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LIFECYCLE OF A PHONE 
FRAUDSTER: FROM ACCOUNT 
RECONNAISSANCE TO 
TAKEOVER 



ONE IN EVERY 2,901 CALLS IS FRAUD 
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PHONE FRAUD BY THE NUMBERS 

12% – 94%  
Awareness of fraud on the phone channel 

 

5 

Avg. # of calls needed to compromise an account 

 

$700,000 
Largest financial transaction loss stopped  

 

$0.57 

Dollars lost for every call into your call center 



LOSS 
• Packet loss  
• Robotization  

• Dropped frames 
 

SPECTRUM 
• Quantization  

• Frequency filters 
• Codec artifacts 

 
NOISE 
• Clarity 

• Correlation  
• Signal-to-noise ratio 

147 audio features  
in each fingerprint 

Phone Type Geo-Location Risk Score 

PHONEPRINTING™ 

Phoneprint™ 

Call Audio 
Requires 15 seconds 

 of call audio 



FRAUD DETECTION SYSTEM 
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ANALYSIS AT SCALE 

 
100 Million calls 

18 Million Originating ANIs 
12 Million Accounts 



GENUINE FROM FRAUD 
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Score Threshold 

% genuine above % fraud above 

At score threshold of 60, stop 91% of fraud while passing 99% of genuine	
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FRAUD CALL DISTRIBUTION 
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Cell	



48%	


52%	



29%	

 27%	



44%	



Land	

 VoIP	

Domestic	

 International	





9 HIGH RISK COUNTRIES 



WEST AFRICA “ONE” 

Magrathea 



FRAUDSTER PROFILE 



VOICE DISTORTION 



CDR ANALYSIS 



CHARACTERISTICS OF CDR DATA 

●  Basic metadata about calls 
o  Source and destination ANIs 
o  Start and end timestamps of call 

●  Advanced application-specific metadata 
o  IVR call flow information 
o  Account numbers and other user information 
o  Tower & base station information (for cell networks) 



GRAPH REPRESENTATION OF CDRS 

●  Directed graph: ANIs 
as nodes, edges from 
source to target  

●  Edges annotated with 
timing and other 
information 

●  Can include other 
elements as nodes 
e.g. account numbers 



FEATURES FOR CDR ANALYSIS 

●  Reputation features 
o  Carrier, device type, prepaid status of source ANI 
o  Complaints against source ANI 

●  Velocity (graph) features 
o  Number of ANIs & accounts targeted by source ANI 
o  Frequency and duration of calls from ANI 
o  Application-specific features e.g. ANI scanning, 

number of authentication attempts 



FEATURES FOR CDR ANALYSIS 

●  Behavior features from IVR 
o  Call flow sequence in the IVR e.g. [Account Entry, 

PIN Entry, Balance Check] 
o  Use call flow sequences from single or multiple calls 
o  Break up sequences into short chunks 
o  Represent chunks as fixed-length, numeric vectors 
o  Select top K features using feature selection 

techniques e.g. chi-squared 



CASE STUDY 1: CALLING CARD TELCO 

●  Premium rate services fraud 
o  Fraudsters using stolen calling cards to call fake 

‘premium’ numbers abroad 
o  Use of automated robots to discover valid customer 

ANIs (ANI scanning) and dial out using those ANIs 
●  Our CDR analysis approach  

o  Create features based on graph analysis, duration 
of calls, and interval between subsequent calls 

o  Create a custom feature to identify scanning 



WE DETECT ANI SCANNING 

●  Detect over 80% of premium rate fraud, up to 10 
days before actual fraud calls 

●  ANI scanning feature detects 50% of fraud  

Premium Rate Fraud	





CASE STUDY 2: BENEFITS PROVIDER 

●  Fraudulent claims in state benefits 
o  Fraudsters suspected of performing reconnaissance 

over IVR to find valid info 
o  Use of valid account info for account takeovers 

●  Our approach 
o  Combine reputation, velocity and behavior features 
o  Train model over labeled set of calls 
o  Use model to score incoming calls 



WE FIND IVR RECONNAISSANCE 
●  Suspicious activity on 46% of accounts up to 2 months before fraud 
●  Specific instances of reconnaissance in IVR 

●  ANI: 209-532-XXXX	


●  7 consecutive calls in 1 hour	


●  Sequence of invalid Account 

number (PAN) entry attempts, 
followed by successful PAN entry 
and PIN entry. 	





ML TRAINING AT SCALE 



REAL-TIME PREDICTION ARCHITECTURE 



MONGODB: LESSONS LEARNED  

●  Bulk Ingest 
o  Use Journaled Write-Concern for Inserts. 

Acknowledged Write-Concern for Updates. 
●  Query 

o  Use Aggregations API + Indexes to generate IVR 
and CDR features. 

●  Prediction 
o  Store feature vectors as Binary BSON objects. 



CONCLUSION 

●  Account takeover – acoustical anomalies 
●  > 80% TDR, < 2% FPR 
●  52% coming from international locations 

●  Account reconnaissance – CDR analysis 
●  46% detected 2 months before attack 

●  Detect pre-crime, zero day attacks and repeat 
attacks on the phone channel by complete 
understanding of lifecycle of a fraudster 



PINDROP SECURITY 
vijay@pindropsecurity.com 
raj@pindropsecurity.com 
tcalhoun@pindropsecurity.com 
 



Good Fraud 

PINDROP PHONEPRINT 


