APT Attribution and DNS Profiling

Frankie Li
ran2@vxrl.org
Twitter: @espionageware
Agenda

- APT Attribution: Who wrote these codes?
- Tactics, Techniques and Procedures (TTP)
- Behavior of APT adversary
- HUMINT extracted from DNS or Whois
- Gather intelligence from open source
- Dynamically monitoring of PassiveDNS ➔ PassiveWhois
- Analysis by visualization tool (Maltego)
- MalProfile Tools and demo
Who am I?

• From a place in China, but not so China ;)
• Sunday researcher in malware analysis and digital forensics
• Part time lecturer
• A Lazy blogger (espionageware.blogspot.com)
• NOT associated with PLA 61398 or Mandiant
• NOT associated with PLA 61486 or CrowdStrike or Taia Global
APT ATTRIBUTION
• Disclaimer: Not going to provide any opinion on the latest indictment or Yoke Bun or Clock Tower

• Not a major concern for private sector, but for LE or intelligence agencies

• Not difficult, if you have source code

• Not hard, if you focus only on strings & human readable data within a malware program

• But, to attribute responsibility with “Certainty” is almost impossible, unless they make a mistake
Who wrote these codes?

- Source code attribution
- Attributes of Windows binaries
- Attribution malware
- Attribution of APT by digital DNA
The term Stylometry refers to the application of attribute the authorship by coding style
Kind of profiling by writing style
Comments and coding crumbs
JStylo: By comparing unknown documents with a known candidate author’s document*
Not a solution because most APT samples collected are compiled binaries

Attributes of Windows Malware

- PE headers are des-constructed and metadata (artifacts) are categorized (Yonts, 2012)
- Extract the technical and contextual attributes or “genes” from different “layers” to group the malware (Xecure-Lab, 2012 and Pfeffer, 2012)
- By a proprietary reverse engineering and behavioral analysis technology (Digital DNA, 2014)
PE Deconstruction

![Image of PE Deconstruction interface]
Attribution Using Genetic Information

Partial research works have been shared at Defcon 2011, HIT 2011 and BoT 2011

From: Xecure-Lab, 2012
TACTICS, TECHNIQUES AND PROCEDURES (TTP)
Human is the key

- Attribution: Tracking Cyber Spies & Digital Criminals (Hoglund, 2010)
- Forensics marks that could be extracted from raw data in three intelligence layers
  - Net Recon
  - Developer Fingerprints
  - Tactics, Techniques, and Procedures (TTP)
- Among these three layers, TTP should carry the highest intelligence value for identifying human attackers
- But, near impossibility of finding the human actors with definitive intelligence
  - Social Cyberspace (i.e., DIGINT)
  - Physical Surveillance (i.e., HUMINT)

http://www.youtube.com/watch?v=k4Ry1trQhDk
Hoglund’s malware intel life time
• A military term?
• A term to describe the behavior of adversary?
• A modern term to replace *modus operandi*?
  – the method of operation
  – The habits of working
• TTP are human-influenced factors
Pyramid of Pain

- **TTPs**
  - Tough!
- **Tools**
  - Challenging
- **Network/Host Artifacts**
  - Annoying
- **Domain Names**
  - Simple
- **IP Addresses**
  - Easy
- **Hash Values**
  - Trivial

From David Bianco’s Blog
http://detect-respond.blogspot.hk/2013/03/the-pyramid-of-pain.html
TTP OR BEHAVIOR OF APT ADVERSARY
APT life cycle

- Defining target
- Dropped backdoor
- Data gathering
- Sending spear-phishing emails
- Initial outbound connection
- Exfiltration
Extended APT life cycle

- Defining target
- Sending spear-phishing emails
- Initial outbound connection
- Exfiltration
- Human reconnaissance
- Dropped backdoor
- Data gathering
- Lateral movements
  - Pushing more tools
  - Selective exfiltration of intelligence
APT infrastructure tactics

- Domain registration
- Naming convention is not typo squatting, but follows a pattern of meaningful Chinese PingYing（拼音）
- Creation DNS-IP address pairs
- Engaging a “friendly ISP” to use a portion of their C-class subnet of IP addresses situated at the domicile of the targeted victims
- DNS names and IP addresses may be cycled for reuse (a.k.a. campaigns), which may provide indications or links to the attacker groups
- Embedding multiple DNS A-records in exploits
- Preparing spear-phishing email content after reconnaissance of the targeted victims
- Launching malicious attachments through spear-phishing emails
• The exploits drop binaries that extract the DNS records and begin communicating with the C2 by resolving the IP addresses from DNS servers.

• The C2 servers or C2 proxies register the infections on the C2 database.

• The intelligence analysts of the attacker groups review the preliminary collected information of the targeted victims through C2 portals.

• The infected machines are further instructed to perform exfiltration of collect further intelligence from the infected machines.

• The infrastructure technical persons of the attacker group apply changes (domain manipulation) to the DNS-IP address pair, domain name registration information (Whois information), and the “parked domains” from time to time or when a specific incident occurs.

• In contrast with the Fast-Flux Services Networks mentioned by the HoneyNet Project, the information does not change with high frequency.
HUMINT EXTRACTED FROM DNS
What is kept in DNS & Whois

- Domain names: A Record, Cname, NS record
- Whois records: valid email address (once), name, street address, name servers
- Parked-domains: temporary IP address assigned creation of first DNS record on the name server (newly created domains are kept under 1 IP address for future use)
HUMINT intel collected

- Extract DNS from the malicious code (sandbox)
- Lookup the currently assigned IP address
- Retrieve all parked-domains from the identified IP address
- Retrieve whois information from the identified domains
- Update identified record to a relational database for future analysis
- Repeat the process and record all changes in the database
QUERIES FROM OPEN SOURCE
Open source

- Nslookup
- Whois
- Domain tools: reverse DNS and reverse whois
- http://bgp.he.net
- http://virustotal.com
- http://passivedns.mnemonic.no
- https://www.farsightsecurity.com
- https://www.passivetotal.org
# Invoice

**Payee:**
DomainTools.com  
2211 5th Ave  
Suite 201  
Seattle, WA 98121  
http://www.domaintools.com

**Payer:**
Frankie Li  
ran2@vwl.org

**Payment:**
PayPal 3YMVR4Z8TUQS8 fukayi@gmail.com

**Invoice Number:** DT13555833  
**Invoice Date:** 2013-03-22 08:28:34  
**Invoice Status:** PAID

## Item List:

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Extended Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Whois Report (Registrant (Owner) Exactly Matching &quot;WANGLUO SHAN&quot;)</td>
<td>1</td>
<td>99.00</td>
<td>99.00</td>
</tr>
</tbody>
</table>

**SubTotal:** 99.00  
**Taxes:** 0.00  
**Total:** 99.00
The following A records are set to 174.128.255.228:

Updated 06 Dec 2013 07:29 PST © 2013 Hurricane Electric
PASSIVE DNS TO PASSIVE WHOIS
Passive DNS

• Passive DNS is a technology that constructs zone replicas without cooperation from zone administrators, and is based on captured name server response.
• Passive DNS is a highly scalable network design that stores and indexes both historical DNS data that can help answer questions such as:
  – where did this domain name point to in the past
  – which domain name points to a given IP network
• VirusTotal kept passive DNS records collected from malicious samples.
• Higher chance malicious historical DNS-IP records.
VirusTotal - PassiveDNS

---

**Fast.bacguard.com domain information**

**Passive DNS replication**

VirusTotal’s passive DNS only stores address records. This domain has been seen to resolve to the following IP addresses.

<table>
<thead>
<tr>
<th>Date</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-09-04</td>
<td>121.127.246.27</td>
</tr>
<tr>
<td>2013-10-30</td>
<td>210.58.63.60</td>
</tr>
</tbody>
</table>

**Latest detected URLs**

Latest URLs hosted in this domain detected by at least one URL scanner or malicious URL dataset.

<table>
<thead>
<tr>
<th>#/Total</th>
<th>Date</th>
<th>Time</th>
<th>URL</th>
</tr>
</thead>
</table>
Passive Whois

• There are no open source keeping those whois changes, like VirusTotal Passive DNS project (or whois history at who.is)

• By stepping through the IP lookup, retrieval of parked-domains and whois lookup, any changes will then be updated to a relational database
### Passive Whois

```sql
select t3.date, t3.name, t1.scan_date, t1.dns, t1.ip_addr, t2.domain, t2.Cname from c2 as t1, domains as t2, samples as t3 where t1.id = t2.sid and t3.id = t1.sid
```

**Data returned:**

<table>
<thead>
<tr>
<th>date</th>
<th>name</th>
<th>scan_date</th>
<th>dns</th>
<th>ip_addr</th>
<th>domain</th>
<th>Cname</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-04-12</td>
<td>Insurance</td>
<td>2013-10-24</td>
<td>wznewbook.gicp.net</td>
<td>174.128.255.228</td>
<td>ued.me</td>
<td>mytension.gicp.net</td>
</tr>
<tr>
<td>2013-04-12</td>
<td>Insurance</td>
<td>2013-10-24</td>
<td>wznewbook.gicp.net</td>
<td>174.128.255.228</td>
<td>xiongdizuqiu.com</td>
<td>syq10086.gicp.net</td>
</tr>
<tr>
<td>2013-04-12</td>
<td>Insurance</td>
<td>2013-10-24</td>
<td>wznewbook.gicp.net</td>
<td>174.128.255.228</td>
<td>xpgzf.net</td>
<td>tangjiands.gicp.net</td>
</tr>
<tr>
<td>2013-03-02</td>
<td>Japan</td>
<td>2013-11-02</td>
<td>webmonder.gicp.net</td>
<td>174.128.255.228</td>
<td>050sf.com</td>
<td>chaocha.gicp.net</td>
</tr>
<tr>
<td>2013-03-02</td>
<td>Japan</td>
<td>2013-11-02</td>
<td>webmonder.gicp.net</td>
<td>174.128.255.228</td>
<td>2bbaike.com</td>
<td>116.112.7</td>
</tr>
<tr>
<td>2013-03-02</td>
<td>Japan</td>
<td>2013-11-02</td>
<td>webmonder.gicp.net</td>
<td>174.128.255.228</td>
<td>chilia-info.com</td>
<td>qq329684750.gicp.net</td>
</tr>
<tr>
<td>2013-03-02</td>
<td>Japan</td>
<td>2013-11-02</td>
<td>webmonder.gicp.net</td>
<td>174.128.255.228</td>
<td>chinabori.com</td>
<td>zoweoffice.gicp.net</td>
</tr>
<tr>
<td>2013-03-02</td>
<td>Japan</td>
<td>2013-11-02</td>
<td>webmonder.gicp.net</td>
<td>174.128.255.228</td>
<td>design-zy.com</td>
<td>qq329684750.gicp.net</td>
</tr>
<tr>
<td>2013-03-02</td>
<td>Japan</td>
<td>2013-11-02</td>
<td>webmonder.gicp.net</td>
<td>174.128.255.228</td>
<td>goodnoon.com</td>
<td>todayliu.gicp.net</td>
</tr>
<tr>
<td>2013-03-02</td>
<td>Japan</td>
<td>2013-11-02</td>
<td>wznewbook.gicp.net</td>
<td>174.128.255.228</td>
<td>hizhuyou.com</td>
<td>hejiadianzhi.gicp.net</td>
</tr>
</tbody>
</table>
ANALYSIS BY VISUALIZATION
MALTEGO
Sample called OverProtect
CONCLUSION
Intuitive views on the attribution of APT

- Continuously monitoring “whois servers” and DNS–IP address pairs
- Intelligence may be lost if they change their TTP in the future, particularly after the publication of this paper
- TTP are determined by the cultural background of the attacker groups
- The intelligence collection process should thus be adjusted toward these changes and analysts should have the same cultural mindset
Is attribution with certainty possible?

- All discussed methods may generate some value to the attribution.
- But, TTP should carry the highest intelligence value for identifying human attackers.
- Any artifacts that support the highest human link should be allocated with highest value to the attribution.
- However, the increasing sharing of TTP and tools by various actors may reduce the reliability to associate with them. (I’ve read a paper promoting a framework called OpenAPT)
- Another challenging factor is attribution intelligence are not shared enough and intelligence community are not fully understood.
TOOLS
MalProfile Tools and MalProfile Local Transforms

• The tools consists of 2 parts:
  – MalProfile script to grabbing intelligence from the Internet
  – Maltego Local Transforms to help analysis process
MalProfile.py

Ran2:myscripts fukayli$ getAll.py -h
Usage: getAll.py [options]

Options:
  -h, --help    show this help message and exit
  -i            initialize c2 database [c2_dev.db]
  -f FILENAME   Provide a FILENAME to check
  -d DNS        Provide a DNSNAME to check
  -c            rescanning c2 to update all subsequent tables
  -o            rescanning owner table to update all subsequent tables
  -p            rescanning passive tables to update ip table
  -q            rescanning ip table to update domains & whois tables
  -r            rescanning domains table to update passive_ip table
  -s            rescanning ip table to update passive_domains & passive_whois tables
  -t            rescanning and update tmp table
  -w            rescanning and update domains table to update whois
  -x            rescanning and update whois table from passive_whois

Ran2:myscripts fukayli$
Special thanks go to Kenneth Tse and Eric Yuen who is upgrading my messy code into a class.

You can find the code at: https://code.google.com/p/malicious-domain-profiling/

To allow more intelligence can be added when new TTP be identified.

Any interested are welcome to contribute to this project. Please contact ran2@vxrl.org or kennethht@gmail.com.
Introduction

MalProfile is a set of tools to:
1. Fetch useful data from different sources include malware samples, suspicious IP/Domain being used, passive DNS records, md5 hash and save to a database at different time slot for behaviour and/or timeline analysis.
2. Present in Maltego the relationship of malware, current and passive domain/IP/Email/Telephone etc to get the origin of the source. And elaborate the relationship to get suspected IP/Domain for proactive prevention and detection.

History

Please refer to CHANGELOG for more information.

Requirements

1. Kali Linux 1.0.7 or later (for illustration purpose only, for advance users, just use the tool per your preference, in my case, I install it on my Mac)
2. Maltego Edition 3.4.0 or later (if community version is used, only 12 records will be randomly displayed)
3. Virtualisation registration and API key
(Other system with Python 2.7 and Maltego may work but never tried :)

Package Files

The following files are included in the MalProfile package:

- MalProfile/MalProfile.py
- MalProfile/MalProfile.ini
- MalProfile/README.txt
- MalProfile/c2_PrettyLiger
- MalProfile/c2_Xecu
- MalProfile/Maltego/MyEntities.mtz
- MalProfile/Maltego/
- MalProfile/Util/

ReadMe/*
Samples/*

# MalProfile main script
# MalProfile configuration file
# this file
# Sample database file (not included in the code email ran2@vax1.org)
# Sample database file (not included in the code email ran2@vax1.org)
# Maltego Input Entities
# Maltego Transform scripts, Refer to ReadMe/Transform_Reader for more info
# Libraries and plugins for MalProfile
# Documentation of MalProfile design and usage
# Samples for demonstration (not included in the code email ran2@vax1.org)

Installation

1. unzip the MalProfile.zip to /Root/MalProfile
2. opt-get install python-setuptools
3. easy_install pip
4. pip install python-whos
5. pip install hashlib
Sample called OverProtect and Insurance
Thank you!

Q&A

Frankie Li
Ran2@vxrl.org
http://espionageware.blogspot.com
Please complete the Speaker Feedback Surveys

Frankie Li
Ran2@vxrl.org
http://espionageware.blogspot.com