
It Just (Net)works
The Truth About iOS'  

Multipeer Connectivity Framework

Alban Diquet!
@nabla_c0d3



About me

• iOS Security Researcher at Data Theorem 

• Before: Principal Security Consultant at iSEC 
Partners 

• Tools: SSLyze, Introspy, iOS SSL Kill Switch
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Agenda

• What is Multipeer Connectivity? 

• Reversing the MC protocol(s) 

• Security analysis of MC
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What is  
Multipeer Connectivity?

4



5
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Demo
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Motivation
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Reversing the  
MC protocol(s)
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• The App can specify an encryptionPreference  

• Three encryption levels:  
 

 

• No further explanation in the documentation

MC API - Encryption
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• The App can specify a securityIdentity  

• A "security identity" is an X509 certificate and the 
corresponding private key  

• The peer’s identify when pairing with other peers 

• A callback has to be implemented for validating 
other peers’ certificates/identities during pairing: 

MC API - Authentication
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Test Setup
• Macbook in WiFi Access Point mode + 

Wireshark 

• Sample MC App with default MC settings  

• Two devices: 

• iPad Air with Bluetooth disabled 

• iOS Simulator
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Mystery Protocol #1
• Peer connects to the other peer over TCP 

• Each peer sends their “PeerID” first 

• (random) “idString” + device name 

• For example: ”ory2g6r8fkq+iPhone Simulator” 

• Three plists are then exchanged
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Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey 

• Main "payload" of the protocol; briefly mentioned as 
“connection data” in the documentation
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Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey 

• Main "payload" of the protocol; briefly mentioned as 
“connection data” in the documentation
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• The peer’s security settings as bit fields: 

• Encryption level (optional = X00, none = X10, required = X01 ) 

• Whether authentication is enabled (yes = 1XX, no = 0XX) 

• No X509 certificate/identity yet



Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey 

• Main "payload" of the protocol; briefly mentioned as 
“connection data” in the documentation
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• Then a list of local "candidate" IP addresses 

!
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Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey 

• Main "payload" of the protocol; briefly mentioned as 
“connection data” in the documentation
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• Then a list of local "candidate" IP addresses 

• 192.168.1.8 
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Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey 

• Main "payload" of the protocol; briefly mentioned as 
“connection data” in the documentation
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• Then a list of local "candidate" IP addresses  

• 192.168.1.8 

• 169.254.234.105 

• Etc…



Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey 

• Main "payload" of the protocol; briefly mentioned as 
“connection data” in the documentation
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• Then some kind of IDs (according to debug logs)? 
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Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey 

• Main "payload" of the protocol; briefly mentioned as 
“connection data” in the documentation
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• Then some kind of IDs (according to debug logs)? 

• 6F7D4FE3, etc… 
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GCK1 over TCP!
Exchange peer names, security options 

and "candidate" UDP sockets
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Interactive Connectivy 
Establishement
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Mystery Protocol #2
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Mystery Protocol #2
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Mystery Protocol #2
• It’s the protocol used when App data is being exchanged 

• Not plaintext… but Wireshark doesn’t know what it is 

• Clues:  

• Authentication in the MC API relies on X509 certificates 

•  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Mystery Protocol #2
• It’s the protocol used when App data is being exchanged 

• Not plaintext… but Wireshark doesn’t know what it is 
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• Authentication in the MC API relies on X509 certificates 

• When setting a breakpoint on SSLHandshake(), it does get 
triggered…
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Mystery Protocol #2

openssl s_client -dtls1 -connect someserver:443
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Mystery Protocol #2
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Mystery Protocol #2

openssl s_client -dtls1 -connect someserver:443



Pro Packet Trace Editing
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Pro Packet Trace Editing
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• Success!



Mystery Protocol #2
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• DTLS 1.0 with the byte 0xd0 appended to every DTLS 
record 

• _gckSessionRecvMessage() 

• Inside the DTLS stream 

• Simple plaintext protocol 

• The other peer’s PeerID + App data/messages 
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GCK2 over UDP!
Perform DTLS handshake, check the other 

peer’s identity, exchange data

STUN / ICE!
Perform connectivity checks and find the 

best network path to the other peer

Bonjour!
Advertise local MC service, discover  

nearby devices advertising the MC service

A B
GCK1 over TCP!

Exchange peer names, security options 
and "candidate" UDP sockets
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STUN / ICE!
Perform connectivity checks and find the 

best network path to the other peer

GCK1 over TCP!
Exchange peer names, security options 

and network information

Bonjour!
Advertise local MC service, discover  

nearby devices advertising the MC service

Discovery Phase

GCK2 over UDP!
Perform DTLS handshake, check the other 

peer’s identity, exchange data
Session Phase

A B



Security Analysis of 
Multipeer Connectivity
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MC Security Analysis

MCEncryption 
None

MCEncryption 
Optional

MCEncryption 
Required

Without!
Authentication

With 
  Authentication
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MC Security Analysis
• MCEncryptionRequired With Authentication: 

DTLS with mutual authentication 

• Each peer sends their certificate and validate the 
other side’s certificate 

• RSA & EC-DSA TLS Cipher Suites 

• 30 cipher suites supported in total including PFS 
cipher suites.!

• In practice, TLS_RSA_WITH_AES_256_CBC_SHA256 is always 
negotiated, which doesn’t provide PFS
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MC Security Analysis
• MCEncryptionRequired Without Authentication:  

DTLS with Anonymous TLS Cipher Suites 

• No certificates exchanged 

• “Anon" AES TLS cipher suites: 

• TLS_DH_anon_WITH_AES_128_CBC_SHA, 
TLS_DH_anon_WITH_AES_256_CBC_SHA, 
TLS_DH_anon_WITH_AES_128_CBC_SHA256, 
TLS_DH_anon_WITH_AES_256_CBC_SHA256
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MC Security Analysis

MCEncryption 
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MCEncryption 
Optional

MCEncryption 
Required

Without!
Authentication MiTM

With 
  Authentication No PFS
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MC Security Analysis

MCEncryption 
None
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MCEncryption 
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Authentication MiTM

With 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MC Security Analysis

• MCEncryptionNone Without Authentication:  
No DTLS - Plaintext GCK2 protocol
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MC Security Analysis
• MCEncryptionNone With Authentication: 

DTLS with mutual authentication 

• Each peer send their certificate and validate 
the other side’s certificate 

• Plaintext / “No Encryption” TLS Cipher Suites! 

• TLS_RSA_WITH_NULL_SHA , 
TLS_RSA_WITH_NULL_SHA256
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MC Security Analysis
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MC Security Analysis
• MCEncryptionOptional With Authentication!

• ”The session prefers to use encryption, but will 
accept unencrypted connections” 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Conclusion
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MC Security Analysis
• MCEncryptionOptional With Authentication!

• ”The session prefers to use encryption, but will 
accept unencrypted connections” 

• Two peers using MCEncryptionOptional with 
Authentication should get the same security as 
MCEncryptionRequired (ie. use DTLS) 

• Authentication should prevent a man-in-the-
middle from tampering with the network traffic
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GCK2 over UDP!
Perform DTLS handshake, check the other 

peer’s identity, exchange data

STUN / ICE!
Perform connectivity checks and find the 

best network path to the other peer

Bonjour!
Advertise local MC service, discover  

nearby devices advertising the MC service

GCK1 over TCP!
Exchange peer names, security options 

and "candidate" UDP sockets
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MCEncryptionOptional!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled

DTLS with RSA / AES cipher suite

ICE / STUN

Bonjour

• Encrypted & authenticated traffic 
• Same security as MCEncryptionRequired  
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Bonjour
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MCEncryptionOptional!
Authentication Enabled

Bonjour
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Authentication Enabled
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MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled
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MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

DTLS with NULL cipher suite

ICE / STUN

Bonjour

• Plaintext traffic (authenticated)!
• No post-auth checks on the  

MCEncryption parameters exchanged!
• Same security as MCEncryptionNone



MCEncryptionOptional 
Downgrade Attack
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MC Security Analysis

MCEncryption 
None

MCEncryption 
Optional

MCEncryption 
Required

Without!
Authentication Plaintext MitM MitM

With 
  Authentication Plaintext MitM 

(Downgrade) No PFS
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Conclusion
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Conclusion
• Most security settings work as advertised by the MC API 

• Except for MCEncryptionOptional with Authentication 

• Some combinations should never be used 

• MCEncryptionOptional 

• MCEncryptionNone with Authentication 

• Only MCEncryptionRequired with Authentication is 
secure

85



Conclusion

MCEncryption 
None

MCEncryption 
Optional

MCEncryption 
Required

Without!
Authentication Plaintext MitM MitM

With 
  Authentication Plaintext MitM 

(Downgrade) No PFS

86



Conclusion

MCEncryption 
None

MCEncryption 
Optional

MCEncryption 
Required

Without!
Authentication Plaintext MitM MitM

With 
  Authentication Plaintext MitM 

(Downgrade) No PFS

87



Conclusion
• Possible improvements to the MC Framework: 

• MCEncryptionRequired with Authentication:  

• Prioritize PFS TLS Cipher Suites 

• MCEncryptionOptional with Authentication: 

• Peers should validate security parameters post-
authentication to prevent downgrade attacks 

• Better: remove MCEncryptionOptional and make 
MCEncryptionRequired the default setting?
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Thanks!
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More at  
https://nabla-c0d3.github.io

https://nabla-c0d3.github.io

