
Thinking outside the
sandbox
Violating trust boundaries in

uncommon ways

Attacking the modern browser and its plug-ins is
becoming harder as vendors employ numerous
mitigation technologies to increase the cost of exploit
development. An attacker is now forced to uncover
multiple vulnerabilities to gain privileged-level code
execution on his targets. First, an attacker needs to
find a vulnerability, leak an address to get around
ASLR, and bypass DEP to gain code execution within
the renderer process. The attacker then needs to
bypass the application sandbox to elevate their
privileges, which will allow them to execute malicious
code. Our journey begins at the sandbox and
investigates some of the more obscure techniques
used to violate this trust boundary.

Brian Gorenc

Manager, Vulnerability Research

HP Security Research

Jasiel Spelman

Security Researcher

HP Security Research

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

2

Understanding trust boundaries

Over the last several years, most major browser and plug-in vendors released some

form of application sandboxing to shore up their security posture. They could no

longer rely on existing mitigation technologies like Stack Cookies (/GS), Data

Execution Prevention (DEP), and Address Space Layout Randomization (ASLR) to

stop determined adversaries. These vendors went back to the drawing board,

analyzed their architectures, and defined a trust boundary (also known as a

sandbox).

The primary purpose of a trust boundary is to define a clear separation inside an

application where untrusted data crosses into a part of the application that expects

data to be “trusted”. At this boundary, the untrusted data can be validated and

security policies applied to ensure it is well-formed. The code that handled the

rendering of the user-supplied web page or document and corresponding data are

considered “untrusted”. This code is provided a confined operating environment and

a limited set of APIs with which to work. This resulting sandbox enforces the

boundary thus mitigating the impact of any code execution vulnerabilities that may

exist within the untrusted sections of the application.

Browser and plug-in vendors, of course, rely heavily on the underlying operating

system’s security frameworks to implement their sandboxes. In 2007, Microsoft’s

David LeBlanc provided application developers with guidance on implementing

“Practical Windows Sandboxing”1. In this guidance, LeBlanc recommended sandbox

applications utilize restricted access tokens, job object limitations, and window

station/desktop isolation to segment themselves from the other running processes.

Microsoft, Adobe, and Google have implemented these recommendations to varying

degrees. Let’s investigate some of the sandboxing strategies that are applicable to

the attacks described in this paper.

What are Restricted Access Tokens?

According to MSDN, an access token is an object that describes the security context

of the process or thread2. It includes information such as the identity and privileges

of the user account that are associated with the process. A restricted access token is

exactly what it sounds like; an access token with disabled security identifiers (SIDs),

deleted privileges, or restricted SIDs. A restricted access token can be obtained by

calling CreateRestrictedToken or AdjustTokenPrivileges. Each browser and plug-in vendor

has constrained their sandboxed processes using Restricted Access Tokens in unique

ways. These differences can be inspected visually using Process Explorer3.

What are Job Object Limitations?

A job object provides application developers a way of managing a group of processes

as a unit4. From the sandboxing perspective, limitations can be applied to a job object

and these limitations apply to all the processes associated with the job object. For

example, the JOBOBJECT_BASIC_LIMIT_INFORMATION structure has the ability to limit the

number of active processes associated with the job. For Adobe Reader and Google

Chrome, this value is limited to 1 active process.

Another set of limitations that can be applied to a job object are user interface

restrictions which are offered through JOBOBJECT_BASIC_UI_RESTRICTIONS5. Using this

1 http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
2 http://msdn.microsoft.com/en-us/library/windows/desktop/aa379316(v=vs.85).aspx
3 http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
4 http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-2.aspx

5 http://msdn.microsoft.com/en-us/library/windows/desktop/ms684152(v=vs.85).aspx

Figure 1: Microsoft Internet Explorer Restrictions

Figure 2: Google Chrome Restrictions

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

3

structure, application developers can prevent the processes associated with the job

from doing the following:

 Creating and switching desktops

 Changing display settings

 Exiting Windows

 Accessing global atoms

 Using USER handles not associated with the same job

 Reading data from the clipboard

 Changing system parameters

 Writing data to the clipboard

These restrictions go a long way in reducing what is possible if an attacker achieves

code execution within the sandboxed process. For example, Adobe Reader and

Google Chrome enable all of the above limitations on their sandboxed process6.

Microsoft Internet Explorer, on the other hand, does not leverage job object

limitations in their sandbox implementation.

What is Window Station and Desktop Isolation?

One of the final recommendations of “Practical Windows Sandboxing” is sandboxed

applications should be placed on a separate window station and desktop7. Processes

running on the same desktop can communicate with each other using window

messages or hook procedures. As such, it is possible for a compromised process to

leverage other processes running on the same desktop to gain elevated privileges

(i.e. shatter attacks).

The primary goal of isolating the sandboxed process this way is to prevent attacks

that use window messages and hook procedures. A compromised sandboxed

process that is running by itself on a separate window station and desktop has

limited ability to leverage window messages in the way previously described. This

sandboxing technique is not consistently applied across browser and plug-in

vendors.

What is Mandatory Integrity Control?

Microsoft introduced Mandatory Integrity Controls into their security architecture

with the release of Windows Vista8. These were intended to represent the level of

trust one could have in a process, file, or other securable objects and to provide

another layer of control beyond the existing security features. The operating system

provides the following integrity levels:

 Untrusted

 Low

 Medium

 High

 System

The lower the integrity level assigned to the process the fewer resources (files,

registry keys, etc.) it will be allowed to modify if compromised. User Interface

Privilege Isolation, also introduced in Vista, prevents processes with lower integrity

levels from sending window messages to or installing hooks in processes running at

a higher level further restricting message type attacks. The browser and plug-in

vendors were quick to leverage mandatory integrity controls in their sandbox

6 http://blogs.adobe.com/security/2010/10/inside-adobe-reader-protected-mode-part-2-the-sandbox-process.html
7 http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-3.aspx
8 http://msdn.microsoft.com/en-us/library/bb625963.aspx

Figure 3: Google Chrome Job Object Limitations

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

4

implementations. For example, Microsoft Internet Explorer’s broker process is

running with medium integrity level and its render process is running with low

integrity level. Google Chrome uses the untrusted integrity level for its rendering

process and medium integrity level for its broker process.

How does the sandboxed process communicate?

Beyond these restrictions, isolated processes running at different integrity levels

need to be able to communicate with the underlying operating system to provide the

rich feature sets consumers demand. As a result, browser and plug-in vendors

developed a restricted set of APIs which the sandboxed process must use to execute

privileged functionality. The broker process provides all the handlers for the exposed

APIs and is responsible for enforcing any policies or restrictions being placed on a

specific APIs. The APIs typically take the form of a shared memory Inter-Process

Communication (IPC) framework to handle requests back and forth between the

sandboxed process and the broker process9. Microsoft Internet Explorer also

provides a COM-based IPC for part of the broker’s interface with the sandboxed

process10. For example, Adobe Reader relies heavily on the Chromium’s sandbox IPC

implementation though Adobe-specific IPC calls were implemented to support the

functionality required by Reader11.

As stated already, each vendor applies these restrictions in their sandbox designs

differently. Google Chrome (and indirectly, Adobe Reader) uses a majority of these

techniques to ensure their sandboxed processes are as isolated as possible.

Microsoft Internet Explorer, on the other hand, does not apply the limitations

provided by the use of a job object. It also does not run the sandboxed process on an

isolated window station and desktop. These facts can leave a person scratching their

head when it was Microsoft that provided the “Practical Windows Sandboxing”

advice.

Attack Surface Archetypes

With all these security features, one would think that developing an exploit to break

out of an application’s sandbox would be difficult. It’s definitely an additional

challenge for exploit developers but there are still many opportunities to escape.

Once the attacker achieves code execution within the sandboxed process, they need

to trigger another weakness to elevate privilege in order to do real damage. These

attackers will typically focus on the following areas as they have proven to be fruitful

in the past.

Kernel APIs

One of the largest attack surfaces available to an exploit author from within the

sandboxed process is the Windows kernel. Vulnerabilities within the kernel also offer

the side benefit that after exploitation the resulting payload will be running with

SYSTEM privileges. These types of vulnerabilities are difficult to discover as the

kernel has been through many security reviews and has been highly tested prior to

release. That said, researchers with a keen eye are able to uncover subtle defects

that can be leveraged in a chained exploit to gain the highest level of privilege on the

system.

9 http://www.chromium.org/developers/design-documents/sandbox
10 http://msdn.microsoft.com/en-us/library/ie/ms537319(v=vs.85).aspx
11 http://blogs.adobe.com/security/2010/11/inside-adobe-reader-protected-mode-part-3-broker-process-policies-and-inter-process-communication.html

Figure 4: Andreas Schmidt and Sebastian Apelt exploiting Microsoft Internet Explorer

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

5

Though these issues are rare, contestants at the last two Pwn2Own contests

demonstrated that this type of weakness can be quite successful. In Pwn2Own

2013, Jon Butler and Nils from MWR Labs obtained a SYSTEM-level compromise

through Google Chrome. They chained a type confusion vulnerability12 that occurred

due to the use of static_cast with a vulnerability13 in NtUserMessageCall that was a

result of the misuse of a Boolean argument. At Pwn2Own 2014, Andreas Schmidt

and Sebastian Apelt combined multiple use-after-free vulnerabilities14 and a double-

free vulnerability within AFD.sys to demonstrate the SYSTEM-level calc shown in the

image at the right.

Inter-Process Communication (IPC) Handling

The next logical interface to attack is the IPC messages and infrastructure used by

the sandboxed process to communicate with the medium-integrity broker. Although

the APIs are limited, there is still a significant amount of functionality provided by

them to support the feature sets of the browser or plug-in. For example, the brokers

for Google Chrome and Adobe Reader each provide a large number of IPC messages

or “Cross Calls” to the sandboxed process15. Microsoft Internet Explorer takes it

further by providing not only an IPC framework but also a set of COM interfaces to

the sandboxed process.

There are many defects one could look for inside of the processing to help them

escape. Parsing errors in the handling of parameters being sent to the broker

process is a common issue that can be uncovered. In fact, a heap overflow was the

root cause of one of the first Adobe Reader sandbox escapes to be found in the wild.

This overflow occurred due to the way the broker process handled the

GetClipboardFormatNameW requests16. Logic errors are an obvious weakness that may

manifest in the broker process and could easily be taken advantage of to elevate

privilege. CVE-2013-4015 demonstrates how a logic error can be used to bypass the

policy check and elevate privileges17. This vulnerability was due to how

ieframe!GetSanitizedParametersFromNonQuotedCmdLine() handled the “\t” whitespace

character. Using this character, it was possible to trick Internet Explorer into

launching an attacker-specified executable name at medium integrity.

Shared Resources

Privileged resources that are shared (or leaked, accidently) between the sandboxed

process and the broker process can provide an opportunity for escape. These

resources can take the form of handles for sections, files, keys, etc. Depending on

the access rights (e.g. write access) associated with these resources, an attacker

may be able to gain privileges when the resource is handled. One common avenue

for shared resources to be leaked is third-party DLLs that improperly use the various

handles that are available. The browser developers are taking a proactive stance on

this topic by blocking DLL access to the sandboxed process through blacklisting18.

Of course, the previous attack surface archetypes are not the only way to jump out

of the sandbox. Over the years, researchers have discovered innovative ways to

attack this trust boundary including:

 Base Named Object Namespace Squatting

12 http://zerodayinitiative.com/advisories/ZDI-13-064
13 http://zerodayinitiative.com/advisories/ZDI-13-170/
14 http://zerodayinitiative.com/advisories/ZDI-14-192/
15 https://media.blackhat.com/bh-us-11/Sabanal/BH_US_11_SabanalYason_Readerx_WP.pdf
16 https://blogs.mcafee.com/mcafee-labs/digging-into-the-sandbox-escape-technique-of-the-recent-pdf-exploit
17 https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
18 http://media.blackhat.com/bh-eu-11/Tom_Keetch/BlackHat_EU_2011_Keetch_Sandboxes-WP.pdf

Figure 5: calc.exe payload running at SYSTEM

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

6

 Null DACLs Abuse

 Socket-Based Attacks

 Policy Engine Subversion

 Third-party Software/Local Service Weaknesses

Vendors have spent a lot of money and hours auditing their implementations, but

even with all this effort, memory corruption vulnerabilities in the kernel or IPC

architecture are still one of the more common vectors for attackers. Logic errors

within the broker process and corresponding policy engines have also been bountiful

in the past. In the end, sandboxing a process is a difficult endeavor and trade-offs

are made by application developers who need to balance security and performance.

These trade-offs may leave just enough space for a skillful attacker to escape and

do more damage.

Uncommon attack vectors

When looking for sandbox bypasses, it is important to keep the less common attack

vectors in mind. This section will take an in-depth look at some of the more obscure

escapes used by contestants of the Pwn2Own 2014 hacking contest. These

techniques were used once the contestant achieved initial code execution from

within the target’s render process. They were selected to demonstrate the different

approaches being investigated by the research community.

Save File Dialog abuse
Microsoft Internet Explorer is no stranger to exploitation at Pwn2Own. In fact, it is

quite common for contestants targeting plug-ins to find a code execution

vulnerability in the plug-in code and then shift their focus to escaping the Internet

Explorer sandbox instead of the plug-in’s sandbox. This was the technique VUPEN

Security used when they targeted Adobe Flash. VUPEN began by abusing the

handling of ExternalInterface. By manipulating a SWF’s objects, they forced a

dangling pointer to be reused after it was freed. This vulnerability (CVE-2014-0506)

was leveraged to gain code execution within Adobe Flash19. Once this was complete,

VUPEN abused the Save File Dialog to break out of the sandbox and elevate

privileges.

Exploitation

As a result of running as low integrity processes, sandboxed processes have limited

ability to save files to the file system. Specifically, these processes can only write to

locations that have been explicitly marked as writable by a low integrity processes.

There are a few instances where the sandboxed process will need to write to a

location outside of these areas, such as when downloading files.

As such there is a remote procedure call within the Internet Explorer broker to

handle this, reachable through the IProtectedModeAPI COM interface. The

CProtectedModeAPI class, which implements the IProtectedModeAPI interface, exposes

two functions to handle saving files to unrestricted locations:

 CProtectedModeAPI::ShowSaveFileDialog

 CProtectedModeAPI::SaveFileAs

The sandboxed process initiates the request by calling

CProtectedModeAPI::ShowSaveFileDialog within the broker, which will result in the broker

prompting the user for confirmation to save the file. This function takes several

19 http://zerodayinitiative.com/advisories/ZDI-14-092/

Figure 6: Chaouki Bekrar (left) of VUPEN Security exploiting Adobe Flash

Figure 7: Save As Location

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

7

arguments, including the desired destination. This location is stored within the

broker to prevent abuse later on.

Handling of the dialog box is delegated to the IEGetSaveFileName function, which will

return 0, if the user accepted the request, or 1, if the user refused the request, and a

negative value if there was an error. If the user accepts the file save, the

CProtectedModeAPI goes into the "CProtectedModeAPI::SaveFileAs" state. At this point, the

sandboxed process can proceed with writing the file to a location with low integrity.

Once the file has been written, the sandboxed process makes the last request by

calling the CProtectedModeAPI::SaveFileAs function within the broker. The broker

verifies that it is in the "CProtectedModeAPI::SaveFileAs" state. If so, it moves the file to

location specified earlier. Internet Explorer applies the Mark of the Web to

downloaded files to ensure that they are loaded into the appropriate security zone

when opened. As such this will have to be chained with something else before being

a full sandbox escape. Figure 10 below shows an example of what the dialog box

looks like.

 Figure 10: Save As Dialog Abuse

This vulnerability allows for files to be created at arbitrary locations, however, one of

the downfalls is that the file is subject to the Mark of the Web. VUPEN maneuvered

around this limitation by taking advantage of the way Internet Explorer handles

recovering from a crash. In order to restore the page being viewed in the event of a

crash information about the session is stored. The CRecoveryStore class handles this

and is one of a few classes within the broker that can be instantiated from the

sandboxed process. Control over the contents of the recovery store is limited, but

arbitrary strings can be written by specifying invalid page titles and locations. Also,

the location of the recovery store is at a predictable location and doesn’t have the

Mark of the Web applied to it.

All of the pieces of the sandbox bypass are now in place. It starts with creation of a

controlled recovery store that contains malicious script. The next step is to trigger

the file save dialog within the broker. Although this will result in the user having to

close the dialog window, an attacker would be able to continue regardless of the

response. The final step is to trigger the actual file save, which will now move the

controlled recovery store from its predictable location into the user's Startup folder.

If the resulting file can be processed as a HTML application then malicious script will

be executed the next time the user logs in allowing for code execution outside of the

sandbox.

Root cause analysis

The vulnerability exists due to the improper handling of the user's response to the

file save request within the CProtectedModeAPI::ShowSaveFileDialog function. The broker

defaults to the "CProtectedModeAPI::SaveFileAs" state and only changes back to an

Figure 9: Script Included in the Recovery Store

Figure 8: Recovery Store Location

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

8

empty state if there was an error creating the window. This means that

CProtectedModeAPI will still be in the "CProtectedModeAPI::SaveFileAs" state regardless of

the button that the user clicked. In the event an error is returned, the renderer can

simply reissue the request. At this point, the sandboxed process can call

CProtectedModeAPI::SaveFileAs to move a file regardless as to whether or not the user

allowed it. Exploitation of this vulnerability also leverages the fact that the broker

does not properly validate the file specified in CProtectedModeAPI::SaveFileAs, allowing

for files outside of the sandbox to be moved. At this point the attacker has an

arbitrary file write with the constraint that the Mark of the Web will be applied to the

written file.

Remediation

To patch this issue, Microsoft did a couple of things. They removed CRecoveryStore

from the list of classes that are allowed to be instantiated from the sandboxed

process. This was done wholly within the CIEUserBrokerObject::BrokerCreateKnownObject

function, where they simply removed the CLSID for IERecoveryStore from the list of

accepted values. To fix the issue with the save dialog box, they stopped assuming

success, and switched to only changing to the success state when the user accepted

the dialog box.

You can see in the pre-patched image that the state is only zeroed out if eax is a

negative value, which completely misses the case where the user cancelled the

dialog box resulting in eax being 1. The post-patch image shows the patched version

of the function where the state is only changed

to "CProtectedModeAPI::SaveFileAs" after the user

has accepted the dialog box.

Clipboard abuse

Long-time Pwn2Own winner, VUPEN, also

discovered the next sandbox bypass which

existed in Google Chrome. They started out by

exploiting a use-after-free vulnerability in Blink

bindings (CVE-2014-1713)20. Interestingly

enough, it was discovered that this

vulnerability also affected WebKit (e.g. Apple

Safari) so it was also disclosed to Apple at the

contest. VUPEN followed the exploitation of

the use-after-free with a weakness in how

Google Chrome allows specific types on the

Clipboard.

20 http://zerodayinitiative.com/advisories/ZDI-14-086/

Figure 11: Pre-Patch Code

Figure 12: Post-Patch Code

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

9

Exploitation

One of the most common actions performed within a browser is the copying of data

within a web page. With any application on Windows, this results in a call to

SetClipboardData within user32.dll. Once on the clipboard, responsibility for proper

handling falls to any application that accesses and processes it. Microsoft

documentation for GetClipboardData explicitly states this21:

On Windows, processes within a window station share certain resources such as the

clipboard contents. Chrome mitigates the security implications of this by having the

renderer processes run within a restricted job object within a different window

station.

In Chrome, there is an IPC to handle putting data onto the clipboard from the

renderer process. This occurs within the ClipboardHostMsg_WriteObjectsAsync and

ClipboardHostMsg_WriteObjectsSync cross calls. On Windows, both of these functions

push a task to the worker thread that calls

ClipboardMessageFilter::WriteObjectsOnUIThread, resulting in repeated calls to

Clipboard::DispatchObject. Clipboard::DispatchObject then checks the type of object that is

being written to the clipboard and calls the appropriate function to handle serializing

it onto the clipboard. For example, if the desired object type is text, then the WriteText

function will be called. Alternatively, if the desired object is arbitrary data, then the

WriteData function will be called. Chrome maintains its own types for objects, which

are then converted into the native operating system's object types when it comes

time to place the object onto the clipboard.

Exploitation takes advantage of the MoreOlePrivateData clipboard format, which is

represented by 0xC016. Among other things, this clipboard format can be used to

instantiate an arbitrary COM control, which will occur at medium integrity. Since the

kill bit is not checked on ActiveX controls loaded in this manner, it is possible to load

a vulnerable ActiveX control and use it to achieve code execution.

Putting it all together, exploitation at medium integrity occurs by preparing a block of

data to instantiate vulnerable COM controls. The renderer process then issues a

ClipboardHostMsg_WriteObjectsAsync cross call with the ObjectType set to CBF_DATA. This

leads to populating the clipboard with objects of type 0xC016. The next time

Windows Explorer process tries to read from the clipboard, such as right-clicking on

the desktop, it will instantiate the desired COM controls at medium integrity.

Root cause analysis

The vulnerability exists due to the failure to restrict the type of messages that are

allowed to be posted to the clipboard from the renderer process. The renderer

process can request that the broker put arbitrary message types onto the clipboard.

Specifically, if the renderer process issues a ClipboardHostMsg_WriteObjectsSync or

ClipboardHostMsg_WriteAsync cross call with an ObjectType of CBF_DATA, then a call to

WriteData will be made where both the format and message will be read from the

renderer. Exploitation at medium integrity now requires a vulnerability in anything

that handles CBF_DATA from the clipboard.

21 http://msdn.microsoft.com/en-us/library/windows/desktop/ms649039(v=vs.85).aspx

What is a Junction Point?

A junction point is a symbolic link to a

directory. This feature of the NTFS file system

acts as an alias to the directory pointed to by

the junction point.

Figure 13: Sandbox Escape using MoreOlePrivateData

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

10

Remediation

When Google patched the Pwn2Own bugs, they were nice enough to include links

containing the bug IDs. Based off that, we know that commit

edc1250e0cf03038db503086dfd31082ed694d69 was responsible for patching the

vulnerability. This commit made several changes to the clipboard handling code but

the root of the patch occurs within ScopedClipboardWrite::WritePickledData which now

begins with the following check:

Clipboard::IsRegisteredFormatType takes in a clipboard format and returns whether or

not it has been explicitly registered as an allowed format. After the patch, a format

type of 0xC016 will fail validation at this point.

Symbolic link abuse

A last minute anonymous entrant to Pwn2Own discovered this final sandbox escape.

The participant started the exploit by leveraging a flaw that existed within the

handling of TypedArray objects (CVE-2014-1705)22. By carefully manipulating an

object the contestant could read and write data to any address allowing code

execution under the context of the current process. Once the initial payload was

running, the contestant used a vulnerability in the way the broker returns privileged

file handles to gain medium integrity code execution.

Exploitation

Google Chrome uses a SQLite database to store data for an opened tab. There is an

IPC to facilitate creation and access to this database from the renderer process. This

occurs within the DatabaseHostMsg_OpenFile cross call, though this call will also create

files despite the name. This cross call results in

DatabaseMessageFilter::OnDatabaseOpenFile being called, which will call

DatabaseUtil::GetFullFilePathForVfsFile if a file was specified. This function is responsible

for merging the desired file with the base directory path, to ensure that access

outside the sandbox does not occur. A check within GetFullFilePathForVfsFile shows

that the Chrome team treated the supplied filename as potentially malicious:

VfsBackend::OpenFile is called after the call to GetFullFilePathForVfsFile, which in turn

calls CreatePlatformFile. The file handle is finally created within

CreatePlatformFileUnsafe, which CreatePlatformFile is a thin wrapper for, by making a

call to the CreateFile Windows API. Lastly, the file handle is duplicated for use within

the renderer and then returned through the IPC mechanisms.

The ability to create a file can be exploited due to a peculiarity of Windows. All files

stored in NTFS have a stream, which can be accessed by appending the stream name

and stream type to the end of the file path as colon separated values. In this case,

"$INDEX_ALLOCATION" is the stream type that specifies a directory stream and "$I30" is

the stream name that specifies the default stream name. By appending

22 http://zerodayinitiative.com/advisories/ZDI-14-088/

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

11

":$I30:$INDEX_ALLOCATION" to the filename, the call to CreateFile specifies that it wants

to access the default directory stream of the filename. This effectively sets

PLATFORM_FILE_BACKUP_SEMANTICS without requiring that the flag actually be

specified.

Putting this all together, the renderer process issues a DatabaseHostMsg_OpenFile

cross call with “$I30:$INDEX_ALLOCATION" appended to the filename resulting in the

broker creating a directory and returning back the handle. The renderer then makes

a call to DeviceIoControl using FSCTL_SET_REPARSE_POINT as the IoControlCode to turn

the newly created directory into a junction point to an arbitrary location such as the

root of the C: drive. The last step is to create or modify a file off of this privileged

handle, for example, within the user's Startup directory, to achieve code execution at

medium integrity.

Root cause analysis

The root of this vulnerability stems from an oddity in Windows. Although symbolic

links cannot be created by a low privileged process, a junction point can. A junction

point is a type of reparse point that essentially acts as a symbolic link to a directory.

Furthermore, hard links would be a potential option if not for the fact that they take

the paths as arguments whereas junction points are created using a file handle to a

call to DeviceIoControl. One issue with junction points is that they require a file

directory handle in order to be created. This would typically be handled by passing

PLATFORM_FILE_BACKUP_SEMANTICS as a flag to CreateFile, but the

DatabaseHostMsg_OpenFile cross call only allows certain flags through. By specifying

“$I30:$INDEX_ALLOCATION” in the filename, we are able to indirectly set this flag.

Remediation

This vulnerability was patched with commit

693fcbe943b19153b14b3c4c18f6eb4edb42a555 within CreatePlatformFileUnsafe in

platform_file_win.cc:

The patch opens the file as requested and queries the file attributes to ensure that

unless a handle to a directory was requested, the file handle does not identify a

directory, and that the file handle does not have an associated reparse point.

 Figure 14: Junction Point Based Escape

Thinking Outside The Sandbox – Violating Trust Boundaries In Uncommon Ways

12

Conclusion

Sandboxes are one of the most recent mitigation strategies deployed by browser

and plug-in vendors. These vendors isolated their applications by implementing

restricted permissions and the best practices available in the operating system. They

followed this by greatly limiting the APIs available to the sandboxed process. Many

hours have been spent auditing these APIs for memory corruption issues and logic

errors. The primary purpose of all this work was to provide a clear separation

between untrusted and trusted sections of code.

While sandboxes are used to test unverified programs which may contain a virus or

malignant code without allowing harm to the host device [OR While sandboxes are

used to execute software in a restricted OS environment], attackers have discovered

many techniques to violate this trust boundary. There are the traditional approaches:

find a memory corruption vulnerability in IPC message handling or attack the kernel

to get SYSTEM-level privilege escalation. Any of these will work, but they may not be

the easiest way. The examples in this paper demonstrate many of the uncommon,

yet highly effective, approaches that have been used to bypass the most advanced

application sandboxes in use today. Understanding them provides a unique

perspective for those working to find and verify such bypasses.

Learn more at
hp.com/go/hpsrblog
zerodayinitiative.com

