

..

48

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

.. 6 preventing timing attacks
In the previous section we have seen which kind of timing flaws can potentially be exploited in
practice. Below, we discuss the counter measures one can take in order to minimize or eliminate
timing flaws in applications.

The general recommendation is that all operations involving sensitive data should execute in con-
stant time, i.e., the execution time should not depend on the sensitive value involved. As it turns
out, while this can be achieved for some high-level operations, it is hard to realize for all algorithms.
However, there are some well-established solutions for common operations that we discuss below.

6.1 BRANCHING
For branching-based vulnerabilities there is no cut-and-paste solution against timing attacks. Cus-
tom work is required based on the underlying scenario.

6.1.1 Authentication

For user authentication, one needs to compute the password hash regardless of whether the user
is valid and perform the comparison of both the user and the password hash using constant time
comparison functions (discused below). If database queries are involved, the joint query for both
username and password hash may hide timing differences well enough such that they are not
exploitable.

6.1.2 Padding Oracles

Padding oracles are only exploitable if the attacker is able to tamper with the ciphertext sent to
the server. In order to prevent this kind of attack, ciphertexts should be authenticated [Wik14a]
which prevents (or rather detects) any modification performed by a third party. When using AES,
the preferred way of doing this is to use a cipher mode that provides both confidentiality and
authentication at the same time. Galois/Counter Mode (GCM) is a widely available example of
such a mode. Should the language used not support this, CBC mode combined with an HMAC
is the next best choice. When using an HMAC combined with CBC mode, verifying the HMAC
before attempting decryption will detect and thus prevent any unwanted modification. There are
a few caveats when implementing this. First, the HMAC should use a different secret key than the
AES encryption. Second, the HMAC has to be verified using a constant time comparison function
(see next section). Only if the HMAC is valid should the ciphertext be decrypted.

..

..

49

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

6.2 STRING COMPARISON
In order to prevent timing vulnerabilities in string comparisons, the function must not return early
when a different byte is found in the input strings. The generic way of achieving (see Listing 16)
this is to first determine if the compared strings have the same length and return false otherwise.
The algorithm then continues by performing a byte-wise XOR operation while “summing-up” the
results using a bit-wise OR operation. If two bytes are equal, the XOR will be zero and one other-
wise. The result of the oerall OR operation will only be equal to zero if all bytes XORed to zero.
Thus checking if the result yielded zero allows us to determine whether the strings were equal. The
use of XOR on each pair of bytes being compared ensures that the computation time per byte is
constant, regardless of the values of the strings.

..

LISTING 16: PSEUDOCODE FOR CONSTANT-TIME COMPARISON

.

function constant_equal(a, b):
if length(a) != length(b):

return false

result = 0
for (i = 0; i < length(a); i++)

result = result OR (x XOR y)
return (result == 0)

Note that by first checking whether the strings are of equal length introduces a more subtle timing
channel: an attacker can learn the length of the credential being checked. While disclosing the
length typically is not a concern, these solutions should not be used for applications where this is
a security issue.

There has been research [Hil11] indicating that some compilers optimize constant-time comparison
functions and may thus re-introduce timing leaks. For HMAC verification, the work recommends
to compute an additional HMAC of the values before comparing them. In fact, just applying a
cryptographically secure hash function will have a similar effect.

6.2.1 Ruby

Rails provides secure_compare in ActiveSupport::MessageVerifier. Similar functions are avail-
able in other frameworks such as Rack.

..

..

50

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

..

LISTING 17: CONSTANT-TIME COMPARISON IN RUBY [Gro14]

.

def secure_compare(a, b)
return false if a.empty? || b.empty? || a.bytesize != b.bytesize
l = a.unpack "C#{a.bytesize}"

res = 0
b.each_byte { |byte| res |= byte ^ l.shift }
res == 0

end

6.2.2 Python

Python’s hmac.compare_digest performs constant-time comparisons.

6.2.3 PHP

PHP 5.6 is introducing the hash_equals() function for constant-time comparisons.

6.2.4 Java

..

LISTING 18: GENERIC CONSTANT-TIME COMPARISON IN JAVA

.

public static final boolean isEqual(final String a, final String b) {
if (a.length() != b.length()) {

return false;
}
int result = 0;
for (int i = 0; i < a.length(); i++) {

result |= a.charAt(i) ^ b.charAt(i);
}
return result == 0;

}

..

..

51

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

6.2.5 C# / ASP.net

..

LISTING 19: GENERIC CONSTANT-TIME COMPARISON IN C#

.

private static bool SlowEquals(byte[] a, byte[] b)
{

uint diff = (uint)a.Length ^ (uint)b.Length;
for (int i = 0; i < a.Length && i < b.Length; i++)

diff |= (uint)(a[i] ^ b[i]);
return diff == 0;

}

6.2.6 Node.js

The buffer-equal-constant-time node package performs constant-time buffer comparisons.

6.2.7 Clojure

..

LISTING 20: CONSTANT-TIME COMPARISON IN CLOJURE [Ree14]

.

(ns crypto.equality
"Securely test sequences of data for equality.")

(defn eq?
"Test whether two sequences of characters or bytes are equal in a way that
protects against timing attacks. Note that this does not prevent an attacker
from discovering the *length* of the data being compared."
[a b]
(let [a (map int a), b (map int b)]

(if (and a b (= (count a) (count b)))
(zero? (reduce bit-or (map bit-xor a b)))
false)))

6.3 PASSWORD COMPARISON AND SALTED HASHING
Use a constant time comparison function when handling and comparing password hashes, API
keys, session identifiers, or other authentication tokens directly in memory.

It is important to note that using a non-salted hash with an early-terminating comparison function
(e.g., for password verification) still leaks information about the correct password. This is due
to the fact that the attacker is able to compute the hash value and thus can infer which value

..

..

52

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

in the comparison of the hash values differed. Armed with this information, they are then able
to eliminate candidate password whose hash value does not begin with the correct substring.
However, it is not possible to fully recover a valid password in this manner, since this would require
a pre-image attack on the underlying hash function.

..

..

53

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

.. 7 References
[BB03] David Brumley andDan Boneh. Remote Timing Attacks Are Practical. InUSENIX Security

Symposium, SSYM’03, Berkeley, CA, USA, 2003. USENIX Association.

[BDL97] Dan Boneh, RichardA. DeMillo, and RichardJ. Lipton. On the Importance of Checking
Cryptographic Protocols for Faults. In Advances in Cryptology (EUROCRYPT), volume
1233 of Lecture Notes in Computer Science, pages 37–51. Springer Berlin Heidelberg,
1997.

[BFK+12] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato, Graham
Steel, and Joe-Kai Tsay. Efficient Padding Oracle Attacks on Cryptographic Hardware.
In Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 608–625. Springer Berlin Heidelberg, 2012.

[CRR03] Suresh Chari, JosyulaR. Rao, and Pankaj Rohatgi. Template Attacks. In BurtonS. Kaliski,
çetinK. Koç, and Christof Paar, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages 13–28.
Springer Berlin Heidelberg, 2003.

[CWR09] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. Opportunities and Limits
of Remote Timing Attacks. ACM Transactions on Information and System Security,
12(3):17:1–17:29, 2009.

[DMS06] M. Dowd, J. McDonald, and J. Schuh. The Art of Software Security Assessment: Iden-
tifying and Preventing Software Vulnerabilities. Pearson Education, 2006.

[DR11] Thai Duong and J. Rizzo. Cryptography in the Web: The Case of Cryptographic Design
Flaws in ASP.NET. In Security and Privacy, pages 481–489, May 2011.

[Dri] Vincent Driessen. Python RQ (Redis Queue). http://python-rq.org/.

[Gir05] Christophe Giraud. DFA on AES. In Hans Dobbertin, Vincent Rijmen, and Aleksandra
Sowa, editors, Advanced Encryption Standard - AES, volume 3373 of Lecture Notes in
Computer Science, pages 27–41. Springer Berlin Heidelberg, 2005.

[Gro14] Levi Gross. Constant Time Comparison Functions in… Python,
Haskell, Clojure, Java etc.. http://www.levigross.com/2014/02/07/
constant-time-comparison-functions-in-python-haskell-clojure-java-etc/,
02 2014.

[GST13] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA Key Extraction via Low-Bandwidth
Acoustic Cryptanalysis. Cryptology ePrint Archive, Report 2013/857, 2013. http://
eprint.iacr.org/.

[Har12] D. Hardt. The OAuth 2.0 Authorization Framework. Technical report, Internet Engineer-
ing Task Force (IETF), 10 2012. RFC 6749.

http://python-rq.org/
http://www.levigross.com/2014/02/07/constant-time-comparison-functions-in-python-haskell-clojure-java-etc/
http://www.levigross.com/2014/02/07/constant-time-comparison-functions-in-python-haskell-clojure-java-etc/
http://eprint.iacr.org/
http://eprint.iacr.org/

..

..

54

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

[Hil11] Brad Hill. Double HMAC Verification. https://www.isecpartners.com/blog/2011/
february/double-hmac-verification.aspx, 2011.

[HL10] E. Hammer-Lahav. The OAuth 1.0 Protocol. Technical report, Internet Engineering Task
Force (IETF), 4 2010. RFC 5849.

[Hol10] Brian Holyfield. Automated Padding Oracle Attacks With
PadBuster. http://blog.gdssecurity.com/labs/2010/9/14/
automated-padding-oracle-attacks-with-padbuster.html, 2010.

[Hou09] R. Housley. Cryptographic Message Syntax. Technical report, 9 2009. RFC 5652 -
Section 6.3.

[jbe11] jbenet. clock_gettime alternative in Mac OS X. https://stackoverflow.com/
questions/5167269/clock-gettime-alternative-in-mac-os-x, 2011.

[JH12] M. Jones and D. Hardt. The OAuth 2.0 Authorization Framework: Bearer Token Usage.
Technical report, Internet Engineering Task Force (IETF), 10 2012. RFC 6750.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Interna-
tional Cryptology Conference on Advances in Cryptology, CRYPTO ’99, pages 388–397.
Springer-Verlag, 1999.

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction To Differen-
tial Power Analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In International Cryptology Conference on Advances in Cryptology,
CRYPTO ’96, pages 104–113, London, UK, UK, 1996. Springer-Verlag.

[Law10] Nate Lawson. Optimized Memcmp Leaks Useful Timing Differences. http://rdist.
root.org/2010/08/05/optimized-memcmp-leaks-useful-timing-differences/, 08
2010.

[LN10] Nate Lawson and Taylor Nelson. Exploiting timing attacks in widespread systems. In
Black Hat Briefings, 2010.

[Mar] Sebastien Martini. Security advisory: Timing attack in HMAC signature verification of
Python OAuth. Technical report.

[MS14] Daniel Mayer and Joel Sandin. Time Trial Code on Github. https://github.com/
dmayer/time_trial, 2014.

[otcnp] Contributors of the cpp-netlib project. The C++ Network Library Project. http://
cpp-netlib.org.

[OWA14] OWASP. REST Security Cheat Sheet. https://www.owasp.org/index.php/REST_
Security_Cheat_Sheet, 4 2014.

[PY04] KennethG. Paterson and Arnold Yau. Padding Oracle Attacks on the ISO CBC Mode
Encryption Standard. In Tatsuaki Okamoto, editor, Topics in Cryptology – CT-RSA 2004,

https://www.isecpartners.com/blog/2011/february/double-hmac-verification.aspx
https://www.isecpartners.com/blog/2011/february/double-hmac-verification.aspx
http://blog.gdssecurity.com/labs/2010/9/14/automated-padding-oracle-attacks-with-padbuster.html
http://blog.gdssecurity.com/labs/2010/9/14/automated-padding-oracle-attacks-with-padbuster.html
https://stackoverflow.com/questions/5167269/clock-gettime-alternative-in-mac-os-x
https://stackoverflow.com/questions/5167269/clock-gettime-alternative-in-mac-os-x
http://rdist.root.org/2010/08/05/optimized-memcmp-leaks-useful-timing-differences/
http://rdist.root.org/2010/08/05/optimized-memcmp-leaks-useful-timing-differences/
https://github.com/dmayer/time_trial
https://github.com/dmayer/time_trial
http://cpp-netlib.org
http://cpp-netlib.org
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet

..

..

55

..

Matasano Security
Research

.

TIM
E
TRIA

L:RA
C
IN
G
TO
W
A
RD
S
PRA

C
TIC
A
L
REM

O
TE
TIM

IN
G
A
TTA

C
K
S

volume 2964 of Lecture Notes in Computer Science, pages 305–323. Springer Berlin
Heidelberg, 2004.

[RD10a] Juliano Rizzo and Thai Duong. Practical Padding Oracle Attacks. In Black Hat Europe,
2010.

[RD10b] Juliano Rizzo and Thai Duong. Practical Padding Oracle Attacks. InWOOT, 2010.

[Red] Redis Key-Value Store. http://redis.io/, Citrusbyte.

[Ree14] James Reeves. Clojure Constant Time Comparison. https://github.com/
weavejester/crypto-equality/blob/master/src/crypto/equality.clj, 2014.

[San10] Eloi Sanfèlix. On Padding Oracles, CBC-R and timing attacks…. http://www.
limited-entropy.com/po_cbc-r_and_timing/, 2010.

[Sch11] Sebastian Schinzel. Time is on my Side - Exploiting Timing Side Channel Vulnerabilities
on the Web. In 28th Chaos Communication Congress - Behind Enemy Lines, 2011.

[Sch12] Sebastian Schinzel. Time is NOT on Your Side - Mitigating Timing Side Channels on the
Web. In 29th Chaos Communication Congress - Not My Department, 2012.

[SP11] D. Stuttard and M. Pinto. The Web Application Hacker’s Handbook: Finding and Ex-
ploiting Security Flaws. Wiley, 2011.

[Sto13] Stormpath. Secure Your REST API... The Right Way. https://stormpath.com/blog/
secure-your-rest-api-right-way/, 4 2013.

[Vau02] Serge Vaudenay. Security Flaws Induced by CBC Padding—Applications to SSL, IPSEC,
WTLS... In LarsR. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, vol-
ume 2332 of Lecture Notes in Computer Science, pages 534–545. Springer Berlin Hei-
delberg, 2002.

[vE85] Wim van Eck. Electromagnetic radiation from video display units: An eavesdropping
risk? Computers & Security, 4(4):269 – 286, 1985.

[Wik14a] Wikipedia. Authenticated encryption—Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=Authenticated_encryption&oldid=612536176,
2014. [Online; accessed 30-June-2014].

[Wik14b] Wikipedia. Block cipher mode of operation — Wikipedia, The Free Ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_
operation&oldid=614311551, 2014. [Online; accessed 29-June-2014].

[Wik14c] Wikipedia. Padding (cryptography) — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=Padding_(cryptography)&oldid=598396110,
2014. [Online; accessed 29-June-2014].

[Zal12] M. Zalewski. The Tangled Web: A Guide to Securing Modern Web Applications. No
Starch Press, 2012.

http://redis.io/
https://github.com/weavejester/crypto-equality/blob/master/src/crypto/equality.clj
https://github.com/weavejester/crypto-equality/blob/master/src/crypto/equality.clj
http://www.limited-entropy.com/po_cbc-r_and_timing/
http://www.limited-entropy.com/po_cbc-r_and_timing/
https://stormpath.com/blog/secure-your-rest-api-right-way/
https://stormpath.com/blog/secure-your-rest-api-right-way/
http://en.wikipedia.org/w/index.php?title=Authenticated_encryption&oldid=612536176
http://en.wikipedia.org/w/index.php?title=Authenticated_encryption&oldid=612536176
http://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation&oldid=614311551
http://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation&oldid=614311551
http://en.wikipedia.org/w/index.php?title=Padding_(cryptography)&oldid=598396110
http://en.wikipedia.org/w/index.php?title=Padding_(cryptography)&oldid=598396110

	Introduction
	Side-Channel Attacks
	Timing Side-channel
	Previous Work

	Timing-Based Vulnerabilities
	Branching
	Authentication
	Padding Oracles

	String Comparison
	MAC Authentication
	OAuth Tokens
	Web API Keys
	HTTP (Basic) Authentication Middleware

	Timing Attacks in Practice
	Anatomy of a Timing Attack
	Response Time and Jitter
	Measuring with Precision
	Filtering
	Hypothesis Testing

	Parallelizing Timing Attacks
	Opportunities for Parallelizing Timing Attack
	On Learning Multiple Bytes Per Round

	Black-Box Detection and Templating
	Black-box Detection
	Examining Percentile Filters
	Calibrating Our Hypothesis Test
	Smallest Detectable Timing Difference
	Selecting the Ideal Sensor
	Avoiding Detection

	Our Tool: Time Trial
	Design Goals
	Implementation
	The Time Trial GUI
	The Racer

	Supported Trial Types
	Echo Trial
	HTTP Request Trial
	Timing Extraction Racer

	Planned Extensions

	Survey of Timing Attack Targets
	Generic Feasibility Analysis
	LAN Results
	Loopback
	WAN Results
	EC2 Results
	Summary

	Real-World Targets
	String Comparison
	Microcontrollers and the Internet of Things
	Branching

	Conclusions

	Preventing Timing Attacks
	Branching
	Authentication
	Padding Oracles

	String Comparison
	Ruby
	Python
	PHP
	Java
	C# / ASP.net
	Node.js
	Clojure

	Password Comparison and Salted Hashing

