
My	
 Google	
 Glass	
 Sees	
 Your	
 Password!	

Qinggang Yue
University of Massachusetts Lowell

In Collaboration with
Zhen Ling, Southeast University, China

Xinwen Fu, Benyuan Liu, University of Massachusetts Lowell
Wei Yu, Towson University

Wei Zhao, University of Macau

My	
 Smartwatch	
 Sees	
 Your	
 Password!	

My	
 iPhone	
 Sees	
 Your	
 Password!	

2014

CS@UML

Outline
p  Introduction
p Blind recognition of touched keys
p  Evaluation
p Countermeasures
p Conclusion

2

CS@UML

Motivation

3

p  Smart devices are ubiquitously used.
p  Most smart devices are equipped with a camera.
p  The camera can spy on people tapping and inputting

credentials such as passcodes or passwords.

CS@UML

Existing Work on Recognizing Touch Inputs

1.  Directly identify text on screen or its
reflections on objects.

2.  Detect visible features of the keys such
as light diffusion surrounding pressed
keys and popups of pressed keys.

3.  Blindly recognize the text input on mobile
devices while text or popups are not
visible to the attacker.

4

CS@UML

Most Related Work

p Use computer vision techniques to
recognize possible touched keys and use a
language model to correct the prediction.

p  Poor success rate for passwords.

5

We are able to recognize
passcodes with a success
rate of as high as 90%!

CS@UML

Outline
p  Introduction
p Blind recognition of touched keys
p  Evaluation
p Countermeasures
p Conclusion

6

CS@UML

Basic Idea
p  Assumption: naked eyes cannot see anything on

screen in the video.
p  Basic idea: track fingertip movement, identify a

touched point and map its location to a reference
image of the soft keyboard. Use homography
between two images:

7

p
q

CS@UML

Step 1. Taking Videos
p  Use sneaky cameras including Google Glass, web

cameras, smartphone cameras, even smartwatch!
n  Factors: camera angle, distance, lighting

p  Adjust the camera angle at a distance to record
the device and touching fingertip movement.

8

CS@UML

Example Video by Google Glass

9

CS@UML

Step 2. Preprocessing
p Keep the area of moving hand on screen.

n  Use Deformable Part-based Model (DPM) - an
object tracker - to track the area of interest for
a moving target.

10

CS@UML

Step 3. Detecting Touching Frames
p  Derive a pattern of the touching finger movement

n  Finger moves downward, stops and then upward.

p  Track feature points on the hand by optical flow.
n  All fingers keep the same gesture during touching.

p  Use the frame in which velocity of most tracked
points changes the direction as touching frame.

11

CS@UML

Step 4. Deriving Homography Matrix
p  Derive touch screen corners, intersection of the

four edges of the touch screen.
n  Canny edge detector to detect edges
n  Hough line transform to get the lines.

p  Use these four pairs of corner points to derive the
homography matrix.

12

CS@UML

Step 5 - Locating Touching Fingertip
p Use the DPM object detector to locate the

touching fingertip in touching frames.
p Derive a large box bounding the touching

fingertip.

13

CS@UML

Step 6. Estimating Touched Area

p  Deriving the fingertip contour
n  Use k-means clustering to cluster pixels in a small

bounding box to get the fingertip contour.
n  Two groups bright fingertip and dark screen.

p  Deriving the accurate touched area
n  Fit a line over central points of the contour and get

fingertip direction and top.
n  Train the touched area around the fingertip top.

14

CS@UML

Step 7. Recognizing Touched Keys

p  Which pixels are the touched points in this
estimated tiny touched area?

p  If the touched point is found, map the estimated
touched point to the reference image of the
software keyboard.

15

CS@UML

Step 7. Recognizing Touched Keys (Cont’d)
p  Apply k-means

clustering to
estimated touched
area.
n  k=5, because of

illumination and
shadowing.

p  Use a point in the
upper part of the
darkest cluster as
the touched point.

16

CS@UML

Outline
p  Introduction
p Blind recognition of touched keys
p  Evaluation
p Countermeasures
p Conclusion

17

CS@UML

Recognizing Touched Keys on iPad via
Webcam
p Around 8 feet

18

CS@UML

Success Rate v.s. Distance
p  WebCam

19

CS@UML

Comparing Different Targets and Cameras

20

CS@UML

Remote Attack

21

p Success rate 100% in the following case.

CS@UML

Outline
p  Introduction
p Blind recognition of touched keys
p  Evaluation
p Countermeasures
p Conclusion

22

CS@UML

Countermeasures
p  Privacy Enhancing Keyboard (PEK): context aware

randomized software keyboard

23

CS@UML

Outline
p  Introduction
p Blind recognition of touched keys
p  Evaluation
p Countermeasures
p Conclusion

24

CS@UML

Conclusion
p  Sneaky cameras may take away credentials.

p  Our attack tracks the finger movement and
recognizes touched keys
n  High success rate. It is not a fluke.

p  The attack can be made automatic.

p  Our context aware Privacy Enhancing Keyboard
(PEK) helps resist the attack and other attacks.

p  Please watch demo at
CNN Money - Google Glass wearers can steal your
password

25

CS@UML

Thank
you!

