
Adi Hayon
Tomer Teller

Why are we here? (one of many reasons)

 A malicious program:

 Allocates memory in a remote process (and write to it)

 Executes the code in that memory region

 Frees the code

 Memory dump taken at the end of execution

 No malicious artifacts found in post-mortem
analysis

Why are we here? (one of many reasons)

 Snake/Uroburos rootkit (MD5: 626576e5f0f85d77c460a322a92bb267)

 Inline interrupt hooks

 Zeroed image header

 This evades file carving

Setting the Context
 Automated system analyzes a new sample

 Static Analysis - no significant results

 Dynamic Analysis - no significant results

 Memory Analysis – limited results

 Evasion tricks are out of scope

 Focus is on memory analysis enhancement

Static Analysis Challenges
 Time consuming

 35%~ of malicious samples are packed*

 90%~ of packed files are protected

 Obfuscation, Cryptors, Encrypted Resources

* https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_Slides.pdf

Dynamic Analysis Challenges
 “What you see is what you get”

 Subverting API functions is easy. APIs Lie.

 Calling undocumented/native functions

 Custom WinAPI function implementations

 Reminder: evading dynamic analysis is out of scope

Memory Analysis Advantages
 Discovers system inconsistencies that might

indicate a rootkit

 Collects hidden artifacts that cannot be retrieved
using OS-provided API

 Advanced malware operates solely in memory

 Identifies system activity and overall machine state

Memory Analysis Disadvantages
 Current solutions require manual inspection (not

scalable)

 Interpreting analysis tools output requires in-depth
knowledge of OS internals

 Anti-Forensics tools exist* to:
 Prevent grabbing of memory dumps

 Plant fake artifacts in memory as decoys

 Artifacts from a single memory dump lack context,
since there is no baseline to compare it with

 Taking memory dumps requires accurate timing as
memory is volatile

* http://scudette.blogspot.co.il/2014/02/anti-forensics-and-memory-analysis.html

Current Automated Approach
 Execute a sample in a sandbox

 Terminate execution after X minutes

 Grab a memory dump of the machine

 Analyze the memory dump offline

 Detect malicious/suspicious artifacts in-memory

 Revert, Rinse, Repeat

Memory Dump Timing Challenge
 Post-mortem memory dumps (after the program

terminates) risks “missing in on the action”

 Malicious artifacts may appear and disappear
intermittently

 Example:

 Memory region is allocated with RWE permissions

 Code is written to that region and executed

 Malware unload itself

 Detecting the additionally code at the end will fail

Possible Solution
 Interval-Based memory dump

 Grab a memory dump every X seconds

 Analyze each dump - search for malicious artifacts

 Does it solve the problem? No

 Malware can slip between the intervals

 Many dumps to analyze make it inefficient (Time/Space)

 Dump 2
00:00:20

Dump 1
00:00:10

Dump 3
00:00:30

Dump 4
00:00:40

Dump 5
00:00:50

. . .

Better Solution
 Trigger-Based memory dump

 Dump memory when something “interesting” happens

 “Interesting” points in time:
 Known malicious API-sequence (behaviors) in user/kernel mode

(e.g. Code injection, hollow process)

 Evidence cleaning attempts
(e.g. Process Termination, Un-mapping memory, etc.)

 “Heavy” mathematical computation
(e.g. unpacking in progress)

 Sampling CPU performance counters for abnormal process activity

Dump 2
Triggered by CPU activity

Dump 1
Triggered by API X

Dump 3
Triggered by a XOR loop

Dump 4
Triggered by API Y

Dump 5
Triggered by …

Differential Analysis
 Analyze each dump for malicious artifacts

 Diff all dump analysis results from last to clean

 Clean: Taken before Malware execution

 Last: Taken when time exceeded

 Produce a list of New/Modified/Deleted artifacts

 Visualize!

Dump 0
Clean Dump

Dump n
Last Dump

Dump 2
Triggered by CPU activity

Dump 1
Triggered by API X

Dump 3
Triggered by a XOR loop

Dump 4
Triggered by API Y

Dump 5
Triggered by …

Our Approach
 Execute a sample in a controlled environment (CE)

 Trace and monitor execution

 When a trigger is detected

 Suspend CE -> Dump Memory -> Resume CE

 Before the sample terminates

 Suspend CE -> Dump Memory -> Terminate CE

 Differential Analysis

 Clean Dump vs. Dump #1 vs. Dump #2, .. vs. Final Dump

 Generate Report

DEMO #1 - Showcase Malware
 Trigger-Based vs. Interval-Based

 Differential analysis

 Visualization

Differential Analysis Plugins
 Process Heap Entropy checker

 Check for entropy changes over time

 Anti Virus Strings
 Check for new unpacked strings

 Hybrid Data Extractor
 Comparing code in-memory (dynamic) against the code

on disk (static) to detect unpacked code/data

 Modified PE Header
 Monitor PE header modification and reconstruct it on-

the-fly

Taking a (memory) Dump
 Live Memory Introspection (libVMI/pyVMI)

 Suspend CE

 Query memory directly

 Resume CE

 Offline Memory Dump (libvirt)

 Suspend CE

 Dump memory to disk

 Resume CE

https://code.google.com/p/vmitools/

DEMO #2 - Advanced Features
 Trigger-based analysis with VMI

 Hybrid Analysis (Dynamic + Memory)

 Artifact dumper

DEMO #3 – SNAKE/Uroburos Rootkit
 Kernel Triggers

 PE header reconstruction

 Artifact dumper

Implementation
 Modified Cuckoo Sandbox v1.1

 Modified Cuckoo/CuckooMon components

 New hooks in User/Kernel Mode

 New static analysis scripts

 IDA integration (e.g. calculate MD5/ssdeep per function/section)

 PinTool integration for DBI

 New Volatility plugins for differential analysis

The techniques are generic and can be applied to any sandbox - Read the WP

https://github.com/djteller/MemoryAnalysis

https://github.com/djteller/MemoryAnalysis

Future Work
 Brainstorming & Implementing new triggers

 Automatic verdict (malicious/benign)

 Plug-in framework

 Optimization (e.g. grabbing mini-dumps)

 Extend (non-intrusive) VMI capabilities

 Define new operations for misbehavior analysis

 Port solution to other automated malware systems

Thank You
 Slides

 White Paper

 Code

https://github.com/djteller/MemoryAnalysis

@djteller @adihayon1

https://github.com/djteller/MemoryAnalysis
https://github.com/djteller/MemoryAnalysis
https://github.com/djteller/MemoryAnalysis
https://github.com/djteller/MemoryAnalysis

