
My Google Glass Sees Your Passwords!
(Black Hat USA 2014 White paper)

Qinggang Yue1, Zhen Ling2, Xinwen Fu1, Benyuan Liu1, Wei Yu3 and Wei Zhao4

University of Massachusetts Lowell, USA1, {xinwenfu,qye,bliu}@cs.uml.edu
Southeast University, China2, zhenling@seu.edu.cn

Towson University, USA3, wyu@towson.edu
University of Macau, China4, weizhao@umac.mo

Abstract. In this white paper, we introduce a novel computer vision based attack
that automatically discloses inputs on a touch enabled device. Our spying cam-
era, including Google Glass, can take a video of the victim tapping on the touch
screen and automatically recognize more than 90% of the tapped passcodes from
three meters away, even if our naked eyes cannot see those passcodes or anything
on the touch screen. The basic idea is to track the movement of the fingertip and
use the fingertip’s relative position on the touch screen to recognize the touch
input. We carefully analyze the shadow formation around the fingertip, apply the
optical flow, deformable part-based model (DPM) object detector, k-means clus-
tering and other computer vision techniques to automatically track the touching
fingertip and locate the touched points. Planar homography is then applied to map
the estimated touched points to a software keyboard in a reference image. Our
work is substantially different from related work on blind recognition of touch
inputs. We target passcodes where no language model can be applied to correct
estimated touched keys. We are interested in scenarios such as conferences and
similar gathering places where a Google Glass, webcam, or smartphone can be
used for a stealthy attack. Extensive experiments were performed to demonstrate
the impact of this attack. As a countermeasure, we design a context aware Privacy
Enhancing Keyboard (PEK) which pops up a randomized keyboard on Android
systems for sensitive information such as password inputs and shows a conven-
tional QWERTY keyboard for normal inputs.

1 Introduction

Touch enabled devices are ubiquitously used in our daily lives. Nonetheless, they are
also attracting attention from adversaries. In addition to hundreds of thousands of mal-
ware [1], one class of threats against mobile devices is computer vision based attacks.
We can classify those attacks into three groups. Firstly, there are attacks that can directly
identify text on a screen or its reflections on objects [2,3]. Secondly, there are attacks
that can detect visible features of the keys such as light diffusion surrounding pressed
keys [4] and popups of pressed keys [5,6]. Thirdly, there are attacks blindly recognize
the text while text or popups are not visible [7] to the adversary.

In this paper, we introduce a novel attack that can blindly recognize inputs on touch
enabled devices by estimating the location of touched points from a video associated



2 Qinggang Yue1, Zhen Ling2, Xinwen Fu1, Benyuan Liu1, Wei Yu3 and Wei Zhao4

Fig. 1: Google Glass Spying on a Target:
Success rate > 90 % in 30 experiments.

Fig. 2: Remote Attack with Camcorder:
Success rate 100 % in 30 experiments.

with people tapping on the touch screen as shown in Figures 1 and 2. In the attack,
the optical flow algorithm is used to automatically identify touching frames in which a
finger touches the screen surface. We use the intersections of detected edges of the touch
screen to derive the homography matrix, mapping the touch screen surface in video
frames to a reference image of the software keyboard. Deformable Part-based Model
(DPM) and other computer vision techniques are applied to automatically estimate a
tiny touched area.

We carefully derive a theory of the shadow formation around the fingertip and use
the k-means clustering algorithm to identify touched points in the tiny touched area.
Homography can then map these touched points to the software keyboard keys in the
reference image in Figure 4. We carried out extensive experiments on the target devices,
including iPad, Nexus 7, and iPhone 5. The cameras include a webcam, a phone camera,
Google Glass, and even a camcorder (for comparison with existing research efforts).
The camera was positioned from different distances and angles. We were able to achieve
a success rate of more than 90 % in various scenarios.

Fig. 3: Touching Frame Fig. 4: iPad’s Software Keyboard

Our work is substantially different from the most related work by Xu et al. [7]. First,
we target password inputs whereas Xu et al. focused on meaningful text so that they can
use a language model to correct the prediction. In comparison with [7] on recognizing
passwords, we can achieve a high success rate. Second, we employ a completely differ-
ent set of computer vision and machine learning techniques to track finger movement



My Google Glass Sees Your Passwords! 3

and accurately identify touched points. Third, the threat model and targeted scenes are
different. We study privacy leakage in scenes such as classrooms, conferences, and other
similar gathering places. We use a webcam, smartphone camera, and Google Glass for
stealthy attacks whereas single-lens reflex (SLR) cameras with big lens and high-end
camcorders with high optical zoom were used in [7] for remote targets. For comparison,
we use a Panasonic HDC-SDT750 with 12x Optical zoom for spying on iPads from a
distance of more than 43 meters away and achieve a success rate of 100 % in our 30
experiments.

In order to defend against many computer vision based attacks including the one
in this paper, we designed a context aware randomized software keyboard for Android,
denoted as a Privacy Enhancing Keyboard (PEK). A PEK automatically shows a con-
ventional QWERTY keyboard for normal text input and pops up a randomized key-
board for the input of sensitive information such as passcodes. The first PEK prototype
was demonstrated at the ACM Conference on Computer and Communications Security
(CCS) Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM)
in October, 20121. To the best of our knowledge, the PEK is the first generic software
keyboard for a mobile platform while a similar app CodeScrambler for iOS [8] appeared
in August 2013. PEK is a full-fledged software keyboard whereas CodeScrambler is de-
signed only for unlocking screens and does not provide context-aware functionality.

The rest of the paper is organized as follows. We introduce homography and DPM
in Section 2. In Section 3, we introduce the attack. In Section 4, we show experimental
design and evaluations. In Section 5, we introduce PEK. We conclude this paper in
Section 6.

2 Background

In this section, we introduce the two major computer vision techniques employed in
this paper: planar homography and the DPM (Deformable Part-based Model) object
detector.

2.1 Planar Homography

Planar homography is a 2D projective transformation that relates two images of the
same planar surface [9]. Assume p = (s, t, 1) is any point in an image of a planar
surface and q = (s′, t′, 1) is the corresponding point in another image of the same planar
surface. The two images may be taken by the same camera or by different cameras.
Then, for q and p, there exists an invertible 3× 3 matrix H, denoted as the homography
matrix:

q = Hp. (1)

1 To the best of our knowledge, our work is the first one towards efforts on PEKs. An early
version of this paper is archived at arXiv.org



4 Qinggang Yue1, Zhen Ling2, Xinwen Fu1, Benyuan Liu1, Wei Yu3 and Wei Zhao4

2.2 Deformable Part-based Model (DPM)

DPM [10] is the state-of-art object detector and contains three main components: a
mixture of star-structured part based models, the latent SVM (Support Vector Machine)
training process, and an efficient matching process for object detection. It works as fol-
lows: First, DPM builds multiple star-structured models for the object of interest from
different viewpoints. Each star-structured model has a root model (characterizing the
object as a whole) and several (usually six) part models (characterizing each part of
the object, particularly the anchor position relative to the root and associated deforma-
tion parameters). The models are represented by the Histogram of Oriented Gradients
(HOG) [11] feature, which is insensitive to lighting variation. Second, during the train-
ing, a bounding box is used to specify the object of interest in each image, where its
parts are unlabeled. DPM treats the parts as latent (unknown) variables and employs the
latent SVM to train the model. Finally, to detect objects in an image, DPM calculates a
score for each possible object sample x:

fβ(x) = max
z∈Z(x)

β · Φ(x, z), (2)

where Z(x) are the latent values, β is a vector of model parameters, and Φ(x, z) is the
feature vector of x. A high score indicates the location of the object. In order to conduct
efficient matching, dynamic programming and generalized distance transforms can be
used.

3 Homography Based Attack against Touching Screen

We now introduce the basic idea of the attack and detail each step.

3.1 Basic Idea

Figure 5 shows the flowchart of automatic and blind recognition of touched keys. With-
out loss of generality, we often use the four-digit passcode input for an iPad as our
example.

Fig. 5: Work flow of Blind Recognition of Touched Keys

– Step 1. Take a video of the victim tapping on a device. We do not assume the video
records any text or popup, but we assume the finger movement is recorded.

– Step 2. Preprocess the video and keep only the touch screen area showing moving
fingers. The type of device is known and we also obtain a high resolution image
of the corresponding software keyboard, denoted as reference image, as shown in
Figure 4.



My Google Glass Sees Your Passwords! 5

– Step 3. Detect the video frames, denoted as touching frames, in which the finger
touches the screen surface, as shown in Figure 3.

– Step 4. Identify features of the touch screen surface and derive the planar homog-
raphy matrix between the video frames and the reference image.

– Step 5. Estimate the touched area in the touching image. This is a key step to
implement automated touched key recognition. We use DPM and various computer
vision techniques and obtain a tiny box bounding the touched area.

– Step 6. Identify the touched points from the estimated touched area and map them
to the reference image through homography.

Through the aforementioned steps, if the touched points can be correctly located,
we can disclose the corresponding touched keys. In the following, we introduce the six
steps in detail.

3.2 Step 1: Taking Videos

The adversary takes a video of a victim tapping on a device from a distance. Such sce-
narios include students taking classes, researchers attending conferences, and tourists
gathering and resting in a square. Taking a video in such a place with a lot of people
around should be stealthy. With the development of smartphones, webcams and vari-
ous wearable devices, such kinds of stealthy attacks are feasible. For example, iPhone
and Google Glass cameras have decent resolution. Galaxy S4 Zoom has a 16-megapixel
(MP) rear camera with a 10x zoom lens, weighing only 208g. Amazon sells a webcam-
like plugable 2MP USB 2.0 digital microscope with a 10x-50x optical zoom lens [12].
Many smartwatches also have a decent camera.

Three factors that affect the attack success are angle, distance, and lighting. Recall
the success of the attack relies on accurately identifying touched points. The camera
needs to adjust the angle to record finger movement and the touch screen. For example,
in a conference room, an adversary in the front can use the front camera of his/her phone
to record a person tapping in the back row. The camera cannot be too far away from the
victim; otherwise, it is hard to recognize the finger’s movement on the screen and the
touched area. Of course, a camera with a large optical zoom lens can help in such a
case. Lighting affects the brightness and contrast of the video and thus the recognition
result.

3.3 Step 2: Preprocessing

In the step of preprocessing, we crop the video and keep only the area containing the
moving hand on the touch screen. This removes most of the useless background. If
the device does not move in the touching process, we need only to locate the area of
interest in the first video frame and keep the same area for all the video frames. If the
device moves during the touching process, we need to track its movement and crop the
corresponding area. There are several tracking methods [13]. We choose the predator
in this study [14]. We first draw the bounding box of the target area. The tracker will
follow the movement of the device and return its location in every frame.



6 Qinggang Yue1, Zhen Ling2, Xinwen Fu1, Benyuan Liu1, Wei Yu3 and Wei Zhao4

We are particularly interested in the fingertip area, where the finger touches the
key. The resolution of this area is often very poor. Hence, we resize the cropped video
frame to add redundancy. Specifically, we resize each cropped frame to four times its
original size. We also assume the target device brand is known and that the adversary
can get a high quality image of the software keyboard on the touch screen. This image
is the “reference image,” as shown in Figure 4. The image shows the detailed features of
the device, particularly the touch screen surface. For example, for an iPad, we choose a
black wallpaper so that the touch screen has a high contrast with its white frame. It is not
hard to recognize most tablets and smartphones since each brand has salient features.
For example, by walking past the victim, the adversary can know the device brand. The
adversary may also identify the brand from the video.

3.4 Step 3: Detecting Touching Frames

Touching frames are those video frames in which the finger touches the screen surface.
To detect them, we need to analyze the finger movement pattern in the touching process.
It is very common that users normally use one finger to tap on the screen and input a
passcode. We use this example to demonstrate the essence of our technique.

During the touching process, the fingertip first moves downwards towards the touch
screen, stops, and then moves upwards away from the touch screen. The finger may
also move left or right while moving downwards or upwards. We define the direction
of moving toward the device as positive and the opposite direction as negative. In the
process of a key being touched, the fingertip velocity is first positive while moving
downwards, then zero while stopping on the screen, and finally negative while moving
upwards. This process repeats for each touched key. Hence, a touching frame is one
where the fingertip velocity is around zero. Sometimes the finger moves so fast that
there is no frame where the fingertip has a zero velocity. In such a case, the touching
frame is the one where the fingertip velocity changes from positive to negative.

The challenge to derive the fingertip velocity is to identify the fingertip. The angle
that we use to take the video affects the shape of the fingertip in the video. The fingertip
shape also changes when the soft fingertip touches the hard touch screen surface. Users
may also use different areas of the fingertip to tap the screen. We find that when a user
touches keys with the fingertip, the whole hand most likely follows a similar gesture
and moves in the same direction. Instead of tracking the fingertip to identify a touching
frame, we track the hand, which has a sufficient number of feature points for automatic
tracking.

We adopt optical flow theory [15] to derive the velocity of points on the moving
finger or hand. Optical flow computes the motion of an object between two frames.
The displacement vector of the points between subsequent frames is called the image
velocity or the optical flow at that point. We use the KLT algorithm [16], which can
track sparse points. To make the KLT algorithm effective, we select unique feature
points, which are often corners in the image. The Shi-Tomasi corner detector [17] is
applied to obtain these points. We track several points in case that some points are
lost during tracking. Our experiments also show that each touch with the fingertip may
produce multiple touching frames. This is reasonable because the fingertip is soft. When
a fingertip touches the screen, it deforms and this deforming process takes time. Users



My Google Glass Sees Your Passwords! 7

may also intentionally stop to make sure that a key is touched. During the interaction
between the fingertip and touch screen, some tracked points may also move upward.
We use a simple algorithm to deal with this noise: if the velocity of most of the tracked
points in one frame moves from positive to negative, that frame is a touching frame.
Our experiments show that six points are sufficient to detect all the touching frames.

3.5 Step 4: Deriving the Homography Matrix

In computer vision, automatically deriving the homography matrix H of a planar sur-
face in two images is a well-studied problem [18]. First, a feature detector such as SIFT
(Scale-Invariant Feature Transform) [19] or SURF (Speeded Up Robust Features) [20]
is used to detect feature points. Matching methods such as FLANN (Fast Library for
Approximate Nearest Neighbors) [21] can be used to match feature points in the two
images. The pairs of matched points are then used to derive the homography matrix
through the RANSAC (RANdom SAmple Consensus) algorithm [22].

Nonetheless, these common computer vision algorithms for deriving homography
matrix H are not effective in our context. Because of the angle of taking videos and the
reflection of the touch screen, there are few good feature points in the video frames for
the algorithms mentioned above to work effectively. Intuitively, touch screen corners
are potential good features, but they are blurry in our context since the video is taken
remotely. SIFT or SURF cannot correctly detect these corners.

We derive the homography matrix H in Equation (1) as follows. H has 8 degrees
of freedom. Therefore, to derive the homography matrix, we need 4 pairs of matching
points from the same plane in the touching frame and the reference image. Any three of
them should not be collinear [18]. In our case, we tend to use the corners of the touch
screen as shown in Figures 3 and 4. Because the corners in the image are blurry, in
order to derive the coordinates of these corners, we detect the four edges of the touch
screen. The intersections of these edges are the desired corners. We apply the Canny
edge detector [23] to extract the edges and use the Hough line detector [24] to derive
possible lines in the image. We choose the lines aligned to the edges. Then, we can
calculate intersection points and derive the coordinates of the four corners of interest.
With these four pairs of matching points, we can derive the homopgraphy matrix with
the DLT (Direct Linear Transform) algorithm [18]. If the device does not move during
the touching process, this homography matrix can be used for all the video frames;
otherwise, we should derive H for every touching frame and the reference image.

3.6 Step 5: Estimating the Touched Area

The complication of lighting and shadow makes accurately estimating the touched area
a great challenge. We use the following three steps to this end. First, we apply the object
detector DPM to derive a relatively large bounding box of the touched area. Second,
within the large bounding box, we locate the finger through the k-means clustering of
pixels. Finally, we derive the fingertip direction and train a tiny bounding box at the top
of the fingertip as the accurately touched area.

To employ DPM to derive the bounding box of the touched area, we first generate
positive data (touched area) and negative data (untouched area) to train a model for the



8 Qinggang Yue1, Zhen Ling2, Xinwen Fu1, Benyuan Liu1, Wei Yu3 and Wei Zhao4

touched area. To obtain positive data, we take videos in various scenarios and obtain
the touching frames. For each touching frame, we label the touched area with an appro-
priate bounding box centered at the touched key. Here is how we derive the center of
a key in a touching frame. During the training process, we know the touched keys and
can compute their position by mapping the area of a key from the reference image to
the touching frame with planar homography. DPM needs a bounding box large enough
to perform well and we use a large bounding box of 40 × 30 pixels centered at the
touched key. Different images may have a different bounding box size and DPM will
resize them to a uniform size for training. To obtain negative data, we use the bounding
box around the non-touching fingertip. DPM also generates negative data through data
mining and treats a bounding box with less than 50 percent intersection of positive data
as negative data.

Since the bounding box derived by DPM is often too large, we further locate the
fingertip within the large bounding box. Recall that during the training process, the
center C of the large bounding box estimates the center of a touched key. The fingertip
is around C as most users tend to touch the center of a key. After DPM is applied for
detection, the large bounding box is expected to be centered at the touched key, around
the fingertip. We train a small bounding box around C and use k-means clustering over
this small bounding box to obtain the fingertip contour. First, we convert the region
of this small bounding box into a gray scale image and increase its contrast. Next, k-
means clustering is then used to cluster the pixel values into two categories: dark and
bright. This region of interest is then transformed into a binary image accordingly. The
intuition is that the touching finger is brighter than the area around it. Therefore, we
are able to find the contour of the fingertip using the bright areas. Figure 7 shows the
contour of the fingertip after we process the small bounding box in Figure 6.

Fig. 6: Small Bounding Box Fig. 7: Fingertip Contour Fig. 8: Touched Area

Once the fingertip is located, we can estimate the top of the fingertip and train a
tiny bounding box around this fingertip point as the accurately touched area. To derive
the fingertip top, for each horizontal line of pixels of the fingertip contour, we find its
central points. We then fit a line over these central points. This is the central line of the
finger image and also indicates the finger’s direction. The intersection between this line
and the fingertip contour produces the top and bottom of the fingertip. Figure 7 shows
both the estimated top and bottom of the fingertip and its direction. Figure 8 shows a
tiny bounding box we trained around the top of the fingertip.



My Google Glass Sees Your Passwords! 9

3.7 Step 6 - Recognizing Touched Keys

Although we have derived the tiny and accurate touching area in Figure 8, such an area
is still too large and contains non-touching points. From our analysis and experiments,
an actual key area contains only tens of pixels. Our goal in Step 6 is to recognize these
actual touched points landed in the key area. Once the actual touched points are located,
we can then map them to the reference image in Figure 4. The corresponding points in
the reference image are denoted as mapped points. Such mapped points should land
in the corresponding key area of the software keyboard. Therefore, we can derive the
touched keys. This is the basic idea of blindly recognizing the touched keys even if those
touched keys are not visible in the video. The key challenge is to accurately locate the
touched points in the tiny bounding box.

We now analyze the brightness of the area around the fingertip. Around because of
the lighting over the fingertip and the existence of the fingertip’s virtual image, we can
have five areas with five different types of brightness: bright fingertip top, gray fingertip
middle area, dark fingertip bottom and its virtual image (dark fingertip bottom, dark
fingertip bottom of the virtual image), gray fingertip middle area of the virtual image,
and bright fingertip top of the virtual image.

We can use clustering algorithms to group these five areas of pixels of different
brightness. The k-means clustering algorithm is applied to the pixels in the tiny bound-
ing box in Figure 8. The number of clusters is set as 5. The darkest cluster C indicates the
area where the finger touches the screen surface. We automatically select a pixel in the
upper half of the darkest cluster as the touched point. This touched point is then mapped
to the reference image and the mapped point shall fall onto the correct key. Basically,
the clustering algorithm helps accurately identify the touched point. As an example,
Figure 10 (a) shows the clustered result of the area in the red and tiny bounding box.
The green point is the touched point in the upper half of the darkest area. Figure 10 (b)
shows the mapped point (in green) that falls into the frontal part of key 5. Therefore, 5
is the touched key. Please refer to our technical report [25] for the technical details.

Fig. 9: Five Pixel Groups around Fingertip
Fig. 10: Clustered Result and

Mapped Point



10 Qinggang Yue1, Zhen Ling2, Xinwen Fu1, Benyuan Liu1, Wei Yu3 and Wei Zhao4

4 Evaluation

In this section, we present the experimental design and results to demonstrate the impact
of the blind recognition of touched keys.

4.1 Experiment Design

We have performed extensive experiments on various target devices with different key
sizes, including iPads, iPhones, and Nexus 7 tablets. Three cameras are used, including
the Logitech HD Pro Webcam C920, the iPhone 5 camera, and Google Glass. Most
experiments were performed with the Logitech HD Pro Webcam C920. The last group
of experiments is designed for comparing the web camera, iPhone camera, and Google
glass. In all experiments, we try to recognize 4-digit passcodes, which are randomly
generated. The success rate is defined as the probability that the passcodes are correctly
recognized.

In addition to the different cameras and target devices, we consider the impact from
the following factors: users, the distance between the camera and target device, and the
angle of view of the camera.

– Users: Different people have different finger shapes, fingernail lengths, and touch-
ing gestures. Five females and six males with the experience of using tablets and
smartphones participated in the experiments. They were separated into two groups:
3 people in the first group and 7 people in the second group. These two groups
performed the experiments with iPads. The last group helped us to evaluate the
success rate versus the distance between the camera and the target. For the first
group, we took 10 videos for every person at each angle (front, left, and right of the
target device). Thus, 90 total videos were taken. For the second group, five videos
were taken for every person per angle and thus, 105 total videos were taken. Com-
bined, 195 videos were taken. During the experiments, users tapped in their own
way without any imposed restriction.

– Angles and Distance: To measure the impact of the angle, we put the target in
front, on the left (3 o’clock), and on the right (9 o’clock) of the camera. In the first
two groups of experiments, the camera was 2.1 m to 2.4 m away and around 0.5 m
above the device. To test how the distance affects the recognition results, we also
positioned the camera (the Logitech HD Pro Webcam C920) in front of the target
device (an iPad) at distances of 2 m, 3 m, 4 m, and 5 m away and around one meter
above the target.

– Lighting: The lighting affects the brightness and contrast of the image. The ex-
periments are performed in a classroom with dimmable lamps on the ceiling. The
first group of videos was taken under normal lighting and the second group of ex-
periments was taken under strong lighting conditions. All other experiments were
performed under normal lighting. Darkness actually helps the attack as the touch
screen is brighter in the dark. We did not consider these easy dark scenes in our
experiments.



My Google Glass Sees Your Passwords! 11

4.2 Recognizing Touched Keys on an iPad via a Webcam

Table 1 gives the success rate of recognizing touched keys from videos taken at different
angles. Recall that the success rate is the ratio of the number of the correctly recognized
passcodes (all four digits) to the number of passcodes. For wrong results, we attempt
a second try, trying other candidate passcode digits. It can be observed that the overall
first-time success rate at different angles is more than 80 %. The second time success
rate is higher than the first time success rate and is over 90 %.

Table 1: Clustering Based Matching
Front Left Right Total

First
Time

92.18% 75.75% 79.03 % 82.29%

Second
Time

93.75% 89.39% 90.32% 91.14%

The second try is performed thusly. We often see one or two wrong keys in the
failed experiments. Some of these wrong keys are caused by a DPM that fails to detect
the touched area. Sometimes, even if the touched area is detected, the image can be so
blurry that the pixels around the touched area have almost the same color and it is dif-
ficult to derive the fingertip contour as shown in Figure 7. Other fingers may also block
the touching finger and as a result, incur wrong recognition of the touching fingertip
top. Therefore, we often know which key might be wrong and attempt a second try as
follows. We may manually select the small bounding box of the fingertip in Figure 6 or
the touched area in Figure 8 to correct some errors. From our analysis, for each touch,
we may also produce two candidates. Using one of the two choices, we may correct the
wrong keys for the second attempt. Hence, the second time success rate is higher than
the first time success rate.

Figure 11 presents the results of measuring the impact of the distance between the
camera and the target on the success rate. It can be observed that as the distance in-
creases, the success rate decreases. At a distance of 4 m or 5 m, the first time success
rate is as low as 20 %. This is because at such a distance, the keys in the image are so
small that they are only 1 or 2 pixels wide. Although, it is much more difficult to dis-
tinguish a touched key at such a distance, a camera with a high optical zoom may help.
Nonetheless, our threat model does not allow for the use of these high zoom cameras.

4.3 Comparing Different Targets and Cameras

To compare the success rate of recognizing touched keys on different devices, we per-
form thirty experiments on Nexus 7 and iPhone 5 respectively with the Logitech HD
Pro Webcam C920 from two meters away and about 0.65 m above the device. To com-
pare the success rate achieved by different cameras, we conducted thirty experiments
on iPhone 5 recording passcode inputs on iPad from a similar distance and at a similar
height. Thirty experiments using Google glass were performed by recording passcode
inputs on iPad two meters away and at a human height. Figure 12 presents the results.
It can be observed: (i) in all cases, the first time success rate is more than 80 % and



12 Qinggang Yue1, Zhen Ling2, Xinwen Fu1, Benyuan Liu1, Wei Yu3 and Wei Zhao4

Fig. 11: Success Rate v.s. Distance
Fig. 12: Success Rate

Comparison

the second time success rate is more than 95 %. (ii) iPhone as the spying device pro-
duces the best success rate. (iii) When the target is an iPhone instead of an iPad, we
can still use the webcam to produce a first time success rate of more than 90 %. These
observations further demonstrate the severity of the attack investigated in this paper.

5 Countermeasures

We now discuss countermeasures to computer vision based attacks investigated in this
paper and related work. There are a number of authentication approaches immune
to these attacks to some extent, including biometric-rich gesture-based authentication
[26,27,28] and graphic password schemes [29,30,31]. The idea of a randomized key-
board has been proposed for legacy keypads and touch-enabled devices [32,33,34,35,36,37,38].
We have designed and developed context-aware Privacy Enhancing Keyboards (PEK)
for Androids for the first time. PEK pops up a randomized keyboard on Android systems
for sensitive information such as password inputs and shows a conventional QWERTY
keyboard for normal inputs such as email messages. We have implemented PEK as a
third party app and are also able to convert the internal system keyboard into PEK.

Fig. 13: PEK:
Shuffled Keys - the key
layout is changed for

randomizing keys.

Fig. 14: PEK:
Brownian Motion - keys

move in a Brownian
motion fashion.



My Google Glass Sees Your Passwords! 13

6 Conclusion

In this white paper, we presented a computer vision based attack that blindly recognizes
inputs on a touch screen from a distance automatically. The attack exploits the ho-
mography relationship between the touching images (in which fingers touch the screen
surface) and the reference image of a software keyboard. We used the optical flow algo-
rithm to detect touching frames. The Deformable Part-based Model (DPM) and various
computer vision techniques were used to track the touching fingertip and identify the
touched area accurately. We carefully analyzed the image formation of the touching
fingertip and designed the k-means clustering strategy to recognize the touched points.
Homography is then applied to recognize the touched keys. We performed extensive ex-
periments and the results showed that the first time success rate is more than 80 % and
the second time success rate is more than 90 %. As a countermeasure, we designed a
context aware Privacy Enhancing Keyboard (PEK) that pops up a randomized keyboard
on Android systems for inputting sensitive information such as passwords. Our future
work includes further refinement of the attack and design of alternative authentication
strategies for mobile devices.

Acknowledgement

We thank Yang Zhang from University of Minnesota Twin Cities for the implementation
of the PEK - Brownian Motion, and Yiqi Bai as the female model.

References

1. Juniper Networks, Inc.: Juniper networks third annual mobile threats report.
http://www.juniper.net/us/en/local/pdf/additional-resources/
3rd-jnpr-mobile-threats-report-exec-summary.pdf (2013)

2. Backes, M., Dürmuth, M., Unruh, D.: Compromising reflections or how to read lcd monitors
around the corner. In: Proceedings of IEEE Symposium on Security and Privacy (S&P).
(2008) 158–169

3. Backes, M., Chen, T., Duermuth, M., Lensch, H., Welk, M.: Tempest in a teapot: Com-
promising reflections revisited. In: Proceedings of 30th IEEE Symposium on Security and
Privacy (S&P). (2009) 315–327

4. Balzarotti, D., Cova, M., Vigna, G.: Clearshot: Eavesdropping on keyboard input from video.
In: Proceedings of the 2008 IEEE Symposium on Security and Privacy (S&P). SP’08 (2008)
170–183

5. Maggi, F., Gasparini, S., Boracchi, G.: A fast eavesdropping attack against touchscreens. In:
Proceedings of 2011 7th International Conference on Information Assurance and Security
(IAS). (2011) 320–325

6. Raguram, R., White, A.M., Goswami, D., Monrose, F., Frahm, J.M.: ispy: automatic recon-
struction of typed input from compromising reflections. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS). (2011) 527–536

7. Xu, Y., Heinly, J., White, A.M., Monrose, F., Frahm, J.M.: Seeing double: Reconstructing
obscured typed input from repeated compromising reflections. In: Proceedings of the 20th
ACM Conference on Computer and Communications Security (CCS. (2013)

http://www.juniper.net/us/en/local/pdf/additional-resources/3rd-jnpr-mobile-threats-report-exec-summary.pdf
http://www.juniper.net/us/en/local/pdf/additional-resources/3rd-jnpr-mobile-threats-report-exec-summary.pdf


14 Qinggang Yue1, Zhen Ling2, Xinwen Fu1, Benyuan Liu1, Wei Yu3 and Wei Zhao4

8. Koch, J.: Codescrambler. http://cydia.saurik.com/package/org.
thebigboss.codescrambler/ (2014)

9. Bradski, G.R., Kaehler, A.: Learning opencv, 1st edition. First edn. O’Reilly Media, Inc.
(2008)

10. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with
discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 32 (2010) 1627–1645

11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings
of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR) - Volume 1 - Volume 01. CVPR ’05, IEEE Computer Society (2005) 886–893

12. Plugable: Plugable usb 2.0 digital microscope for windows, mac, linux (2mp,
10x-50x optical zoom, 200x digital magnification). http://www.amazon.
com/Plugable-Digital-Microscope-Windows-Magnification/dp/
B00AFH3IN4/ref=sr_1_1?ie=UTF8&qid=1382796731&sr=8-1&keywords=
optical+zoom+webcam (2013)

13. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4)
(December 2006)

14. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 34(7) (July 2012) 1409–1422

15. Szeliski, R.: Computer Vision: Algorithms and Applications. 1st edn. Springer-Verlag New
York, Inc. (2010)

16. yves Bouguet, J.: Pyramidal implementation of the lucas kanade feature tracker. Intel Cor-
poration, Microprocessor Research Labs (2000)

17. Shi, J., Tomasi, C.: Good features to track. Technical report (1993)
18. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. 2 edn. Cambridge

University Press (2003)
19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal

of Computer Vision 60(2) (November 2004) 91–110
20. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Journal of

Computer Vision and Image Understanding 110(3) (June 2008) 346–359
21. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm config-

uration. In: Proceedings of VISAPP International Conference on Computer Vision Theory
and Applications. (2009) 331–340

22. Huber, P.: Robust Statistics. John Wiley & Sons (1981)
23. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 8(6) (1986) 679–698
24. Matas, J., Galambos, C., Kittler, J.: Robust detection of lines using the progressive proba-

bilistic hough transform. Journal of Computer Vision and Image Understanding 78(1) (2000)
119–137

25. Yue, Q., Ling, Z., Fu, X., Liu, B., Yu, W., Zhao, W.: My google glass sees your passwords!,
http://www.cs.uml.edu/˜xinwenfu/paper/VisionBasedAttack_Fu_
2014.pdf. Technical report (2014)

26. Sae-Bae, N., Ahmed, K., Isbister, K., Memon, N.: Biometric-rich gestures: A novel ap-
proach to authentication on multi-touch devices. In: Proceedings of the 30th ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI). (2012)

27. Yan, Q., Han, J., Li, Y., Zhou, J., Deng, R.H.: Designing leakage-resilient password entry on
touchscreen mobile devices. In: Proceedings of the 8th ACM Symposium on Information,
Computer and Communications Security (AsiaCCS). (2013)

28. Kim, D., Dunphy, P., Briggs, P., Hook, J., Nicholson, J.W., Nicholson, J., Olivier, P.: Multi-
touch authentication on tabletops. In: Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems (CHI). (2010)

http://cydia.saurik.com/package/org.thebigboss.codescrambler/
http://cydia.saurik.com/package/org.thebigboss.codescrambler/
http://www.amazon.com/Plugable-Digital-Microscope-Windows-Magnification/dp/B00AFH3IN4/ref=sr_1_1?ie=UTF8&qid=1382796731&sr=8-1&keywords=optical+zoom+webcam
http://www.amazon.com/Plugable-Digital-Microscope-Windows-Magnification/dp/B00AFH3IN4/ref=sr_1_1?ie=UTF8&qid=1382796731&sr=8-1&keywords=optical+zoom+webcam
http://www.amazon.com/Plugable-Digital-Microscope-Windows-Magnification/dp/B00AFH3IN4/ref=sr_1_1?ie=UTF8&qid=1382796731&sr=8-1&keywords=optical+zoom+webcam
http://www.amazon.com/Plugable-Digital-Microscope-Windows-Magnification/dp/B00AFH3IN4/ref=sr_1_1?ie=UTF8&qid=1382796731&sr=8-1&keywords=optical+zoom+webcam
http://www.cs.uml.edu/~xinwenfu/paper/VisionBasedAttack_Fu_2014.pdf
http://www.cs.uml.edu/~xinwenfu/paper/VisionBasedAttack_Fu_2014.pdf


My Google Glass Sees Your Passwords! 15

29. Biddle, R., Chiasson, S., van Oorschot, P.: Graphical passwords: Learning from the first
twelve years. In: ACM Computing Surveys. (2012)

30. Suo, X., Zhu, Y., Owen, G.S.: Graphical passwords: A survey. In: Proceedings of Annual
Computer Security Applications Conference (ACSAC). (2005)

31. Bulling, A., Alt, F., Schmidt, A.: Increasing the security of gaze-based cued-recall graphi-
cal passwords using saliency masks. In: Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems (CHI). (2012)

32. Hirsch, S.B.: Secure keyboard input terminal. In: United States Patent No. 4,333,090. (1982)
33. Hirsch, S.B.: Secure input system. In: United States Patent No. 4,479,112. (1982)
34. McIntyre, K.E., Sheets, J.F., Gougeon, D.A.J., Watson, C.W., Morlang, K.P., Faoro, D.:

Method for secure pin entry on touch screen display. In: United States Patent No. 6,549,194.
(2003)

35. Hoanca, B., Mock, K.: Screen oriented technique for reducing the incidence of shoulder surf-
ing. In: Proceedings of the International Conference on Security and Management (SAM).
(2005)

36. Shin, H.S.: Device and method for inputting password using random keypad. In: United
States Patent No. 7,698,563. (2010)

37. Lee, C.: System and method for secure data entry. In: United States Patent Application
Publication. (2011)

38. Kim, I.: Keypad against brute force attacks on smartphones. In: IET Information Security.
(2012)


	My Google Glass Sees Your Passwords!
	 Qinggang Yue1, Zhen Ling2, Xinwen Fu1, Benyuan Liu1, Wei Yu3 and Wei Zhao4

