
It Just (Net)works
The Truth About iOS'

Multipeer Connectivity Framework

Alban Diquet!
@nabla_c0d3

About me

• iOS Security Researcher at Data Theorem

• Before: Principal Security Consultant at iSEC
Partners

• Tools: SSLyze, Introspy, iOS SSL Kill Switch

2

Agenda

• What is Multipeer Connectivity?

• Reversing the MC protocol(s)

• Security analysis of MC

3

What is
Multipeer Connectivity?

4

5

Multipeer Connectivity

Demo

6

Motivation

7

Reversing the
MC protocol(s)

8

• The App can specify an encryptionPreference  

• Three encryption levels:  
 

 

• No further explanation in the documentation

MC API - Encryption

9

• The App can specify a securityIdentity  

• A "security identity" is an X509 certificate and the
corresponding private key

• The peer’s identify when pairing with other peers

• A callback has to be implemented for validating
other peers’ certificates/identities during pairing: 

MC API - Authentication

10

Test Setup
• Macbook in WiFi Access Point mode +

Wireshark

• Sample MC App with default MC settings

• Two devices:

• iPad Air with Bluetooth disabled

• iOS Simulator

11

12

13

14

A B

15

??? over TCP!
!

STUN / ICE!

Bonjour!
!

A B

??? over UDP!
!

16

??? over TCP!
!

STUN / ICE!

Bonjour!
!

A B

??? over UDP!
!

17

??? over TCP!
!

STUN / ICE!

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B

??? over UDP!
!

18

??? over TCP!
!

STUN / ICE!

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B

??? over UDP!
!

19

20

Mystery Protocol #1
• Peer connects to the other peer over TCP

• Each peer sends their “PeerID” first

• (random) “idString” + device name

• For example: ”ory2g6r8fkq+iPhone Simulator”

• Three plists are then exchanged

21

22

A B

23

A B

24

A B

25

A

26

A B

27

A B

28

A B

29

A B

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

30

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

31

• The peer’s security settings as bit fields:

• Encryption level (optional = X00, none = X10, required = X01)

• Whether authentication is enabled (yes = 1XX, no = 0XX)

• No X509 certificate/identity yet

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

32

• Then a list of local "candidate" IP addresses

!

!

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

33

• Then a list of local "candidate" IP addresses

• 192.168.1.8

!

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

34

• Then a list of local "candidate" IP addresses

• 192.168.1.8

• 169.254.234.105

• Etc…

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

35

• Then some kind of IDs (according to debug logs)?

!

Mystery Protocol #1
• Each peer exchanges their MCNearbyConnectionDataKey

• Main "payload" of the protocol; briefly mentioned as
“connection data” in the documentation

36

• Then some kind of IDs (according to debug logs)?

• 6F7D4FE3, etc…

37

GCK1 over TCP!
Exchange peer names, security options

and "candidate" UDP sockets

STUN / ICE!

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B

??? over UDP!
!

38

STUN / ICE!

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B
GCK1 over TCP!

Exchange peer names, security options
and "candidate" UDP sockets

??? over UDP!
!

Interactive Connectivy
Establishement

39

40

STUN / ICE!
Perform connectivity checks and find the

best network path to the other peer

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B
GCK1 over TCP!

Exchange peer names, security options
and "candidate" UDP sockets

??? over UDP!
!

41

STUN / ICE!
Perform connectivity checks and find the

best network path to the other peer

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B
GCK1 over TCP!

Exchange peer names, security options
and "candidate" UDP sockets

??? over UDP!
!

Mystery Protocol #2

42

Mystery Protocol #2

43

Mystery Protocol #2
• It’s the protocol used when App data is being exchanged

• Not plaintext… but Wireshark doesn’t know what it is

• Clues:

• Authentication in the MC API relies on X509 certificates

•  

44

Mystery Protocol #2
• It’s the protocol used when App data is being exchanged

• Not plaintext… but Wireshark doesn’t know what it is

• Clues:

• Authentication in the MC API relies on X509 certificates

• When setting a breakpoint on SSLHandshake(), it does get
triggered…

45

Mystery Protocol #2
• It’s the protocol used when App data is being exchanged

• Not plaintext… but Wireshark doesn’t know what it is

• Clues:

• Authentication in the MC API relies on X509 certificates

• When setting a breakpoint on SSLHandshake(), it does get
triggered…

46

47

Mystery Protocol #2

openssl s_client -dtls1 -connect someserver:443

48

Mystery Protocol #2

openssl s_client -dtls1 -connect someserver:443

49

Mystery Protocol #2

openssl s_client -dtls1 -connect someserver:443

Pro Packet Trace Editing

50

Pro Packet Trace Editing

51

• Success!

Mystery Protocol #2

52

• DTLS 1.0 with the byte 0xd0 appended to every DTLS
record 

• _gckSessionRecvMessage() 

• Inside the DTLS stream

• Simple plaintext protocol

• The other peer’s PeerID + App data/messages

53

GCK2 over UDP!
Perform DTLS handshake, check the other

peer’s identity, exchange data

STUN / ICE!
Perform connectivity checks and find the

best network path to the other peer

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

A B
GCK1 over TCP!

Exchange peer names, security options
and "candidate" UDP sockets

54

STUN / ICE!
Perform connectivity checks and find the

best network path to the other peer

GCK1 over TCP!
Exchange peer names, security options

and network information

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

Discovery Phase

GCK2 over UDP!
Perform DTLS handshake, check the other

peer’s identity, exchange data
Session Phase

A B

Security Analysis of
Multipeer Connectivity

55

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication

With 
 Authentication

56

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication

With 
 Authentication

57

MC Security Analysis
• MCEncryptionRequired With Authentication: 

DTLS with mutual authentication

• Each peer sends their certificate and validate the
other side’s certificate

• RSA & EC-DSA TLS Cipher Suites

• 30 cipher suites supported in total including PFS
cipher suites.!

• In practice, TLS_RSA_WITH_AES_256_CBC_SHA256 is always
negotiated, which doesn’t provide PFS

58

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication

With 
 Authentication No PFS

59

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication

With 
 Authentication No PFS

60

MC Security Analysis
• MCEncryptionRequired Without Authentication:  

DTLS with Anonymous TLS Cipher Suites

• No certificates exchanged

• “Anon" AES TLS cipher suites:

• TLS_DH_anon_WITH_AES_128_CBC_SHA,
TLS_DH_anon_WITH_AES_256_CBC_SHA,
TLS_DH_anon_WITH_AES_128_CBC_SHA256,
TLS_DH_anon_WITH_AES_256_CBC_SHA256

61

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication MiTM

With 
 Authentication No PFS

62

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication MiTM

With 
 Authentication No PFS

63

MC Security Analysis

• MCEncryptionNone Without Authentication:  
No DTLS - Plaintext GCK2 protocol

64

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MiTM

With 
 Authentication No PFS

65

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MiTM

With 
 Authentication No PFS

66

MC Security Analysis
• MCEncryptionNone With Authentication: 

DTLS with mutual authentication

• Each peer send their certificate and validate
the other side’s certificate

• Plaintext / “No Encryption” TLS Cipher Suites!

• TLS_RSA_WITH_NULL_SHA , 
TLS_RSA_WITH_NULL_SHA256

67

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MiTM

With 
 Authentication Plaintext No PFS

68

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MiTM

With 
 Authentication Plaintext No PFS

69

MC Security Analysis
• MCEncryptionOptional With Authentication!

• ”The session prefers to use encryption, but will
accept unencrypted connections” 
 
 
 
 
 

70

Conclusion

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MitM MitM

With 
 Authentication Plaintext No PFS

71

Conclusion

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MitM MitM

With 
 Authentication Plaintext No PFS

72

MC Security Analysis
• MCEncryptionOptional With Authentication!

• ”The session prefers to use encryption, but will
accept unencrypted connections”

• Two peers using MCEncryptionOptional with
Authentication should get the same security as
MCEncryptionRequired (ie. use DTLS)

• Authentication should prevent a man-in-the-
middle from tampering with the network traffic

73

74

GCK2 over UDP!
Perform DTLS handshake, check the other

peer’s identity, exchange data

STUN / ICE!
Perform connectivity checks and find the

best network path to the other peer

Bonjour!
Advertise local MC service, discover

nearby devices advertising the MC service

GCK1 over TCP!
Exchange peer names, security options

and "candidate" UDP sockets

75

MCEncryptionOptional!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled

DTLS with RSA / AES cipher suite

ICE / STUN

Bonjour

• Encrypted & authenticated traffic
• Same security as MCEncryptionRequired

76

Bonjour

77

MCEncryptionOptional!
Authentication Enabled

Bonjour

78

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

Bonjour

79

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

Bonjour

80

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

ICE / STUN

Bonjour

81

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

MCEncryptionOptional!
Authentication Enabled

MCEncryptionNone!
Authentication Enabled

DTLS with NULL cipher suite

ICE / STUN

Bonjour

• Plaintext traffic (authenticated)!
• No post-auth checks on the  

MCEncryption parameters exchanged!
• Same security as MCEncryptionNone

MCEncryptionOptional
Downgrade Attack

82

MC Security Analysis

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MitM MitM

With 
 Authentication Plaintext MitM

(Downgrade) No PFS

83

Conclusion

84

Conclusion
• Most security settings work as advertised by the MC API

• Except for MCEncryptionOptional with Authentication

• Some combinations should never be used

• MCEncryptionOptional

• MCEncryptionNone with Authentication

• Only MCEncryptionRequired with Authentication is
secure

85

Conclusion

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MitM MitM

With 
 Authentication Plaintext MitM

(Downgrade) No PFS

86

Conclusion

MCEncryption
None

MCEncryption
Optional

MCEncryption
Required

Without!
Authentication Plaintext MitM MitM

With 
 Authentication Plaintext MitM

(Downgrade) No PFS

87

Conclusion
• Possible improvements to the MC Framework:

• MCEncryptionRequired with Authentication:

• Prioritize PFS TLS Cipher Suites

• MCEncryptionOptional with Authentication:

• Peers should validate security parameters post-
authentication to prevent downgrade attacks

• Better: remove MCEncryptionOptional and make
MCEncryptionRequired the default setting?

88

Thanks!

89

More at  
https://nabla-c0d3.github.io

https://nabla-c0d3.github.io

