GRR Artifacts

Greg Castle
Blackhat 2014
Contact: grr-dev@googlegroups.com

Abstract

During a security investigation responders need to quickly retrieve common pieces of
information that include items such as logs, configured services, cron jobs, patch state, user
accounts, and much more. These pieces of information are known as forensic artifacts, and
their location and format vary drastically across systems. We have built a framework to
describe forensic artifacts that allows them to be collected and customised quickly using the
GRR Rapid Response open source live forensics system. We aim to provide a centralized,
free, community sourced, knowledge base of forensic artifacts that the world can use both as an
information source and within other tools.

Background

In a windows response scenario you might be interested in retrieving items such as the registry
hives, event logs, user accounts, runkeys, running services, and ‘at’ jobs. Many investigators
hold the location of all this information in their heads, internal wiki’s, text files etc. that have been
built from years of experience, but this doesn’t scale well.

Increasingly investigators need to operate outside of their comfort zones on unfamiliar operating
systems with unfamiliar software. In these scenarios investigators will rely on information such
as forensicswiki, forensicartifacts.com, blogposts, conference slides and whatever other
information is available. The problems here are:

The information isn’t machine readable
Accuracy and completeness varies wildly
Information is often published once and never updated, and where updates are needed
it's often easier to republish than edit the old content

e There’s no consistent format to specify machine specific data like usernames, Windows
user SIDs, home directories etc. that is needed to fully specify many important
user-specific artifacts

e There are no good ways to build logical groups of information like “All persistence
mechanisms”

https://code.google.com/p/grr/
http://www.google.com/url?q=http%3A%2F%2Fforensicswiki.org%2Fwiki%2FMain_Page&sa=D&sntz=1&usg=AFQjCNGzPGrImaT6lMMIrLKCiK1CISa8lQ
http://www.google.com/url?q=http%3A%2F%2Fforensicartifacts.com%2F&sa=D&sntz=1&usg=AFQjCNHft-T7hbrqirmMjwpTz9wXzqes5A

Goals

The goals of the GRR artifacts implementation are:

e Describe artifacts with enough precision that they can be collected automatically without
user input.

e Cover modern versions of Mac, Windows, and Linux and common software products of
interest for forensics.

e Provide a standard variable interpolation scheme that allows artifacts to simply specify
concepts like "all user home directories", % TEMP%, %SYSTEMROOT% etc.

e Allow grouping across operating systems and products e.g. “Chrome Webhistory”
artifact knows where the web history is for Chrome on Mac/Win/Linux.

e Allow grouping of artifacts into high level concepts like “Persistence Mechanisms”, and
investigation specific meta-artifacts.

e To create simple, shareable, non-grr-specific human-readable definitions that allow
people unfamiliar with the system to create new artifacts. i.e. not XML or a domain
specific language.

e The ability to write new artifacts, upload them to GRR and be able to collect them
immediately.

Artifacts vs. 10Cs

While there are some similarities with Indicators of Compromise (I0Cs), the intent is quite
different and artifacts are not intended to be IOCs on their own. An IOC might read something
like this:

If filename “temp.exe” contains string “evil” or is signed by “stolen
cert”

In contrast a GRR artifact definition would be purely data, no logic, and describe legitimate
system state rather than malware state like, the user runkeys are at:

HKEY USERS\%%users.sid%%\Software\Microsoft\Windows\CurrentVersion\Ru
n*

There are many, many standards in this general space: OpenlOC, CyBox, STIX, MAEC,
CAPEC, TAXII, Oval, SCAP, IODEF, Yara, Veris, IDMEF, but none tackle the artifact problem as
described above.

http://www.google.com/url?q=http%3A%2F%2Fwww.openioc.org%2F&sa=D&sntz=1&usg=AFQjCNHDCyYOZ85ZII_GUeyfDeClYXYFfw
http://www.google.com/url?q=http%3A%2F%2Fcybox.mitre.org%2F&sa=D&sntz=1&usg=AFQjCNHXTtZbUcoGwGhynj3DbrL8okHumw
http://www.google.com/url?q=http%3A%2F%2Fstix.mitre.org%2F&sa=D&sntz=1&usg=AFQjCNE18mmPEpWtOPUwR1j7hGGkkS7ziQ
http://www.google.com/url?q=http%3A%2F%2Fmaec.mitre.org%2F&sa=D&sntz=1&usg=AFQjCNG042O6G9GMhqPD1LFiJbcMlpTxMQ
http://www.google.com/url?q=http%3A%2F%2Fcapec.mitre.org%2F&sa=D&sntz=1&usg=AFQjCNEqva_VY8c7uMapxRXizqWyuKtQLg
http://www.google.com/url?q=http%3A%2F%2Ftaxii.mitre.org%2F&sa=D&sntz=1&usg=AFQjCNEz7SXIjQxo3X_5iYuPH94LG63XkA
https://www.google.com/url?q=https%3A%2F%2Foval.mitre.org%2F&sa=D&sntz=1&usg=AFQjCNGvkyC8JihxK1cn5taoOOOylM2W5w
http://www.google.com/url?q=http%3A%2F%2Fscap.nist.gov%2F&sa=D&sntz=1&usg=AFQjCNHvwGAi0jokOeLtIAmguWD99UrDcA
http://www.google.com/url?q=http%3A%2F%2Fwww.ietf.org%2Frfc%2Frfc5070.txt&sa=D&sntz=1&usg=AFQjCNHVnXL7gc1bpD1QcIuPBf4EPv-s3g
http://www.google.com/url?q=http%3A%2F%2Fplusvic.github.io%2Fyara%2F&sa=D&sntz=1&usg=AFQjCNFXQkAvil0scI5wqcL8voKRbqkMsA
http://www.google.com/url?q=http%3A%2F%2Fwww.veriscommunity.net&sa=D&sntz=1&usg=AFQjCNEHZgCWojWvjvzOfaF9PfXUE-lrmg
http://www.google.com/url?q=http%3A%2F%2Fwww.ietf.org%2Frfc%2Frfc4765.txt&sa=D&sntz=1&usg=AFQjCNEEoJBWROL__gup8oLXMlwWRKcrCw

GRR Artifacts

GRR artifacts are defined in YAML, with a style guide here. We use a standard set of machine
information collected from the host for variable interpolation. This collection of data is called the
knowledgebase and is referenced with a %%variable%% syntax. A simple artifact example is:

name: WinPathEnvironmentVariable
doc: The %PATHS$ environment variable.
collectors:
- collector type: REGISTRY VALUE
args: {path: '%%current control_ set%%\Control\Session
Manager\Environment\Path'}
provides: [environ path]
supported os: [Windows]
urls: ['http://environmentvariables.org/WinDir']

Dependencies (e.g. this artifact depends on the current_control_set from the knowledgebase)
are determined by analysing paths and finding corresponding “provides” entries.

Differences across OSes are handled simply:

name: SafariHistory
doc: Safari browser history (History.plist).
collectors:
- collector type: FILE
args:
path list:

'$%users.localappdata%%\Apple Computer\Safari\History.plist'
users.appdata%$%$\Roaming\Apple
Computer\Safari\History.plist'

supported os: [Windows]

°7o°
1009
0

- collector type: FILE
args:
path list:
- '%%users.homedir%$%/Library/Safari/History.plist'
supported os: [Darwin]
labels: [Browser]
urls: ['http://www.forensicswiki.org/wiki/Apple Safari']

as are differences between OS versions:

name: SetupApilogs

http://www.google.com/url?q=http%3A%2F%2Fwww.yaml.org%2F&sa=D&sntz=1&usg=AFQjCNE_JCZxz8QmoEzaQfXazMyy1JeMhA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgoogle%2Fgrr-doc%2Fblob%2Fmaster%2Fartifact_yaml_style.adoc&sa=D&sntz=1&usg=AFQjCNFGw7NyZgZkUkpTJshWL3qex7UvwQ
https://code.google.com/p/grr/source/browse/proto/knowledge_base.proto

doc: Windows setup API logs.
collectors:
- collector type: FILE
args: {path list: ['$%environ systemroot%%\setupapi.log']}
conditions: [os_major_ version < 6]
- collector type: FILE
args:
path list:

environ systemroot$%\inf\setupapi.app.log’

o° o° oo

o
(¢}
$environ systemroot%%\inf\setupapi.dev.log'
o
(¢}

environ systemroot$%\inf\setupapi.offline.log’
conditions: [os_major_version >= 6]

labels: [Logs]

supported os: [Windows]

urls: ['http://www.forensicswiki.org/wiki/Setup API Logs']

The artifact defines where the data lives. Once it is retrieved by GRR a parser can optionally be
applied to turn the collected information into a more useful format, such as parsing a browser
history file to produce URLs.

To re-use GRR artifacts a project needs to:

1. Support path globbing: the \file\path*\something syntax is used extensively.

2. Have a means to populate some or all of the knowledgebase information, such as from a
live system, dead disk analysis, or memory analysis. Most artifacts can be supported
with a minimal set of information (usernames and homedirs on OS X and Linux,
%SystemRoot%, CurrentControlSet and some user data on Windows).

3. Be able to ingest YAML (support exists for by most programming languages)

GRR currently defines around 130 different artifacts and 30 parsers. Artifacts have already
proven very useful in real-world investigations.

Future Work

The format will likely change slightly in the near future as we iterate on the GRR artifact collection
implementation, but any conversion required from the existing artifact should be simple. Inside
GRR we want to make collecting large numbers of artifacts even faster, make dependencies
more obvious, and debugging an artifact dependency chain easier. We’re also thinking about
using strong typing with artifacts to enable sharing and re-use of parsers, and simpler

processing of results outside of GRR.

https://code.google.com/p/grr/source/browse/#git%2Fparsers
http://www.google.com/url?q=http%3A%2F%2Fyaml.org%2F&sa=D&sntz=1&usg=AFQjCNFfLZjQNd9bOh3f_RlKRvd7Mzmt7A
https://code.google.com/p/grr/source/browse/#git%2Fartifacts
https://code.google.com/p/grr/source/browse/#git%2Fparsers

The Plaso project (formerly log2timeline) developers are actively investigating using GRR
artifacts and we welcome other collaborators. The Rekall framework may also re-use some
artifacts.

We have experimented with using artifacts for complex fleet checking, sort of an IOC minus the
logic. This approach combined with a logic engine like Yara, could provide a full-fledged 10C
capability in the future.

http://www.google.com/url?q=http%3A%2F%2Fplaso.kiddaland.net%2F&sa=D&sntz=1&usg=AFQjCNGK82MJS6lDKioX2xendcz1NSZzGQ
http://www.google.com/url?q=http%3A%2F%2Fwww.rekall-forensic.com%2F&sa=D&sntz=1&usg=AFQjCNHidpURJs8ySmjPeKiJE3Mfu_vitg
https://code.google.com/p/grr/source/browse/artifacts/kaspersky_careto.yaml

