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Abstract

The UEFI specification has more tightly coupled the bonds of the operating system and the platform
firmware by providing the well-defined “Runtime Service” interface between the operating system and
the firmware. This interface is more expansive than the interface that existed in the days of conventional
BIOS, which has inadvertently increased the attack surface against the platform firmware. Furthermore,
Windows 8 has introduced an API that allows accessing this UEFI interface from a privileged userland
process. Vulnerabilities in this interface can potentially allow a privileged userland process to escalate its
privileges from ring 3 all the way up to that of the platform firmware, which attains permanent control
of the very-powerful System Management Mode. This paper discusses two such vulnerabilities that the
authors discovered in the UEFI open source reference implementation and the techniques that were used
to exploit them.
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1 Introduction

UEFI is rapidly replacing conventional BIOS on modern computers. A driving factor behind this migration
is Microsoft’s addition of UEFI firmware to the recommended hardware for Windows 81. An important
reason for Microsoft’s push for UEFI adoption is the additional security features that UEFI provides. UEFI
Secure Boot is one of these features which protects against bootkit style attacks that can compromise the
integrity of the NT kernel at load time. Starting with Windows Vista, 64 bit editions of Windows have also
enforced the requirement that kernel drivers be signed with an authenticode certificate. Thus the signed
driver requirement coupled with Secure Boot enforces of the integrity of the ring 0 code in the Windows 8
x64 environment.

In the post exploitation phase, it may be desirable for an attacker to inject a rootkit into ring 0 in order to
have powerful influence over the system. Due to Secure Boot and the signed driver requirement, the attacker
would now require a ring 3 to ring 0 privilege escalation exploit that attacks a vulnerability in the NT kernel
or a 3rd party driver. This particular attack model has already been discussed at length[12][13][14]. This
paper instead seeks to explore a different method of post exploitation privilege escalation that allows the
attacker permanent residence in an even more extreme environment... System Management Mode (SMM).
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Figure 1: Plain Jane Post-Exploitation Privilege Escalation vs. Extreme Post-Exploitation Privilege Escalation

The attack surface explored in this paper is the UEFI Runtime Services interface. A successful attack
against this interface may allow an attacker to permanently alter the UEFI firmware. From the UEFI
firmware, the attacker is allowed to control the early bootup process of the system, including the configuration
and initialization of the SMM code. This paper highlights the UEFI Runtime Services as a new and viable
attack surface by describing and exploiting two UEFI vulnerabilities discovered by the authors.

2 Runtime Services

UEFI provides a set of functions that are accessible to both the early boot environment and to the operating
system[18]. These functions are known as the “Runtime Services.” The Runtime Services provide function-
ality to reset the system, modify firmware environment variables, initiate a firmware update, as well as other
tasks. Typically these services are meant to be used by the operating system kernel. However, Windows 8
has introduced an API that exposes a subset of the Runtime Services to administrator userland processes.

1http://windows.microsoft.com/en-us/windows-8/system-requirements

3



2.1 Variable Interface

The Runtime Services provide functions for accessing “EFI Variables.” EFI variables are similar to op-
erating system environment variables. Typically EFI variables are consumed by the platform firmware
during the boot up of the system. Alternatively, some EFI variables may be created by the firmware
to communicate information to the operating system. For instance, the platform language and the boot
media order are stored as EFI variables. The Runtime Services provide functions for reading, writing,
creating and enumerating EFI variables. Furthermore, Windows 8 introduced the SetFirmwareEnviron-
mentVariable and GetFirmwareEnvironmentVariable functions for programmatically interacting with EFI
variables from userland[11]. These functions are callable from an administrator userland process with the
SE SYSTEM ENVIRONMNENT NAME access token.

The important observation is the EFI variable interface is a conduit by which a less privileged domain
(ring 3) can insert data for a more privileged domain (the platform firmware) to consume. Furthermore, many
of these variables serve undocumented purposes and have complex contents. Historically this is the type of
interface where memory corruption vulnerabilities have been discovered. Alert readers may draw comparisons
to Unix environment variable parsing vulnerabilities2. In fact, vulnerabilities have already been discovered
in some of these EFI variables that allowed bypassing Secure Boot or bricking the victim computer[16][4].
However, the aforementioned vulnerabilities were design flaws resulting from security critical configuration
data being stored in an unprotected3 EFI variable. This paper specifically considers memory corruption
vulnerabilities that were found in the Intel UEFI reference implementation’s[9] parsing of a standard EFI
variable, “CapsuleUpdateData.”

2.2 Capsule Update

The platform firmware is stored on a SPI flash chip that is soldered onto the motherboard. Because the
firmware is a security critical component, Intel provides a number of chipset[5] flash protection mechanisms
that can protect the contents of the flash chip from even ring 0 code. It is also necessary to implement a
means to securely update the platform firmware in the event that bugs need to be patched, or new features
added. Historically, the firmware update process was non standardized and OEM specific. UEFI attempts to
standardize the firmware update process by defining “capsule update” functionality as part of the Runtime
Services.

The capsule update Runtime Service seeds a firmware update capsule into RAM and then performs a
soft reset of the system. During a warm reset of the system, the contents of RAM will remain intact, thus
allowing the capsule contents to survive for consumption by the firmware. The flash chip is also unlocked
as part of the reset. Early in the boot up of the system, the firmware will check for the existence of a
firmware update capsule. If one exists, the firmware will verify the update contents are signed by the OEM,
and if so, write the new firmware update to the still unlocked flash. If the update contents can not be
cryptographically verified, or if no update is pending, the firmware locks the flash protection registers on
the chipset to prevent further write access to the firmware. For further information on these flash protection
mechanisms, the reader is referred to another paper[15][16].

Because an open source UEFI reference implementation is provided by Intel[8], the exact details of the
UEFI capsule update implementation can be examined at the source code level. The implementation specifics
are now described in detail.

2.2.1 Capsule Update Initiation

The capsule update process is initiated by calling the UpdateCapsule Runtime Service function.

2This class of vulnerability allowed an unprivileged user to escalate their privileges to root by seeding an environment variable
with an exploit payload, and then calling a suid root program that unsafely parsed the relevant environment variable

3Non Authenticated, Runtime Accessible.
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typedef

EFI_STATUS

UpdateCapsule (

IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,

IN UINTN CapsuleCount,

IN EFI_PHYSICAL_ADDRESS ScatterGatherList OPTIONAL

);

Listing 1: UpdateCapsule definition.

The ScatterGatherList in Listing 1 is an array of EFI CAPSULE BLOCK DESCRIPTOR entries. Each
descriptor entry is a pair consisting of a capsule fragment data pointer, and a capsule fragment size.

typedef struct (

UINT64 Length;

union {

EFI_PHYSICAL_ADDRESS DataBlock;

EFI_PHYSICAL_ADDRESS ContinuationPointer;

}Union;

) EFI_CAPSULE_BLOCK_DESCRIPTOR;

Listing 2: EFI CAPSULE BLOCK DESCRIPTOR definition.

It is the responsibility of the calling operating system to decide how to fragment the contiguous update
capsule so that it fits within the resource constraints of the system. Note that each individual fragment
of the update capsule is unsigned. The location of the ScatterGatherList is stored in an EFI Non-Volatile
variable named “CapsuleUpdateData” so that it can be passed onto the firmware during reboot. At this
point, a warm reset is performed.

2.2.2 PEI Phase Capsule Coalescing

The UEFI boot process is divided into several phases. The Pre-EFI Initialization (PEI) phase occurs early in
the boot up process and is responsible for, among other things, initializing the CPUs and main memory[7].
PEI is where the processing of the incoming capsule update image begins. Initially, an attempt is made to
determine whether or not a firmware update is pending. If the platform is booting under a warm reset and
the CapsuleUpdateData variable exists, the boot mode is changed to BOOT ON FLASH UPDATE. At this
point the contents of the CapsuleUpdateData variable is interpretted as a physical address pointing to the
aforementioned ScatterGatherList.

Before processing can continue, the capsule update must be coalesced into its original form. The results
of this process are described visually in Figure 2. After the update has been coalesced, further processing is
deferred to the DXE phase.

2.2.3 DXE Phase Capsule Processing

The Driver Execution Environment Phase (DXE) is responsible for the majority of system initialization[6].
DXE is responsible for continuing to process the capsule image that was coalesced during PEI. The contents
of the capsule image are encapsulated in a series of envelopes that provide contextual information about the
contents of the update. For a visual depiction see Figure 3.
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Figure 2: Capsule Image Coalesced During PEI Phase

typedef struct {

EFI_GUID CapsuleGuid;

UINT32 HeaderSize;

UINT32 Flags;

UINT32 CapsuleImageSize;

} EFI_CAPSULE_HEADER;

typedef struct {

UINT8 ZeroVector[16];

EFI_GUID FileSystemGuid;

UINT64 FvLength;

UINT32 Signature;

EFI_FVB_ATTRIBUTES Attributes;

UINT16 HeaderLength;

UINT16 Checksum;

UINT8 Reserved[3];

UINT8 Revision;

EFI_FV_BLOCK_MAP_ENTRY FvBlockMap[1];

} EFI_FIRMWARE_VOLUME_HEADER;

Listing 3: Capsule Update envelope structures.

3 Capsule Update Vulnerabilities

The authors performed a brief 2 week audit of the open source UEFI reference implementation at release
UDK2010[9]. The focus of the audit was the capsule update process, and the scope was limited to code that
executes before cryptographic verification of the capsule contents. Critical vulnerabilities were found both
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in the PEI coalescing phase, and in the DXE capsule processing phase. The specifics of the vulnerabilities
are discussed below.

3.1 Coalescing Vulnerability

EFI_STATUS

EFIAPI

CapsuleDataCoalesce (

IN EFI_PEI_SERVICES **PeiServices,

IN EFI_PHYSICAL_ADDRESS *BlockListBuffer,

IN OUT VOID **MemoryBase,

IN OUT UINTN *MemorySize

)

{

...

//

// Get the size of our descriptors and the capsule size. GetCapsuleInfo()

// returns the number of descriptors that actually point to data, so add

// one for a terminator. Do that below.

//

GetCapsuleInfo (BlockList, &NumDescriptors, &CapsuleSize);

if ((CapsuleSize == 0) || (NumDescriptors == 0)) {

return EFI_NOT_FOUND;

}

...

DescriptorsSize = NumDescriptors * sizeof (EFI_CAPSULE_BLOCK_DESCRIPTOR);

...

if (*MemorySize <= (CapsuleSize + DescriptorsSize)) { <= Bug 1

return EFI_BUFFER_TOO_SMALL;

}

Listing 4: CapsuleDataCoalesce code
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EFI_STATUS

GetCapsuleInfo (

IN EFI_CAPSULE_BLOCK_DESCRIPTOR *Desc,

IN OUT UINTN *NumDescriptors OPTIONAL,

IN OUT UINTN *CapsuleSize OPTIONAL

)

{

UINTN Count;

UINTN Size;

...

while (Desc->Union.ContinuationPointer != (EFI_PHYSICAL_ADDRESS) (UINTN) NULL) {

if (Desc->Length == 0) {

//

// Descriptor points to another list of block descriptors somewhere

//

Desc = (EFI_CAPSULE_BLOCK_DESCRIPTOR *) (UINTN) Desc->Union.ContinuationPointer;

} else {

Size += (UINTN) Desc->Length; <= Bug 2

Count++;

Desc++;

}

}

if (NumDescriptors != NULL) {

*NumDescriptors = Count;

}

if (CapsuleSize != NULL) {

*CapsuleSize = Size;

}

Listing 5: GetCapsuleInfo code

The important values for our discussion are CapsuleSize and DescriptorSize. CapsuleSize is set by
GetCapsuleInfo and is equal to the sum of the length values in the descriptor array. DescriptorSize is also
set by GetCapsuleInfo and is equal to the total size of the descriptor array. All of these values are attacker
controlled.

There are several opportunities for integer overflow in the coalescing code descibed by Listings 4 and 5.
The first bug is an integer overflow in the check to see if the CapsuleSize and DescriptorSize sum exceed the
available MemorySize (Bug 1). The consequence of this overflow could be a very large CapsuleSize passing
the buggy sanity check.

Another issue is an integer overflow possibility in the summation of the descriptor array Length members
in GetCapsuleInfo (Bug 2). With this issue, if one entry in the descriptor array has a very large Length
value, CapsuleSize could be less than the real sum of the Length values.
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3.2 Envelope Vulnerability

typedef struct {

UINTN Base;

UINTN Length;

} LBA_CACHE;

typedef struct {

UINT32 NumBlocks;

UINT32 Length;

} EFI_FV_BLOCK_MAP_ENTRY;

typedef struct {

UINTN Signature;

EFI_HANDLE Handle;

EFI_DEVICE_PATH_PROTOCOL *DevicePath;

EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL FwVolBlockInstance;

UINTN NumBlocks;

LBA_CACHE *LbaCache;

UINT32 FvbAttributes;

EFI_PHYSICAL_ADDRESS BaseAddress;

UINT32 AuthenticationStatus;

} EFI_FW_VOL_BLOCK_DEVICE;

EFI_STATUS

ProduceFVBProtocolOnBuffer (

IN EFI_PHYSICAL_ADDRESS BaseAddress,

IN UINT64 Length,

IN EFI_HANDLE ParentHandle,

IN UINT32 AuthenticationStatus,

OUT EFI_HANDLE *FvProtocol OPTIONAL

)

{

EFI_STATUS Status;

EFI_FW_VOL_BLOCK_DEVICE *FvbDev;

EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;

UINTN BlockIndex;

UINTN BlockIndex2;

UINTN LinearOffset;

UINT32 FvAlignment;

EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;

FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN) BaseAddress;

...

//

// Init the block caching fields of the device

// First, count the number of blocks

//

FvbDev->NumBlocks = 0;

for (PtrBlockMapEntry = FwVolHeader->BlockMap;

PtrBlockMapEntry->NumBlocks != 0;

PtrBlockMapEntry++) {

FvbDev->NumBlocks += PtrBlockMapEntry->NumBlocks;

}

//

// Second, allocate the cache

//

FvbDev->LbaCache = AllocatePool (FvbDev->NumBlocks * sizeof (LBA_CACHE)); <= Bug 3

Listing 6: ProduceFVBProtocolOnBuffer Code and Structures

The code in Listing 6 is called during the DXE phase to prepare the capsule for further processing. The
NumBlocks member of FvbDev is set equal to the the summation of an attacker controlled array of UINT32
values that dangle off of the EFI FIRMWARE VOLUME HEADER envelope. This array is of arbitrary
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length, as summation is only terminated when a zero entry is encountered.
In the case where DXE executes in 32 bit mode, the multiplication involved in the allocation is trivially

overflowable. In the case where DXE executes in 64 bit mode, FvbDev’s NumBlocks is a 64 bit integer,
but the attacker controlled entries in the BlockMap array retain 32 bit width. Hence to trigger this integer
overflow, an attacker must cause FvbDev’s NumBlocks to be sufficiently large through a series of 32 bit
integer additions. An attacker who creates a BlockMap array with over 0x10000000 entries of maximum
NumBlocks (0xffffffff) can force this integer overflow in the multiplication. This huge BlockMap array
requires approximately 2GB of RAM to create, which is within the realm of possibility on modern systems
where 4GB or more is often standard. The result of an overflow in the multiplication before the allocation
will be an unexpectedly small LbaCache buffer (Bug 3).

4 Capsule Update Exploitation

Exploitation of these vulnerabilities proved to be sufficiently interesting to warrant discussion. The execution
environment of the vulnerable code is atypical. The processor is running in protected mode with a flat
segmentation model and paging disabled. Because memory protections are generally provided at the page
level, with paging disabled, the majority of the address space is RWX with a few exceptions4. Also noteworthy
is the complete lack of exploit mitigations in the firmware code and its execution environment.

Despite these attacker advantages, significant hurdles had to be overcome to successfully exploit the vul-
nerabilities. The primary obstacle for an attacker working in this space is the lack of appropriate debugging
capabilities. To overcome this, the authors originally developed their exploits against the MinnowBoard[2].
The MinnowBoard was chosen because of its UEFI firmware (which contained all of the relevant vulnera-
bilities) and its provided debug stub. The following section discusses the exploitation process as it unfolded
against the MinnowBoard. Exploitation of OEM specific code is discussed later in Section 7.2.

4.1 Coalescing Exploitation

During the capsule coalescing in the PEI phase, the processor is executing in 32 bit protected mode with
paging disabled. The PEI code is executing in place out of flash memory and Cache-As-RAM (CAR) is being
used for stack space. The MinnowBoard has 1GB of RAM, meaning that addresses between [0,0x3FFFFFFF]
are backed up with physical frames. The CAR stack and PEI code are at the top of the address space. This
means that a large gap exists in the middle of the address space that is neither backed up by devices nor
RAM.

After the integers overflows described in Section 3 allow for an unexpectedly large capsule to be coalesced,
the following code is relevant.

4Code executing in place out of flash memory is not writable.
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if (*MemorySize <= (CapsuleSize + DescriptorsSize)) {

return EFI_BUFFER_TOO_SMALL;

}

FreeMemBase = *MemoryBase;

FreeMemSize = *MemorySize;

...

//

// Take the top of memory for the capsule. Naturally align.

//

DestPtr = FreeMemBase + FreeMemSize - CapsuleSize;

DestPtr = (UINT8 *) ((UINTN) DestPtr &~ (UINTN) (sizeof (UINTN) - 1));

FreeMemBase = (UINT8 *) BlockList + DescriptorsSize;

FreeMemSize = (UINTN) DestPtr - (UINTN) FreeMemBase;

NewCapsuleBase = (VOID *) DestPtr;

//

// Move all the blocks to the top (high) of memory.

// Relocate all the obstructing blocks. Note that the block descriptors

// were coalesced when they were relocated, so we can just ++ the pointer.

//

CurrentBlockDesc = BlockList;

while ((CurrentBlockDesc->Length != 0) || (CurrentBlockDesc->Union.ContinuationPointer != (EFI_PHYSICAL_ADDRESS) (UINTN) NULL)) {

//

// See if any of the remaining capsule blocks are in the way

//

TempBlockDesc = CurrentBlockDesc;

while (TempBlockDesc->Length != 0) {

//

// Is this block in the way of where we want to copy the current descriptor to?

//

if (IsOverlapped (

(UINT8 *) DestPtr,

(UINTN) CurrentBlockDesc->Length,

(UINT8 *) (UINTN) TempBlockDesc->Union.DataBlock,

(UINTN) TempBlockDesc->Length

)) {

//Relocate the block

RelocPtr = FindFreeMem (BlockList, FreeMemBase, FreeMemSize, (UINTN) TempBlockDesc->Length);

....

CopyMem ((VOID *) RelocPtr, (VOID *) (UINTN) TempBlockDesc->Union.DataBlock, (UINTN) TempBlockDesc->Length);

TempBlockDesc->Union.DataBlock = (EFI_PHYSICAL_ADDRESS) (UINTN) RelocPtr;

}

// Next descriptor

TempBlockDesc++;

}

...

CopyMem ((VOID *) DestPtr, (VOID *) (UINTN) (CurrentBlockDesc->Union.DataBlock), (UINTN)CurrentBlockDesc->Length);

DestPtr += CurrentBlockDesc->Length;

Listing 7: CapsuleDataCoalesce code continued

4.1.1 Coalescing Exploitation Difficulties

The most obvious exploitation approach is to supply a Capsule with CapsuleSize large enough to force
CapsuleSize + DescriptorSize to overflow (Bug 1). Then the process of coalescing the huge capsule will
overflow the intended coalescing area and corrupt the address space. Figure 4 demonstrates this approach.

However, this most obvious approach was insufficient on the MinnowBoard. When the overflow began
writing into the address space gap described in Section 4.1, the writes would silently fail. Although the
destination pointer for the memory copy operation continued to proceed upwards despite these invalid
writes, a timeout associated with the failed write slowed the process down to a prohibitively slow pace. A
different approach was considered.
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Figure 4: First Attempt at Coelescing Exploitation fails due to the address space gap

4.1.2 Descriptor Overwrite Approach

It was necessary to devise a way to overwrite a function pointer in the high portion of the address space
without touching the address space gap. We chose a multistage approach that would first corrupt the
descriptor array, so that DestPtr would be adjusted by a corrupted descriptor length value. This approach
allows exact control of DestPtr on a subsequent block copy.

One major hurdle stood in the way of the descriptor overwrite approach; before the coalescing block copy
operations begins, the descriptor array is relocated to the bottom of the address space. This ensures that
the descriptor array is always out of the way of any block copy operations. Additional tricks were needed to
proceed further with this approach.

4.1.3 Optimization Tricks

An examination of the CopyMem implementation yielded a clever trick that could be abused for the descriptor
overwrite approach.
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CopyMem (

OUT VOID *DestinationBuffer,

IN CONST VOID *SourceBuffer,

IN UINTN Length

)

{

...

if (DestinationBuffer == SourceBuffer) {

return DestinationBuffer;

}

return InternalMemCopyMem (DestinationBuffer, SourceBuffer, Length);

}

Listing 8: CopyMem implementation

Note in Listing 8 that CopyMem is optimized so that if DestinationBuffer and SourceBuffer are equal,
the function will automatically exit successfully. Hence a huge CopyMem can be performed that will skip
over the address space gap, and DestPtr will subsequently be increased by a huge value. Using this approach
allowed DestPtr to be wrapped to the bottom of the address space where the relocated descriptor array had
been placed.

Also note that this CopyMem optimization abuse can not be used to set DestPtr directly at any function
pointers high in the address space. This requirement results from the IsOverlapped check described in code
Listing 7. The IsOverlapped check validates that the current block copy operation will not clobber the current
block or any other remaining data blocks. Because we have explicitly set DestPtr equal to CurrentBlockDesc’s
Data member in order to abuse the CopyMem optimization, the blocks necessarily overlap. However, if we
examine the IsOverlapped implementation, we see a way out.

BOOLEAN

IsOverlapped (

UINT8 *Buff1,

UINTN Size1,

UINT8 *Buff2,

UINTN Size2

)

{

//

// If buff1’s end is less than the start of buff2, then it’s ok.

// Also, if buff1’s start is beyond buff2’s end, then it’s ok.

//

if (((Buff1 + Size1) <= Buff2) || (Buff1 >= (Buff2 + Size2))) { <= Bug 4

return FALSE;

}

return TRUE;

}

Listing 9: IsOverlapped implementation

IsOverlapped will erroneously return false if an integer overflow is induced by Buff1 + Size1 (Bug 4).
Thus the CopyMem optimization trick cannot be used to set DestPtr directly at the high portion of the
address space, as this would not induce an integer overflow in the IsOverlapped calculation and IsOverlapped
would return true. However, this works perfectly to wrap DestPtr to the bottom of the address space, which
then provides the possibility to overwrite the relocated descriptor array.

4.1.4 Coalesce Exploitation Success

The return address for the CopyMem function proved to be a viable target to get control of the instruction
pointer. This was accomplished using the following steps which ultimately allowed for a surgical write-what-
where exploitation primitive. The steps are also depicted visually in Figures 5 through 8.
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1. DescriptorArray[0] contains a superficial Capsule Header needed for sanity checking purposes and is
copied normally. See Figure 5.

2. DescriptorArray[1] abuses the CopyMem optimization trick and IsOverlapped integer overflow to wrap
DestPtr around the address space. See Figure 6.

3. DescriptorArray[2] overwrites its own Length value, so that DestPtr can be arbitrarily adjusted. See
Figure 7.

4. DescriptorArray[3] overwrites the return address for the CopyMem function. Control is gained here.
See Figure 8.
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Length=FFFFFFD4 - Sum(DescriptorArray[0..4])
DataBlock=Wherever

Figure 5: DescriptorArray[0] contains a superficial Capsule Header needed for sanity checking purposes and is copied
normally.

4.2 Envelope Exploitation

Exploiting the vulnerability in the parsing of envelope of the capsule proved to be challenging as well.
Consider the code in Listing 10 that writes to the underallocated LbaCache buffer (Bug 3).
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“Total CapsuleSize Padding Block”

Length=FFFFFFD4 - Sum(DescriptorArray[0..4])
DataBlock=Wherever

DestPtr_2 = &RelocatedDescriptorArray[2]

Figure 6: DescriptorArray[1] abuses the CopyMem optimization trick and IsOverlapped integer overflow to wrap
DestPtr around the address space.

FvbDev->LbaCache = AllocatePool (FvbDev->NumBlocks * sizeof (LBA_CACHE)); <= Bug 3

...

//

// Last, fill in the cache with the linear address of the blocks

//

BlockIndex = 0;

LinearOffset = 0;

for (PtrBlockMapEntry = FwVolHeader->BlockMap;

PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {

for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {

FvbDev->LbaCache[BlockIndex].Base = LinearOffset;

FvbDev->LbaCache[BlockIndex].Length = PtrBlockMapEntry->Length;

LinearOffset += PtrBlockMapEntry->Length;

BlockIndex++;

}

}

Listing 10: ProduceFVBProtocolOnBuffer code continued.

Recall that NumBlocks had to be set very large in order to induce the overflow in the LbaCache allocation
(Bug 3). Unfortunately this also means that the above loop will end up corrupting the majority of the address
space and destabilize the system if allowed to run to completion. Another complication is the discovery that
LbaCache was being allocated below the FvbDev structure. This meant that the overwriting loop would
end up corrupting the LbaCache pointer, further complicating the progression of the corruption. This issue
is illustrated in Figure 9. Lastly, note that the corruption occurs via a series of pairs of 4 byte writes. One
of the writes, PtrBlockMapEntry’s Length member, is attacker controlled. However, the other is the write
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Figure 7: DescriptorArray[2] overwrites its own Length value, so that DestPtr can be arbitrarily adjusted.

of LinearOffset. LinearOffset is incremented during every iteration of the loop and thus is only partially
attacker controlled.

The most pressing constraint is the non terminating nature of the corrupting loop. In order to escape the
loop, it was necessary to overwrite the loop code itself. However, as the values being written are not com-
pletely attacker controlled, it was a matter of brute force to determine what values of PtrBlockMapEntry’s
Length member would lead to overwriting the loop code with coherent x86 instructions. Figure 10 shows an
attempt that overwrites the top of the loop’s basic block with x86 instructions that are not advantageous
to an attacker. Figure 11 shows a Length value discovered by our brute force script that leads to attacker
advantageous instructions overwriting the loop code.

4.3 Exploitation From Windows 8

Two conditions are necessary for the exploitation of the vulnerabilities.

• The ability to instantiate the capsule update process.

• The ability to stage arbitrary data at certain physical addresses.

If the attacker already has ring 0 code execution, these conditions are trivially met. The attacker can call
the capsule update Runtime Service directly to meet the first condition. The second condition can be met
via a number of kernel APIs that allow access to physical memory, such as MmAllocateContiguousMemory5,
or via direct page table manipulation.

The attack is also possible from a privileged user in ring 3. The introduction of the userland EFI variable
API in Windows 8 inadvertently exposes the capsule update process to userland. This follows from the fact

5http://msdn.microsoft.com/en-us/library/windows/hardware/ff554460(v=vs.85).aspx
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Figure 8: DescriptorArray[3] overwrites the return address for the CopyMem function. Control is gained here.

that capsule update is automatically initiated by the firmware if the “CapsuleUpdateData” EFI variable
exists during a warm reset of the system.

A privileged userland process also has several ways to surmount the second attack requirement. We do
not assume the attacker needs their own kernel driver signing key. However, given our attack model assumes
a privileged user, such a user is able to install any authenticode signed kernel drivers onto the system.
There exist such drivers that will arbitrarily modify the content of physical memory on a users behalf6. The
technique of using known-vulnerable, but signed, 3rd party drivers to perform exploits or actions on the
attacker’s behalf, has been discussed since Windows Vista’s inception[19] and has been used in the wild by
malware[17].

A more direct approach to satisfy the second requirement is to further abuse the Windows 8 EFI variable
interface. We found that the creation of many large sized EFI variables eventually resulted in attacker
controlled data residing at predictable physical addresses. This resulted from the EFI variables themselves
being stored on the SPI flash chip, and the contents of the SPI flash chip being mirrored to the address space
during the bootup of the system. Using this variable spray technique we were able to stage the necessary
payloads at predictable physical addresses and reliably exploit the coalescing vulnerability using only the
Windows 8 userland EFI variable API.

Exploitation of the capsule envelope vulnerability may not be possible from Windows 8 userland. The
majority of consumer platforms we analyzed executed their DXE phase in 64 bit mode. Hence as described
in section 4.2, it is necessary for the attacker to control a contiguous 2 GB part of the address space in
order to induce the underlying integer overflow. We are not aware of any methods by which a userland
attacker could reliably stage a physically contiguous 2GB region. Another complicating factor is the only
semi-controlled nature of the corruption. The attacker is dependent on finding some values that will allow
overwriting the non-terminating loop with attacker advantageous instructions. Typically these instructions

6http://rweverything.com/
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ProduceFVBProtocolOnBuffer Code

ProduceFVBProtocolOnBuffer Stack

FvbDev

00000000

FFFFFFFF

FvbDev->LbaCache3DE1A890

3DE1A910

3EB18E78

3EBE1E44

???

loc_3EB21E44:
8B 4D FC     mov     ecx, [ebp+vBlockIndex]         
8B 5E 30     mov     ebx, [esi+EFI_FW_VOL_BLOCK_DEVICE.LbaCache]
C1 E1 03     shl     ecx, 3
89 14 19     mov     [ecx+ebx+LBA_CACHE.Base], edx   ; LbaCache[i].Base = AttackerValue*i
8B 56 30     mov     edx, [esi+EFI_FW_VOL_BLOCK_DEVICE.LbaCache]
8B 58 04     mov     ebx, [eax+LBA_CACHE.Length]
89 5C 0A 04  mov     [edx+ecx+LBA_CACHE.Length], ebx ; LbaCache[i].Length = AttackerValue
8B 55 F4     mov     edx, [ebp+vLinearOffset]  
03 50 04     add     edx, [eax+4]     
FF 45 FC     inc     [ebp+vBlockIndex]  
FF 45 F8     inc     [ebp+vBlockIndex2]  
8B 4D F8     mov     ecx, [ebp+vBlockIndex2]  
89 55 F4     mov     [ebp+vLinearOffset], edx  
3B 08        cmp     ecx, [eax]
72 D4        jb      short loc_3EB21E44  

LbaCache Pointer 
Overwritten

Figure 9: The LbaCache pointer is corrupted, further complicating the overwrite.

will take the form of jumping or calling to a non-corrupted address. Exploitation of the envelope vulnerability
from userland also dictates that a specific target physical address will need to be attainable from a Windows
8 userland process. This may not be possible depending on the target address, for instance if that physical
address is typically allocated to the kernel.

5 Leveraging The Attack

Successful exploitation of these vulnerabilities allows the attacker to gain code execution in the early boot
environment. In this environment, the SPI flash and SMRAM are still necessarily unlocked. Thus the
attacker is able to make SPI write cycles to the SPI flash, allowing him to permanently persist in the
platform firmware. Because the platform firmware is responsible for instantiating SMM, the attacker is
able to use this approach to arbitrarily inject code into SMM as well. Note that this means the attackers
injections would survive even an operating system reinstallation! In fact, as shown in [3] it would then be
possible for the attacker to also persist across firmware update attempts.

Another interesting possibility is for the attacker to avoid reflashing the firmware directly, and instead
continually exploit the firmware during reset of the system. As described in section 4.3, an attacker can
store his payload in a persistent EFI non-volatile variable. During a warm reset of the system, the UEFI
code will then be exploited when attempting to process the lying in wait evil capsule. Once the attacker has
control, he can make arbitrary insertions into SMM, and then let the system boot up normally. In this way
the attacker can establish a presence in SMM during each warm reset of the system, without having to make
direct SPI flash writes to the UEFI code. This approach may be desirable if the attacker wishes to further
obfuscate his presence.
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ProduceFVBProtocolOnBuffer Code

ProduceFVBProtocolOnBuffer Stack

FvbDev

00000000

FFFFFFFF

FvbDev->LbaCache3DE1A890

3DE1A910

3EB18E78

3EBE1E44

loc_3EB21E44:
B8 8B D9 02 5E        mov     eax,5E02D98Bh         
8B 5E 30     mov     ebx, [esi+EFI_FW_VOL_BLOCK_DEVICE.LbaCache] 
C1 E1 03     shl     ecx, 3
89 14 19     mov     [ecx+ebx+LBA_CACHE.Base], edx   ; LbaCache[i].Base = AttackerValue*i
8B 56 30     mov     edx, [esi+EFI_FW_VOL_BLOCK_DEVICE.LbaCache]
8B 58 04     mov     ebx, [eax+LBA_CACHE.Length]
89 5C 0A 04  mov     [edx+ecx+LBA_CACHE.Length], ebx ; *(DWORD *)3EB21E44 = AttackerValue
8B 55 F4     mov     edx, [ebp+vLinearOffset]  
03 50 04     add     edx, [eax+4]     
FF 45 FC     inc     [ebp+vBlockIndex]  
FF 45 F8     inc     [ebp+vBlockIndex2]  
8B 4D F8     mov     ecx, [ebp+vBlockIndex2]  
89 55 F4     mov     [ebp+vLinearOffset], edx  
3B 08        cmp     ecx, [eax]
72 D4        jb      short loc_3EB21E44  

We are now 
corrupting the loop 

code itself..

 AttackerValue = 2D98BB8.
 Overwrites top of loop code on iteration=38E
 *(DWORD *)3EB21E44 = AttackerValue (B8 8B D9 02) [endianness]

Figure 10: Loop code overwritten with useless instructions.

6 User Experience

Exploiting the capsule update vulnerabilities requires rebooting the system. An attacker wishing to remain
stealthy could schedule the attack to occur when the system is naturally rebooting for patches. After the
reboot has occurred, and the attacker has pivoted control to a firmware injecting shellcode, another reboot
of the system should immediately take place. Because the vulnerabilities take place before graphics have
been initialized, the victim may only notice a longer than usual reboot time.

7 Affected Systems

Determining which vendors were affected was a non-trivial problem. Theoretically the UEFI open source
reference implementation should be widely utilized by both OEMs and Independent BIOS Vendors (IBVs).
Thus the capsule update vulnerabilities should be widespread. In practice there is large variance to the
degree that OEMs/IBVs utilize the reference implementation. This problem is further described by [16],
which points out that firmware implementations vary widely even within the same OEM. Due to this, it is
necessary to consider the exploitability of systems on a case by case basis. Before we can begin with a case
study, analysis techniques that help determine exploitability are introduced.

7.1 OEM Firmware Instrumentation

As mentioned in Section 4, the lack of debugging capability for firmware level code is a significant hurdle.
Without debugging capability, the vulnerability of a particular system must be determined using only static
analysis. Given the complexity of UEFI and its tendency for indirect calling, this approach proved difficult.
To work around this limitation, we used QEMU to instrument the OEM firmware using the following steps.
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ProduceFVBProtocolOnBuffer Code

ProduceFVBProtocolOnBuffer Stack

FvbDev

00000000

FFFFFFFF

FvbDev->LbaCache3DE1A890

3DE1A910

3EB18E78

3EBE1E44

loc_3EB21E44:
E9 14 BF 8C D9            jmp    183EDD5Dh         
2D 5E 30     mov     ebx, [esi+EFI_FW_VOL_BLOCK_DEVICE.LbaCache]
C1 E1 03     shl     ecx, 3
89 14 19     mov     [ecx+ebx+LBA_CACHE.Base], edx   ; *(DWORD *)3EB21E42 = AttackerValue*i
8B 56 30     mov     edx, [esi+EFI_FW_VOL_BLOCK_DEVICE.LbaCache]
8B 58 04     mov     ebx, [eax+LBA_CACHE.Length]
89 5C 0A 04  mov     [edx+ecx+LBA_CACHE.Length], ebx ; *(DWORD *)3EB21E46 = AttackerValue
8B 55 F4     mov     edx, [ebp+vLinearOffset]  
03 50 04     add     edx, [eax+4]     
FF 45 FC     inc     [ebp+vBlockIndex]  
FF 45 F8     inc     [ebp+vBlockIndex2]  
8B 4D F8     mov     ecx, [ebp+vBlockIndex2]  
89 55 F4     mov     [ebp+vLinearOffset], edx  
3B 08        cmp     ecx, [eax]
72 D4        jb      short loc_3EB21E44  

Shellcode183EDD5D

 AttackerValue = 2D98CBF.
 Overwrites top of loop code on iteration=BB
 *(DWORD *)3EB21E42 = (AttackerValue * 0xBB) % 0x100000000
                                              = 14E9CF8F 
                                              = 85 CF E9 14 [endianness]
 *(DWORD *)3EB21E46 = BF 8C D9 02 [endianness]

Figure 11: Loop code overwritten with jump to shellcode.

• The OEM Firmware was dissected into its individual EFI executables using EFIPWN7.

• The EFI executables responsible for Capsule Coalescing (PEI Phase) and Capsule Processing (DXE
Phase) were identified using Guid matching and bindiff8.

- Capsule coalescing code was usually located in CapsulePEI.

- Capsule processing code was usually located in DXECORE.

• The relevant binary modules were then inserted into the UEFI Open Virtual Machine Firmware[1]9

• Because OVMF does not have built in support for capsule update, the PlatformPeim module provided
by OVMF was modified to call the capsule update interface exported by the OEM’s binary module.

• QEMU was then used to boot the modified OVMF firmware.

• Debugging of the OEM capsule binary modules was now possible via QEMU’s gdb stub.

7.2 HP EliteBook 2540p F23 Case Study

As an example of determining the vulnerability of a specific OEM system, we consider the capsule coalescing
routine of the HP EliteBook 2540p at BIOS (UEFI) revision F23. We discovered the capsule coalescing code
to be very similar to the code described in Listing 4, with the following relevant differences.

• CapsuleSize + 8 is compared to MemorySize, as opposed to CapsuleSize + DescriptorSize. Hence Bug
1 is present in a different form.

7https://github.com/G33KatWork/EFIPWN
8http://www.zynamics.com/bindiff.html
9OVMF is an open source virtual machine firmware included in the UEFI open source reference implementation.
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• An additional sanity check is made that for each entry in the descriptor array, descriptor.DataBlock
+ descriptor.Length does not integer overflow10.

• EDK1 style descriptors are used, which include a 4 byte signature and a checksum.11 The DataBlock
and Length fields are identical.

To demonstrate the vulnerability of the 2540p, we built a descriptor list that explicitly instantiated Bug
212 and Bug 413. Both of these bugs were present in the 2540p. Consider the matryoshka style descriptor
array configuration outlined by Figure 12. In this configuration, the sum of the descriptor length values will
overflow the 32 bit CapsuleSize integer, and hence pass the sanity comparison with MemorySize. Also note
that although it is sanity checked that Descriptor[0].Length + Descriptor[0].DataBlock does not overflow, it
is still possible that DestPtr + Descriptor[0].Length will overflow. This is in fact the case since we explicitly
set Descriptor[0] to be low in memory and have a huge length size, and DestPtr is always high in the address
space due to the coalescing function design. Hence we can abuse Bug 4 in the IsOverlapped check to proceed
with the block copy operation of Descriptor[0]. This copy will corrupt the address space and allow the
attacker to hijack control of the update operation.14

00000000

FFFFFFFF

UEFI PEI Code

PEI Stack

Descriptor[0] 
“Matryoshka Layer 1”

Length=C0000000-&DescriptorArray[0].DataBlock
DataBlock=2000000

Descriptor[1]
“Matryoshka Layer 2”

Length=100-DescriptorArray[0].Length
DataBlock=2000000

C0000000

Intended Coalescing Space

02000000

Descriptor[1] 

Descriptor[0] 

C0000000 - 100

Figure 12: The Matryoshka descriptor configuration. Sum of length values overflows 32 bit Integer.

7.3 General Observations Regarding Affected Systems

We believe the vulnerabilities presented in this paper to be widespread among UEFI systems. However, it
is difficult to determine the exact pervasiveness of the vulnerabilities due to the need to evaluate firmware
implementations on a case by case basis. Some variant of the capsule coalescing vulnerability was present in
the majority of systems we evaluated with static analysis. Interestingly, although the OEM coalescing code
often demonstrated variations from the reference implementation code, the ProduceFVBProtocolOnBuffer
code appeared to be identically copied in all of the systems we looked at. Thus the code associated with
bug 315 was present on all of the UEFI implementations we analyzed. However, as we did not have debug
access, or even physical access16 to many systems we evaluated, it is impossible to produce a complete list
of affected systems without self-reporting by the vendors. For instance, although the vulnerable code may
be present, it may be vestigial and not actually utilized during the update process.

10An important sanity check that the reference implementation lacked
11Neither of these 2 additional fields matters in practice
12Integer overflow in capsule length summation
13Integer overflow in IsOverlapped check
14In the case of the Elitebook 2540p, 4GB RAM is standard so there is no dead space in the address space as had to be

overcome on the MinnowBoard.
15Integer overflow in LbaCache allocation
16We just downloaded the firmware images from the OEM websites.
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8 Vendor Response

Intel and CERT were notified of the envelope parsing vulnerability on November 22nd 2013, and of the
coalescing vulnerabilities on December 4th 2014. Intel then reached out to IBVs and OEMs to attempt to
discern if they were affected. Information about which vendors are affected and what systems should be
patched is conveyed in CERT VU #552286. The disclosure of these vulnerabilities ultimately led to the
formation of a UEFI Security Response Team. The vulnerabilities were patched in the UDK2014 reference
implementation release[10].

9 Recommendations

The authors have several recommendations regarding locking down the UEFI capsule update interface and
the Runtime Interface as a whole.

• The UEFI Reference Implementation should be more thoroughly audited. The existence of easy to
find integer overflows in security critical code is disturbing.

• Capsule coalescing seems unnecessary on modern system’s with plentiful RAM as firmware capsules are
usually under 16 MB. Instead the firmware capsule could assumed to be already contiguous in memory.
This would eliminate much of the complicated and buggy code from the firmware update process. If
memory constraints are a valid concern 17, the firmware update process could be instantiated from a
boot loader.

• The decision to expose the Variable portion of the Runtime Services to userland in Windows 8 should be
more closely evaluated from a security standpoint. On the one hand, this decision minimizes the amount
of code that needs to be loaded into the kernel, as now userland processes can perform important system
configuration. On the other hand, userland access to these variables opens up additional attack surface
that is accessible from ring 3.

• An option for a physical presence test should be added to the firmware update process18. Although
many organizations will opt out of this option so that they can remotely update firmware without user
interaction, organizations with a greater security focus could opt in to this requirement.

10 Related Work

Invisible Things Lab presented the first memory corruption attack against a BIOS update[20]. In their
attack, an integer overflow in the rendering of a customizable bootup splash screen was exploited to gain
control over the boot up process before the BIOS locks were set. This allowed the BIOS to be reflashed with
arbitrary contents. The authors of this paper have also presented an attack against the coalescing operation
of some Dell legacy BIOSes[15].

11 Conclusion

In this paper we have demonstrated that although UEFI provides additional security features, it has also
provided additional attack surface that may be exploited. Furthermore, some of this attack surface is exposed
to Windows 8 userland processes by the Windows 8 firmware environment variable API. Despite increased
focus on protecting the integrity of the platform, vulnerabilities introduced by UEFI may allow an attacker
to compromise the platform firmware and attain permanent control of SMM. Although the authors believe
that UEFI is ultimately a step in the right direction towards securing the platform, more work needs to be
done on evaluating the security of the features it provides.

17Such as on an embedded system
18Toggled perhaps through the BIOS configuration screen
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