
Defeating the Transparency Features of
Dynamic Binary Instrumentation

The detection of DynamoRIO through introspection

Xiaoning Li ldpatchguard@gmail.com
Kang Li kangli@uga.edu

About us
}  Xiaoning

}  Security Researcher

}  Kang
}  College Educator

What is Instrumentation
…

 if (size < sizeof(min_buf)) {

 iov_to_buf(iov, iovcnt, 0, min_buf, size);
 memset(&min_buf[size], 0, sizeof(min_buf) - size);

 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {

 /* This is very unlikely, but may happen. */
 iov_to_buf(iov, iovcnt, 0, min_buf,
 MAXIMUM_ETHERNET_HDR_LEN);
 filter_buf = min_buf;
 }

…

Some Random Piece of Code (from QEMU)	

What is Instrumentation
…

 if (size < sizeof(min_buf)) {

 iov_to_buf(iov, iovcnt, 0, min_buf, size);
 memset(&min_buf[size], 0, sizeof(min_buf) - size);

 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {

 /* This is very unlikely, but may happen. */
 iov_to_buf(iov, iovcnt, 0, min_buf,
 MAXIMUM_ETHERNET_HDR_LEN);
 filter_buf = min_buf;
 }

…

printf("good size branch \n");	

printf("got a rare case \n");	

Instrumentation: inserting extra code to observe run-time behavior	

Some Random Piece of Code (from QEMU)	

Binary Instrumentation

 mov $0x0,%esi

 mov %rax,%rdi

 mov $0x0,%eax

 callq 400920 <open@plt>

 mov %eax,-0x9b0(%rbp)

 cmpl $0x0,-0x9b0(%rbp)

 jns 400b74 <test_sigcgt+0x7c>

Pre-instruction Hook

Post-instruction Hook

Binary Instrumentation

counter++;

counter++;

counter++;

counter++;

counter++;

 mov $0x0,%esi

 mov %rax,%rdi

 mov $0x0,%eax

 callq 400920 <open@plt>

 mov %eax,-0x9b0(%rbp)

 cmpl $0x0,-0x9b0(%rbp)

 jns 400b74 <test_sigcgt+0x7c>

Binary Instrumentation

counter++;

counter++;

counter++;

counter++;

counter++;

 mov $0x0,%esi

 mov %rax,%rdi

 mov $0x0,%eax

 callq 400920 <open@plt>

 mov %eax,-0x9b0(%rbp)

 cmpl $0x0,-0x9b0(%rbp)

 jns 400b74 <test_sigcgt+0x7c>

Concept Similar to Source Level Instrumentation

Binary Instrumentation

1

2 3

4 5 6

7

Instrumentation can be done at the Code Block level

Call Graph

Binary Instrumentation

1

2 3

4 5 6

7

Instrumentation can be done at the Code Block level

Call Graph

Dynamic Binary Instrumentation (DBI)

1

2 3

4 5 6

7

Original Code
Code Cache

Dynamic Instrumentation via Code Cache

Dynamic Binary Instrumentation (DBI)

1

2 3

4 5 6

7

Dynamic Instrumentation via Code Cache

1

Copy code block &
start execution in
the Code Cache

Instrumentation
in Code Cache

Code Cache Original Code

Code Cache

Dynamic Binary Instrumentation (DBI)

1

2 3

4 5 6

7

1

3
Load Block if
not already in
Cache

Original Code

Dynamic Instrumentation via Code Cache

Code Cache

Dynamic Binary Instrumentation (DBI)

1

2 3

4 5 6

7

Original Code
1

3

6

7

Load more
based on
execution
result

Dynamic Instrumentation via Code Cache

The Increasing Use of DBI
}  Function:

}  Observing execution
}  Hardening and protection

}  Useful for

}  Profiling and optimization
}  Reverse engineering
}  Malware analysis

Popular DBI Tools

}  Process level:

} 

Demand of Transparency!
}  Matching the native behavior

}  E.g.
}  No change to program execution flow
}  No obvious overhead

}  Special effort towards transparency
}  E.g.

}  Making no assumptions about memory usage
}  Hide code cache management and instrumentation code

Example of Preserving Transparency
}  Library Transparency in DynamoRIO

}  Execution in code cache needs DynamoRIO library calls
E.g.
¨  for the start of app from code cache
¨  for translation between code cache and app addresses

}  DynamoRIO uses a custom loader for its libraries
E.g.
¨  DLL is loaded to App process space, but “invisible” from App.
¨  EnumProcessModules () shows no DLLs from DynamoRIO.

Transparency Features in DynamoRIO
I/O Transparency

Error Transparency

Memory Transparency

Library Transparency

Resource Transparency

Address Transparency

Debugging Transparency

Exposing DBI
DBI detection case studies based on DynamoRIO

Image Source: http://dragonball.wikia.com

Example #1: Cause DynamoRIO to crash

DynamoRIO Crash Code
}  Code pieces

}  Works correctly on Native
}  But crashes DynamoRIO if running with it

}  For example: Heap as stack

Comparing Code
}  Original Code

}  Code in Code cache

Example #2: Simple Implementation Artifact

Simple Heuristics for DBI Detection
}  Implementation Artifact

}  Parent Process Name
}  Detection by checking who is the parent!
}  InheritedFromUniqueProcessId shows the father is drrun.exe

}  “File” Handler Number
}  Handler Count

¨  DynamoRIO: 0x17 Native: 0x0d

}  Max Open File Handlers

}  4000 vs. 4096 (on Linux)

Detection by Abnormal Resource Usage
}  Peak Memory Usage

}  PeakVirtualSize (on our sample program)
}  With DynamoRIO:
}  Without:

}  Other Anomaly Behavior
}  E.g. Setting Max Open File handler (on Linux)
setrlimit(RLIMIT_NOFILE, 1024) fails even when current limit is 1024

0x8e7c000 bytes

0x0d73000 bytes

Detecting DynamoRIO by Signal Masks

}  DynamoRIO capture all signals and relays them
}  To observe all signals while avoiding modify signal handlers
}  To preserve transparency

}  Consequence (on Linux):
}  Application with DynamoRIO :

 SIGCGT mask: 0x0FFFFFFFFFFC1FEF

}  Native Application:
 SIGCGT mask: 0x0000000000001000

Example #3: Detecting DynamoRIO Library

Detecting DynamoRIO Library
}  Library Transparency

}  DynamoRIO library needs to be in the App process
}  DynamoRIO hides its DLL from the Process

}  However, the code cache management code has to be in
process memory!

Detecting DynamoRIO Library
}  Scanning for all PE/DLLs in process memory

}  Identify hidden DLLs by comparing with the list from
EnumProcessModules()

}  Identifying DynamoRIO library

}  Searching hidden library for DynamoRIO data
}  Searching for DynamoRIO code
}  GetProcAddress for DynamoRIO DLL APIs

Example #4: Measuring Error Transparency
Behavior

Error Transparency Detection
}  Designed code to trigger exception

}  In exception handler, exception record eax/eip distance
should be one

}  Trigger this code via self modified code

On Native Windows 7 32-bits

Code at Runtime

Code Property

On Native Windows 7 32-bits + DynamoRIO

Code in Runtime

Code Property

Fixed by revision r2688 J
(May, 2014)

Example #5: Unexpected Exception

Calculate Code Checksum

On Native Windows 7 32-bits

On Native Windows 7 32-bits + DynamoRIO

What more can be done?

What can be done?
}  To improve DBI transparency (evade detection)

}  Avoid implementation artifacts
}  A challenging task in general …

}  To detect DBI

}  More systematic fuzzing
}  Comparing regular App and DBI-App side-by-side

}  Performance based detection
}  Design binary that triggers the most code cache overhead

Summary
}  The increasing use of BT and DBI

}  Runtime program analysis

}  Transparency is preserved very well for
}  regular applications, and even buggy applications that make

invalid memory accesses

}  Transparency is easily broken by detecting anomaly in
}  Resource usage
}  Hidden libraries
}  Exception Handling

Disclaimers and Acknowledgment
}  DynamoRIO Developers

}  Providing Powerful Open Source DBI Framework
}  Targets are Benign Applications
}  Not Intentionally Designed for Evading Detection

}  Dr. Qin Zhao @ Google
}  Respond to reports
}  Feedback to our slides

}  Research Support
}  Dr. Kang Li’s research is partially supported by NSF

award 1319115

Bonus Materials

Multiple Bytes NOPs

NOPs
}  No Operation Instruction
}  0x90 decoded as “xchg eax, eax”
}  1-9 bytes for X86
Examples:
66 NOP - 66 90H

NOP DWORD ptr [EAX] - 0F 1F 00H

NOP DWORD ptr [EAX + 00H] - 0F 1F 40 00H

NOP DWORD ptr [EAX + EAX*1 + 00H] - 0F 1F 44 00 00H

66 NOP DWORD ptr [EAX + EAX*1 + 00H] - 66 0F 1F 44 00 00H

NOP DWORD ptr [EAX + 00000000H] - 0F 1F 80 00 00 00 00H

NOP DWORD ptr [EAX + EAX*1 + 00000000H] - 0F 1F 84 00 00 00 00 00H

66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] - 66 0F 1F 84 00 00 00 00 00H

4 Byte NOPs
}  0x0F,0x18,0x60,0x70 is a 4 byte NOP
}  Output from XED:

0F186070

ICLASS: NOP CATEGORY: WIDENOP EXTENSION: BASE IFORM: NOP_MEMv_0F18r4 ISA_SET: PPRO

SHORT: nop dword ptr [eax+0x70]

Why Position Independent NOPs
}  X86 instruction with different offsets could be decoded

as different instructions

0F 18 60 70

nop byte ptr [eax+70h]

sbb byte ptr ds:(loc_401F2B - 401EBBh)[eax], ah

pusha

jo short near ptr loc_401E53+1

PIN(Position Independent NOP)
}  Always NOP instructions even decoded at different

offsets

F3 26 F2 90

repne nop

repne nop

repne nop

nop

How to create a 4 byte PIN

}  Single byte NOP
[0x90], [0x90], 0x90, 0x90
}  2 byte NOP
[0xF2, [0x90]], 0xF2, 0x90
}  3 byte NOP
[0x90], [0x26, [0xF2, 0x90]]
}  4 byte NOP
[0xF3, [0x26, [0xF2, [0x90]]]]

2 Byte PINs
}  Examples

}  0x26, 0x90
}  0x2E, 0x90
}  0x36, 0x90
}  0x3E, 0x90
}  0x64, 0x90
}  0x65, 0x90
}  0x66, 0x90
}  0x67, 0x90
}  0xF2, 0x90
}  …

3 Byte PINs
}  Examples

}  0x2E, 0x26, 0x90
}  0x2E, 0x2E, 0x90
}  0x2E, 0x36, 0x90
}  0x2E, 0x3E, 0x90
}  0x2E, 0x64, 0x90
}  0x2E, 0x65, 0x90
}  0x2E, 0x66, 0x90
}  0x2E, 0x67, 0x90
}  0x2E, 0xF2, 0x90
}  0x36, 0x26, 0x90
}  …

4 Byte PINs
}  Examples

}  0x2E, 0x2E, 0x26, 0x90
}  0x36, 0x2E, 0x26, 0x90
}  0x3E, 0x2E, 0x26, 0x90
}  0x64, 0x2E, 0x26, 0x90
}  0x65, 0x2E, 0x26, 0x90
}  0x66, 0x2E, 0x26, 0x90
}  0x67, 0x2E, 0x26, 0x90
}  0xF2, 0x2E, 0x26, 0x90
}  …

Thanks!

ldpatchguard@gmail.com
kangli@uga.edu

Reference
[1] Transparent Dynamic Instrumentation , Derek Bruening, Qin Zhao, Saman

Amarasinghe, International Conference on Virtual Execution Environments
(VEE-12), 2012

[2] Process-Shared and Persistent Code Caches, Derek Bruening, Vladimir Kiriansky,
International Conference on Virtual Execution Environments (VEE-08), 2008

[3] Design and Implementation of a Dynamic Optimization Framework for Windows,
Derek Bruening, Evelyn Duesterwald, Saman Amarasinghe, 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization (FDDO-4), 2001

