
1

Enhancing Automated Malware Analysis Machines
with Memory Analysis

Tomer Teller, Adi Hayon

Security Innovation Group
Check Point Software Technologies

{tomert,adiha}@checkpoint.com

Abstract—In this paper, we present novel methods based
on memory analysis to enhance automated malware analysis
machines and boost malware detection rates of executable files.

Keywords—Malware Analysis, Malware Detection, Memory
Analysis,

I. INTRODUCTION

In the last year, we have witnessed a plethora of malicious
samples that would render signature and heuristics based-
detection completely useless. This includes non-persistent,
volatile payloads that operate only in memory, obfuscated
/ packed samples that decrypt themselves on-demand dur-
ing run-time and evasive user-mode / kernel-mode rootk-
its that subvert the automated malware analysis machines.
The increasing amount and diversity of malicious samples
render manual malware analysis inefficient, time consuming
and not scalable. Proliferation of this threat forced security
professionals to automate the malware analysis process with
Automated Malware Analysis Systems. These systems analyze
a potentially malicious sample using a mixture of techniques to
detect malicious activity, mainly Static Analysis and Dynamic
Analysis.

Static Analysis:

The act of analyzing a given sample without executing it to
get a better understanding of what it does. This includes but
is not limited to checking the sample’s MD5, Import Hash[2]
and fuzzy hash values against VirusTotal as well as checking
if the sample is similar to another sample that the analyst has
already seen in the past by disassembling its functions and
using binary diffing techniques.

Dynamic Analysis:

The act of analyzing a given sample by executing it in-
side a controlled environment for a configurable amount of
time, observing its behavior and flagging suspicious/malicious
activities. When time is up, the sample residues are collected
from the controlled environment, processed and analyzed. This
includes actions such as API call sequence analysis, control-
flow/data-flow analysis and dynamic binary instrumentation
(DBI).

Current Analysis Limitations:

While these analysis methods are proven, malware authors
introduced new evasion techniques to render them unsuccess-
ful. Obfuscators, Cryptors and Packers are just some of the
tools attackers have in their arsenal to evade static analysis.
These tools mutate, obfuscate and pack code sections to look
different from any other sample, modify the entry point to
make it hard to reverse engineer, insert anti-debugging tricks
to make it challenging to debug and destroy import tables
to blur the sample intentions. These techniques[4] pushed
malware researchers towards dynamic analysis, that is, instead
of fighting with the sample statically, they simply run it in
a controlled environment and observe its execution. Unfortu-
nately, malware authors prevailed and introduced new tricks in
that field as well. Sleeping (“running out the clock”), detecting
the underlying virtual/analysis machine and user-interaction
which forces a human to click on dialogs or move the mouse
are just some of the evasion techniques malware employ today
to dodge dynamic analysis. In general, during dynamic analysis
the concept of “what you see is what you get” applies. If the
malware “feels comfortable” on the machine, it will execute
its malicious logic, if not, it may mislead the researcher and
act benign. With dynamic analysis, code coverage may depend
on input given to the sample throughout its execution. While
analyzed in an automated system, this input is minimal.
While these evasion techniques are becoming a bigger chal-
lenge for security researchers, this paper does not cover
solutions to these issues.
Most dynamic-based analysis systems are based on a pre-
defined list of API call sequences. Each sequence defines a
certain behavior in the system. To illustrate how API call
sequence detection works, consider the following example:

Example 1. An automated malware analysis machine executes
a sample and monitors all the API calls that occurred in a sys-
tem. It then detects the following 3-gram sequence {WritePro-
cessMemory,CreateRemoteThread,LoadLibrary} (with specific
parameters). This sequence indicates a DLL injection into a
process and is a known trick used by malware to remain
persistent on the machine. At this point, the system may raise
a flag since a known malicious behavior was observed during
execution.

Unfortunately, there exists a plethora of techniques that mal-
ware authors introduced in order to evade API call sequences
including but not limited to:



2

1) User-mode / Kernel-mode rootkits can hook and sub-
vert WinAPI calls, thus bypassing the entire API call
sequence mechanism [5]

2) Calling undocumented functions that achieve the same
malicious behavior and are not listed in the predefined
list of API call sequences

3) Calling non-hooked native functions
4) Custom WinAPI function implementations

These limitations led malware analysts to include Memory
Analysis into the investigation process.

II. MEMORY ANALYSIS

Memory Analysis is the act of analyzing a snapshot of the
physical memory image at some point(s) in time to determine
the overall state of a computer. Since every OS object ends up
on the RAM at some point, this is a great place to look for
malicious artifacts.
In-memory data includes but is not limited to:

• Processes and Threads (current and terminated)
• File Handles
• Network Objects (open TCP/UDP connections)
• Modules / Drivers
• Caches
• Windows Registry keys

By analyzing memory objects, Memory Analysis can help:
• Discover system inconsistencies that might indicate a

rootkit
• Collect hidden artifacts that cannot be retrieved using

the OS-provided API (e.g. user passwords / cookies)
• Identify system activity and overall machine state
• Pinpoint malware that operates in-memory only

Digital Forensics and Incident Response (DFIR) practitioners
use commercial and open-source tools to extract these digital
artifacts from the memory image (RAM) and detect malicious
activity. These tools use techniques such as pool tag scanning
and file carving to retrieve data and do not rely on API calls
that can be subverted. While it may seem like memory analysis
is a great tool for dissecting malware, it comes with a price
and some disadvantages.

Memory Analysis Limitations
• The process of running memory analysis tools is manual

and does not scale
• Interpreting output from tools requires deep knowledge

in OS internals
• Anti-Forensics tools exist [8] to prevent memory acqui-

sition [7] and analysis as well as plant fake artifacts
in-memory to decoy the investigation [6]

• Artifacts from a single memory dump lack context,
since there is no baseline memory dump to compare
it with. It is difficult to make meaningful conclusions
without information about when the artifact was created,
modified, deleted, etc

• Taking memory dumps requires accurate timing. If we
take it at the wrong time, we may “miss the action”,
that is, malicious artifacts may not exist yet or already
disappear from memory

Current Memory Analysis Automated Approach
Today, automated solutions that perform memory analy-

sis execute a suspicious sample in a controlled environment
and take a memory dump for offline investigation when the
sample terminates. Since memory is volatile, this approach
risks “missing in on the action” as malicious artifacts may
appear and disappear intermittently. A possible solution to this
problem can come in a form of interval-based memory dumps.

Possible Solution: Interval-Based Memory Dumps
In this approach, we configure the controlled environment to

grab a memory dump in intervals. While this process may yield
better results, it has the huge disadvantage of being random,
that is, the time the memory dumps are taken is arbitrary and
the memory dump itself may not contain the malicious artifacts
that the analyst was looking for as they may slip in-between
the memory dump intervals.
To illustrate this problem, consider an automated system that
runs a malicious sample and is configured to take a memory
dump every 30 seconds:

[time 00:00:00] Malware is executed
[time 00:00:05] Allocates memory in a remote process
[time 00:00:07] Writes code to the allocated region
[time 00:00:15] Executes the code
[time 00:00:22] Free the code
[time 00:00:30] Memory Snapshot is taken

Since the malware cleaned the evidence from memory before
the snapshot was taken, no malicious artifacts could be found.
This example is one of many that allow an advanced malware
to evade automated memory analysis using current tools and
techniques. It is clear that during dynamic analysis, when
taking memory dumps, timing is critical to discover all the
suspicious artifacts.

III. TRIGGER-BASED MEMORY DUMPS AND
DIFFERENTIAL ANALYSIS

We would like to propose a new technique to solve the
timing issues and enhance automated analysis systems. We
call this technique “trigger-based memory dumps”. It works
by defining “interesting” actions or triggers, that happen in
the system during the sample execution and signal the analysis
machine that “it’s a good time to take a memory dump”.

Triggers
At the time of writing, we implemented the following

triggers:
1) API-Based: A set of malicious behaviors that can be

identified via API call sequences (e.g. Process Injection, Au-
tostart capabilities, Hook installation, etc.).
During execution, we monitor all the API-calls in the system
and in case we detect one of the behaviors, we trigger a
memory dump. It is possible to limit the number of memory
dumps taken for every detected API sequence.



3

2) Performance-Based: A utility that monitors the processes
and CPU utilization by sampling the performance counters
and detecting abnormal deviations in their usage. In case a
predefined, configurable threshold was reached, we trigger a
memory dump.1

3) Instrumentation-Based: We trace the sample execution
and monitor it for abnormal mathematical computations (e.g.
unpacking/decryption/decoding loops) using dynamic binary
instrumentation techniques. In case a predefined, configurable
threshold was reached, we trigger a memory dump.

System life cycle
Preprocessing : This process occurs only once during the

lifetime of the system and is part of the implementation. In
this phase we revert the controlled environment to a clean
state and grab a baseline memory dump to be used during
differential analysis (described later).

Sample Processing: For each new sample that arrives, the
system will:

1) Revert to the clean snapshot of the controlled environ-
ment

2) Execute the sample in the controlled environment
3) Trace and monitor the sample execution while detecting

the aforementioned triggers
4) When a trigger is detected:

a) Suspend the controlled environment
b) Grab a memory image dump
c) Resume the controlled environment

5) Before the sample terminates or execution time ex-
ceeded:

a) Suspend the controlled environment
b) Grab a final memory image dump
c) Terminate execution

6) Stop the controlled environment
At the end of this process, the system ends up with multiple
memory dumps.

Differential Analysis
The next phase is to analyze the differences between the

memory dumps that were taken during the execution. These
differences include artifacts that were added, removed and/or
modified in-memory during the time the snapshot was taken.
In order to achieve this, for each memory dump we run
different memory analysis plug-ins that extract malicious
artifacts from it and save the results for later processing.
Next, the results are sorted in a descending manner based on
their respective memory dump generation time.
The system will compare each consecutive result set pair,
look for artifacts that were added, removed and/or modified
and write the differences to a file.

1It is important to note that using this approach may cause false positives if
the threshold is incorrectly configured. In the context of this trigger, we define
a false positive as a memory dump that we triggered and does not contain any
new malicious artifacts.

Figure III.1. An example of a (partial) time-line report generated after
differential analysis

At the end of this process, a time-line report (Figure:III.1)
is generated which highlights all the malicious artifacts and
their modifications that were discovered in-memory. The
combination of trigger-based dump and differential analysis
allows us to detect subtle changes that happen in-memory
during execution and allows us to detect advanced evasive
malware that may appear in-memory at some point during
the execution and then disappear, thus, evading traditional
memory analysis.

IV. IMPLEMENTATION DETAILS

Based on the analysis flow outlined above, this section pro-
vides a detailed discussion of our techniques implementation
inside cuckoo sandbox[1], an open source automated malware
analysis machine. While the details in this section are specific
to cuckoo sandbox, all of them may be trivially applied to
other analysis machines.

Modified Cuckoo Sandbox
When Cuckoo receives a sample for analysis, it executes it

inside a controlled environment such as VirtualBox, QEMU
or VMWare. We chose to use QEMU due to its emulation
capabilities and Virtual Machine Introspection support. We
modified Cuckoo to grab a clean memory image dump of the
virtual machine and save it on disk before execution so we
can later compare it with other memory dumps. This process
occurs only once and is crucial as the controlled environment
may contain multiple unrelated artifacts and it is important to
differentiate between the residues of a new executing sample
and the artifacts that were there before. We extended the
hooking capabilities of CuckooMon to facilitate our logic.
Mainly, we added code that suspends an offending process
once an “interesting” action has occurred (as defined in Section
3 “Trigger-Based Memory Dumps”), grabs a memory dump
of the entire RAM / Process involved while saving it on disk
and resuming execution. In case the malware tries to terminate
prematurely, we added a kernel hook on ZwTerminateProcess



4

to block its termination, take an extra, final memory dump
and terminate. We then added code that analyzes each one of
the dumps by running multiple Volatility plug-ins (Malfind,
apihooks, psxview, etc.) including our own custom plug-ins
(described later) and compute the differences starting from the
final memory dump down to the clean snapshot. Each of the
differences is written into a Cuckoo’s reporting module’s JSON
file.

Custom Plug-ins
For the purpose of our research we wrote a couple of

memory analysis plug-ins that are suitable for differential
analysis:

Antivirus strings Plug-in: Malicious samples may try to
detect if a certain Antivirus (AV) is present on the controlled
environment prior to executing its malicious logic. Once
detected, the sample may act differently on that machine
(Self-Terminate, act benign, try to disable the AV, etc.). The
proposed plug-in dumps all readable strings from memory and
checks for popular AV string names. This plug-in runs on
each memory dump as the AV strings may be encrypted at
some point during the execution and decrypted during a certain
trigger.

Process heap entropy Plug-in: Advanced Malware may
try to encrypt/compress files in-memory during pack-
ing/exfilitration process. The proposed plug-in computes the
entropy of each process heap and checks if it was changed
above a certain configurable threshold value and if so, the size
of the change. This plug-in runs on each memory dump as the
entropy may increase at a certain point and then decrease.

Modified PE Header Plug-in: Once loaded, advanced Mal-
ware may modify its own PE header [3] in a way that detection
tools will not be able to dump or detect them. The proposed
plug-in monitors injected DLLs and verifies that their PE
headers were not modified during execution.

V. CASE STUDY

Consider the following Zbot dropper sample (MD5:
75ab3481fe83335b6c58867c12be0c51) caught in-the-wild.
This sample is packed and obfuscated which makes it harder
to analyze statically.
During run-time, the sample unpacks itself in chunks using the
following sequence:

• Allocates memory with PAGE_READWRITE permis-
sions using VirtualAllocEx

• Writes its payload to the allocated memory region using
WriteProcessMemory

• Adjusts the allocated memory region permissions
to PAGE_EXECUTE_READWRITE using VirtualPro-
tectEx

• Executes the payload
Once the payload was executed and in order to avoid mem-
ory forensic analysis, the malware overwrites the allocated
memory region with zeros and reduce its permissions back
to PAGE_READWRITE.
The malware keeps reusing that region while covering its

tracks until it is no longer needed, at that point it calls
VirtualFreeEx to free the allocated memory region.
Let’s review the memory analysis of this sample using the
following 3 methods.

Classic Memory Analysis
In this method, we configured the controlled environment to

run the sample for 3 minutes and grab a memory dump at the
end of execution.
When the malware terminated, the system ended up with one
memory dump.
We then ran multiple tools and plugins to analyze the memory
dump and could not find any trace of the allocated memory
region.
This makes sense since the malware cleaned up its tracks
and removed the allocated memory region before we took the
memory dump. It is clear that taking extra memory dumps
during the malware execution will yield better results.

Interval-Based Memory Analysis
In this method, we configured the controlled environment to

run the sample for 3 minutes and grab a memory dump every
30 seconds.
When the malware terminated, the system ended up with 6
memory dumps.
We then ran multiple tools and plugins to analyze the memory
dumps and we did see the allocated memory region, however
it contained zeros and it was not executable which means it
won’t raise any suspicions.
Depending on the interval configuration it is possible that we
would have seen the malware payload in the memory region
before it was wiped, however, there is no single interval that
would fit all samples. It is clear that a mechanism that grabs
memory dumps during “interesting” actions is required.

Trigger-Based Memory Analysis
In this method, we configured the controlled environment to

run a sample for 3 minutes and grab a memory dump using
our proposed trigger-based approach (we limited the number
of memory dumps per trigger to one).
The controlled environment was configured with API-
Based / Performance-Based / Instrumentation-Based triggers
and the malware was executed. While the Performance-
based/Instrumentation-based didn’t yield interesting results,
the API-based trigger approach showed insightful results.
During execution, the malware hit two of the predefined API
sequences {VirtualAllocEx , WriteProcessMemory , Virtu-
alProtectEx} and {WriteProcessMemory , VirtualProtectEx}
which in return generated two memory dumps. When the
malware terminated, the system ended up with 4 memory
dumps:
• (D1) A clean memory dump taken before the malware

execution (as described in section 3)
• (D2) Memory dump triggered by the first API sequence
• (D3) Memory dump triggered by the second API se-

quence



5

• (D4) A final memory dump taken just before the mal-
ware terminated (as described in section 3)

We then used differential analysis plugins to analyze the
memory dumps.

Comparing D1 with D2: New artifacts were added between
D1 and D2. We can see that a new memory region was
allocated, written into and its permissions were changed.

Comparing D2 with D3: Artifacts that were added in the
previous comparison were modified. Specifically, in D3 the
memory region was zeroed out and its permissions were
changed.

Comparing D3 with D4: Artifacts that were added in D2
did not appear in D4. This makes sense as the malware called
VirtualFreeEx to free the memory region.

Looking at the “story” that the comparisons are telling
us, we can deduce the binary behavior and help focus the
security researcher on the interesting parts of the malware
logic.

VI. FUTURE WORK

As part of our future work, we plan to automate the verdict
decision (malicious or benign) based on malicious artifacts
found during trigger-based analysis.
We currently work on implementing new triggers and con-
verting our trigger-based solution to a plug-in framework so
it would be easier to write, test and share triggers with the
community.
Also, we plan on adding VMI (Virtual Machine Introspection)
support for non-intrusive memory acquisition and optimize the
plugin execution times.
We encourage the readers of this paper to integrate our solution
in their automated systems, implement new triggers and share
them with the community.

VII. CONCLUSION

Memory Analysis is becoming a great technique to ana-
lyze Malware. Unfortunately, the current approach has many
limitations. In this paper, we proposed possible solutions to
overcome these limitations and enhance the current solutions.
Our main contribution is the Trigger-Based memory analysis
approach for automatically taking memory dumps when in-
teresting actions happen in the system during execution. This
approach gives the security researcher invaluable information
of what happens during the execution of the sample and not
only what happened at the end. In combination with other
techniques for memory analysis, this approach strengthens
security and gives more valuable insight in the efforts to detect
malicious activity.
Acknowledgments The authors would like to thank the re-
viewers for their insightful comments.

REFERENCES

[1] Cuckoo sandbox (http://cuckoosandbox.org/).
[2] Imphash calculation (https://www.mandiant.com/blog/tracking-malware-

import-hashing).

[3] "snake" / the uroburus malware (gdata software). 2014.
[4] Barbosa Branco and Neto. Overview of malware

anti-debugging, anti-disassembly and anti-vm techniques
(http://research.dissect.pe/docs/blackhat2012-paper.pdf). 2012.

[5] J. Butler and K. Kendall. Blackout: What really happened (black hat
2007).

[6] M. Cohen. Anti-forensics and memory analysis
(http://scudette.blogspot.co.il/2014/02/anti-forensics-and-memory-
analysis.html). 2014.

[7] Milkovic. Defeating windows memory forensics
(http://www.slideshare.net/lmilkovic/defeating-windows-memory-
forensics). 2012.

[8] J. Williams and A. Torres. Add: Complicating memory forensics through
memory disarray (shmoocon, 2014). 2014.


