
1

In the lands of corrupted elves:
Breaking ELF software with Melkor fuzzer

Alejandro Hernández

IOActive

About me

� Senior Security Consultant [IOActive.com]

� ELF, C programming & fuzzing enthusiast

� Passionate about security. ~11 years now.

� From Chiapas, Mexico

\'~~~-,

\ '-,_

\ /\ `~'~''\ M E X I C O

_\ \\ \/~\

__ \\ \

\ \\. \

\ \ \ `~~

'\\ \. /

/ \ \ |

_\ \ | _.----,

| \ ! /

'._ _ __/ _/

_ ''--'' __/

\.__ |

''.__ __.._ o<-_\---- here !

'' './ `

� http://www.brainoverflow.org

� @nitr0usmx
2

Agenda

� The ELF file format

� ELF parsing

� Who’s is parsing?

� Security risks in ELF parsing

� Discovered vulnerabilities in the past

� ELF parsing (mistakes) nowadays

� ELF Fuzzing

� Smart vs dumb

� Code / branch coverage

� ELF metadata dependencies

� Cont.

3

Agenda (Cont.)

� Melkor – an ELF file format fuzzer

� Who’s Melkor

� Design & Implementation

� Fuzzing rules

� ELF metadata dependencies

� Generators and test data

� Usage

� Logging

� Download

� Breaking Fuzzing ELF software

� DEMOS

� Conclusions

4

The ELF file format

� Executable and Linkable Format

� In 1999 was chosen as the standard binary

file format for Unix and Unix-like systems

on x86

� Adopted by many OS on many different

platforms

� Executables, relocatable objects (.o),

shared libraries (.so) and core dumps.

5

The ELF file format

6

The ELF file format

� Specification(s) [10]

7

The ELF file format

� Data types (/usr/include/elf.h)

8

The ELF file format

� Data structures (/usr/include/elf.h)

9

The ELF file format

10

� Relationships between metadata

for(k = 0; k < hdr.e_shnum; k++, shdr++){

if(shdr->sh_type != SHT_REL)

continue;

symtab_section = shdr_table[shdr->sh_link];

strtab_section = *(Elf64_Shdr *) (mem + hdr.e_shoff +

(symtab_section.sh_link * sizeof(Elf64_Shdr)));

symstrtab_offset = strtab_section.sh_offset;

rela = (Elf64_Rela *) (mem + shdr->sh_offset);

sym = (Elf32_Sym *) (mem + symtab_section.sh_offset);

...

The ELF file format

� Relationships between metadata

� Example:

11

The ELF file format

� Relationships between metadata

� Example:

12

SHT_REL

strtab_section

symtab_section

sh_link

sh_link

1

2

sh_offset

Section Header Table

The ELF file format

� Relationships between metadata

� Example:

13

ELF parsing

� Who’s is parsing?

� OS kernels

� Thoroughly audited over the years

� Debuggers

� gdb

� IDA Pro

� Etc.

� Reverse Engineering frameworks

� ERESI

� radare2

� Etc.

� OS utilities

� binutils

� #apt-cache search ELF
14

ELF parsing

� Who’s is parsing?

� Malware

� Antivirus engines?

� Sophail by Tavis Ormandy [6]

15

ELF parsing

� Who’s is parsing?

� Google dork: “+ELF (parser|parsing)”

16

ELF parsing

� Security risks in ELF parsing

� Memory corruption / Buffer overflows

� Out of bounds array indexes or offsets

� Loops copying data more times than

expected

� Invalid memory dereferences

� Out of bounds array indexes or offsets

� Crashes / DoS

� Arithmetic / Integer wrap-arounds

� Calculations with user-controlled data

� nElements * elementSize

� nElements * sizeof()

� totalSize / elementSize

� arrayIndex * sizeof()
17

ELF parsing

� Security risks in ELF parsing

� Memory corruption / Buffer overflows

� Might lead to code execution

� Undefined behaviors

� Crashes / DoS

� In the debugger / reversing tool

� Anti-reversing technique

� Binaries harder to debug

� Protection against malware infections

� Malware has parsers too

� OS kernel panic()’s

18

ELF parsing

� Security risks in ELF parsing

� Most data types are unsigned ints. Two of

them are signed ints (/usr/include/elf.h):

� typedef int32_t Elf32_Sword;

� typedef int32_t Elf64_Sword;

� typedef int64_t Elf32_Sxword;

� typedef int64_t Elf64_Sxword;

� r_addend (Relocations)

� d_tag (Dynamic information)

� Harder to trigger integer overflows

� However, when assigning values to

local signed variables, signedness

bugs might exist [1]

19

ELF parsing

� Discovered vulnerabilities in the past

� ELF, unlike PE (Portable Executable),

has been less audited

� Mostly found doing manual testing

� Code review + Binary modification

� Google dork: “site:securityfocus.com +ELF”

20

ELF parsing

� Discovered vulnerabilities in the past

21

ELF parsing

� Discovered vulnerabilities in the past

22

ELF parsing

� Discovered vulnerabilities in the past

23

ELF parsing

� Discovered vulnerabilities in the past

� Invalid pointer dereference in gdb (reported but still

unpatched) used as an anti-debugging technique [4]

24

ELF parsing

� Discovered vulnerabilities in the past

� Invalid pointer dereference in IDA Pro (patched) used

as an anti-debugging technique [4]

25

ELF parsing

� ELF parsing nowadays

� ~15 years later (adopted in 1999)

� Most ELF analysis tools rely on the SHT

(Section Header Table)

� The following bugs have been found with

Melkor

26

ELF parsing

� ELF parsing (mistakes) nowadays

� *still* blindly trust in the input:

� Offsets

� Indexes

� Sizes (total_size / struct_size)

� Addresses

� Debugging information (DWARF)

� Not part of ELF but it’s very related

27

ELF parsing

� ELF parsing (mistakes) nowadays

“The most common mistake applied by a

programmer is in trusting a field inside a

binary structure that should not be trusted.

“When dealing with sections that must have

subsections, knowing ahead of time how many

sections are embedded within the primary

section of a structure is required and again,

a value must be used to instruct the

application only to iterate x number of

times.” [7]

28

ELF parsing

� ELF parsing (mistakes) nowadays

� Example of a dummy program that executes the

for() loop based on e_shnum and size/entsize:

29

for(k = 0; k < hdr->e_shnum; k++, shdr++){

if(shdr->sh_type != SHT_SYMTAB && shdr->sh_type != SHT_DYNSYM)

continue;

...

nsyms = shdr->sh_size / shdr->sh_entsize;

sym = (Elf64_Sym *) (mem + shdr->sh_offset);

...

for(l = 0; l < nsyms; l++, sym++)

if(ELF64_ST_TYPE(sym->st_info) != STT_SECTION)

printf(“[%2d] %s\n", mem + strtab + sym->st_name);

}

ELF parsing

� ELF parsing (mistakes) nowadays

30

2

31

ELF parsing

� ELF parsing (mistakes) nowadays

� Some applications validate if memory

addresses (p_vaddr, e_entry, etc.) and/or

file offsets (sh_offset, p_offset, etc.)

are inside their valid boundaries

� Some others don’t:

31 (Found with Melkor fuzzer.)

ELF parsing

� ELF parsing (mistakes) nowadays

32

src/libexec/ld.so/ldconfig/prebind.c:

elf_check_note(void *buf, Elf_Phdr *phdr)

{

u_long address;

u_int *pint;

char *osname;

address = phdr->p_offset;

pint = (u_int *)((char *)buf + address);

osname = (char *)buf + address + sizeof(*pint) * 3;

if (pint[0] == 8 /* OpenBSD\0 */ && pint[1] == 4 &&

pint[2] == 1 /* type_osversion */ &&

strcmp("OpenBSD", osname) == 0)

return 1;

return 0;

}

ELF parsing

� ELF parsing (mistakes) nowadays

� Some trust in sizeof(*user_input), some

others prefer sizeof(Elfx_DataType) and

some others perform validations:

� if(sizeof(*x) != sizeof(dataType))

return ERROR;

33

ELF parsing

� ELF parsing (mistakes) nowadays

� Some do not validate the number of

elements before allocate memory:

� Allocate less memory space than needed

� Buffer overflows

� Memory exhaustion

� malloc(nElems_user_input * sizeof(Elfx_Struct));

� malloc(nElems_user_input * sizeof(*user_input));

� calloc(nElems_user_input , sizeof(Elfx_Struct));

34

ELF parsing

� ELF parsing (mistakes) nowadays

� Process memory exhaustion:

35

(Found with Melkor fuzzer.)

ELF parsing

� ELF parsing (mistakes) nowadays

� Process memory exhaustion:

36

ELF parsing

� ELF parsing (mistakes) nowadays

� More loops based on sh_size/sh_entsize running

more times than expected. (sh_size = 0xbad0c0de):

� Temporary DoS (CPU usage) in HT Editor:

� The application was killed by the OS

after ~19 secs.
37

(Found with Melkor fuzzer.)

ELF parsing

� ELF parsing (mistakes) nowadays

38

ht-2.0.22/htelfrel.cc:

rela_size = sizeof (ELF_RELA64);

relnum = elf_shared->sheaders.sheaders64[reloctab_shidx].sh_size /

(reloctab_sh_type == ELF_SHT_REL ? rel_size : rela_size);

...

for (uint i = 0; i < relnum; i++){

char *tt = t;

/* dest offset */

tt = tag_make_edit_qword(tt, tt_end, h+i*rel_size, endianness);

tt += ht_snprintf(tt, tt_end, " ");

/* symbol (table idx) */

tt = tag_make_edit_dword(tt, tt_end, h+i*rel_size+8+4,

endianness);

tt += ht_snprintf(tt, tt_end, " ");

...

}

ELF parsing

� ELF parsing (mistakes) nowadays

� A common low-hanging fruit crash is through

e_shstrndx in the ELF header. It holds a string

table index within the Section Header Table:

39

(Found with Melkor fuzzer.)

ELF fuzzing

� Fuzz testing

� Automated approach to create invalid /

semi-valid data to find bugs that would

have often been missed by human eyes

� If data is too valid, might not cause

problems

� If data is too invalid, might be quickly

rejected [9]

40
Taken from [5]

ELF fuzzing

� Smart vs dumb fuzzing

� Two approaches

� Mutation-based fuzzing (dumb)

� Takes an input and modifies it randomly

� Generation-based fuzzing (smart)

� Generates the tests with

specification knowledge

� dumb random fuzzing in most cases find

less bugs than smart fuzzing

41

ELF fuzzing

� Smart vs dumb fuzzing [2]

� All paths + all data == infinite problem

� Notion of randomness (dumbness) and

specific knowledge (intelligence)

� Semi-valid data

42

ELF fuzzing

� Code / branch coverage [8]

� Code coverage is a metric which can be

used to determine how much code has been

executed

� Branch coverage measures how many

branches in code have been taken

(conditional jmps)

� if(x > 2)

x = 2;

� Specification based test generation

achieves better coverage testing

43

ELF fuzzing

� Code / branch coverage

� Interesting results in [9] show that

more bugs are discovered with higher

coverage:

44

ELF fuzzing

� ELF metadata dependencies

� Some data structures must be fuzzed in

the end or not fuzzed at all for higher

code / branch coverage:

45

3rd level metadata
2nd level

metadata
ELF Header

HDR

SHT

String tables

Relocation Tables,
etc. etc.

PHT Interp

CORRUPTED

Hidden bugs

ELF fuzzing

� ELF metadata dependencies

� In normal circumstances, the following

ELF metadata dependencies exist while

parsing:

46

4th level

3rd level

2nd level

1st level HDR

SHT

Symbol
tables

Relocation
tables

String
tables

Dynamic
info

Note
section

PHT

ELF fuzzing

� Example: (SmartDec, Native code to C/C++

Decompiler for Windows)

� Normal ELF loading

47

ELF fuzzing

� Example: (SmartDec, Native code to C/C++

Decompiler for Windows)

� Trying to load the same ELF with an invalid

e_ident[EI_CLASS] (a header field), it simply

handles the error and doesn’t open:

48

ELF fuzzing

� Example: (SmartDec, Native code to C/C++

Decompiler for Windows)

� However, having an unmodified header, the basic

header validations will be bypassed and internal

bugs are reached:

49

(Found with Melkor fuzzer.)

Melkor fuzzer

� Who’s Melkor

� A fictional character

from J. R. R.

Tolkien's Middle-

earth legendarium

� Was the first Dark

Lord and master of

Sauron

50

Melkor fuzzer

� Who’s Melkor

� Mentioned briefly in The Lord of the

Rings and is known for:

"... Melkor had captured a number of ELVES before the Valar
attacked him, and he tortured and corrupted them, breeding
the first Orcs.“

"... Melkor was cunning and more filled with malice than

ever. Seeing the bliss of the ELVES and remembering that it
was for their sake that he was overthrown, Melkor desired
above all things to corrupt them.“

"Orcs...This has been so from the day they were bred by

Melkor from corrupted, tortured and

mutilated ELVES that may also have been
forced to breed with other unnatural abominations
in the dominion of the Dark Powers."

51

Melkor fuzzer

� Hybrid (Mutation-based / Generation-based)

� Mutate existing data in an ELF sample to

create orcs with knowledge of the file

format specification (fuzzing rules)

52

OrcsELF

Melkor fuzzer

Melkor fuzzer

� Design

� I’m not good at software design but...

drawing worked

53

Melkor fuzzer

� Implementation

54

numbers / rand()

generators.c

fuzz_<metatada>.c
(fuzzing rules)

logger.c

melkor.c
(main())

Melkor fuzzer

� Fuzzing rules

� Three inputs were used:

� Specification violations

� TIS ELF Specification 1.2 (May, 1995) [10]

� ELF-64 Object File Format 1.5 (May 1998)

� Misc. ideas & considerations

� Parsing patterns seen in ELF software

55

Melkor fuzzer

� Fuzzing rules

� melkor-v1.0/docs/Melkor_Fuzzing_Rules.pdf

56

Melkor fuzzer

� Fuzzing rules

� Specification violations (Example 1)

� ELF Specification:

57

Melkor fuzzer

� Fuzzing rules

� Specification violations (Example 1)

� Rule definition for that field:

58

Rule name implemented at code level

Melkor fuzzer

� Fuzzing rules

� Specification violations (Example 1)

� That rule at code level:

59

Melkor fuzzer

� Fuzzing rules

� Specification violations (Example 2)

60

Melkor fuzzer

� Fuzzing rules

� Specification violations (Example 2)

61

Melkor fuzzer

� Fuzzing rules

� More complex rules

62

Melkor fuzzer

� Fuzzing rules

� More complex rules (Example 1)

63

Melkor fuzzer

� Fuzzing rules

� More complex rules (Example 2)

64

Melkor fuzzer

� Fuzzing rules

� More complex rules (Example 3)

65

Melkor fuzzer

� Fuzzing rules execution

� To iterate through the rules an array of function

pointers is created in every fuzzing module and

initialized with __attribute__((constructor)

66

Melkor fuzzer

� Fuzzing rules execution

� Chances of execution given by the –l (likelihood

parameter, default 10%) is translated to two

variables that’ll be used in ...

67

Melkor fuzzer

� Fuzzing rules execution

� ... Conjunction with rand() in the

iteration through the array of pointers

68

Melkor fuzzer

� Fuzzing rules execution

� Some fields are critical and even when

the rule is executed, inside the rule

function the likelihood is decreased.

� For example:

69

Melkor fuzzer

� ELF metadata dependencies

� These dependencies should not be

broken if you want to fuzz

deeper levels

70

Melkor fuzzer

� ELF metadata dependencies

� Translating them into specific fields:

71

Melkor fuzzer

� ELF metadata dependencies

� Translating them into specific fields:

72

Melkor fuzzer

� ELF metadata dependencies

� Translating them into specific fields:

73

Melkor fuzzer

� ELF metadata dependencies

� And at code level (Example 1):

74

Melkor fuzzer

� ELF metadata dependencies

� And at code level (Example 2):

75

Melkor fuzzer

� Generators and test data

� Semi-valid test data is used in the

rules

� Size fields: common integer bofs values

� Offsets / addresses: out of bounds values

� Indexes inside strings: common format

strings or non-printable chars

� Etc.

76

Melkor fuzzer

� Generators and test data

� numbers.h

77

Melkor fuzzer

� Generators and test data

� numbers.h

78

Melkor fuzzer

� Generators and test data

� numbers.h

79

Melkor fuzzer

� Generators and test data

� generators.c

� Functions to return test data based on

� numbers.h

� rand()

80

Melkor fuzzer

� Generators and test data

� ELF used as template

� Some provided in templates/

81

Melkor fuzzer

� Compilation

� With a simple $make

82

Melkor fuzzer

� Usage

83

Melkor fuzzer

� Usage

� Fuzzing options

84

Melkor fuzzer

� Usage

� A simple run (testing preparation):

85

Melkor fuzzer

� Usage

� Malforming ELFs:

86

Melkor fuzzer

� Usage

� Malformed ELFs (orcs):

87

Melkor fuzzer

� Usage

� Malformed ELFs (Default 10%):

88

Melkor fuzzer

� Usage

� Malformed ELFs (Aggressive 70%):

89

Melkor fuzzer

� Usage

� Testing the malformed ELFs (test_fuzzed.sh)

90

Melkor fuzzer

� Usage

� No, Melkor will not send your orcs to

the shopping mall

91 http://mashable.com/2014/06/12/orc-mall-prank/

Melkor fuzzer

� Usage

� OS kernel / dynamic loader testing:

92

Melkor fuzzer

� Usage

� OS kernel / dynamic loader testing:

93

Melkor fuzzer

� Usage

� Application testing (Example: dumpelf)

94

Melkor fuzzer

� Usage

� Application testing (Example: gcc)

95

Melkor fuzzer

� Usage

� Application testing (Example: gcc)

96

Melkor fuzzer

� Logging

� A simple logging facility implemented to

identify the fuzzed metadata in detail

97

Melkor fuzzer

� Download

http://www.brainoverflow.org/code/melkor-v1.0.tar.gz

98

Fuzzing ELF software

DEMOS

� Homework: fuzz Melkor fuzzer ;-)

� Yes, inception fuzzing

� Read BUGS.txt

� It could be used as a test subject

99

Conclusions

� ELF is just another file format where

common parsing mistakes are still used

� ELF parsers are not just in the OS

kernels, readelf and objdump. Many new

software are parsing and supporting 32

& 64-bit ELF files

100

Conclusions

� Fuzzing discover defects that normally

are harder to find in less time than

manual testing

� Fuzzing is much better having knowledge

of the semantics (specifications)

� A single crash could be an exploitable

security bug or could be used as an

anti-reversing or anti-infection

technique

101

Conclusions

� Melkor fuzzer will help you to find

functional (and security) bugs in

your ELF parsers.

102

References

[1] blexim. (2002). “Basic Integer Overflows”. PHRACK Magazine,

Release 60. Retrieved from http://phrack.org/issues/60/10.htm

[2] DeMott, J., Enbody, R. (Aug 5th, 2006). “The Evolving Art of

Fuzzing”. DEFCON 14. Retrieved from

https://www.defcon.org/images/defcon-14/dc-14-presentations/DC-14-

DeMott.pdf

[3] Dietz, W., Li, P., Regehr, J., and Adve, V. (June 2012).

“Understanding Integer Overflow in C/C++”. Proceedings of the 34th

International Conference on Software Engineering (ICSE), Zurich,

Switzerland. Retrieved from

http://www.cs.utah.edu/~regehr/papers/overflow12.pdf

[4] Hernández, A. (Dec 18th, 2012). “Striking Back GDB and IDA

debuggers through malformed ELF executables”. Retrieved from

http://blog.ioactive.com/2012/12/striking-back-gdb-and-ida-

debuggers.html

103

References

[5] Jarkko, L., Rauli, K., and Heikki, K. (2006). “Codenomicon

Robustness Testing - Handling the Infinite Space while breaking

Software”. Retrieved from

http://www.codenomicon.com/resources/whitepapers/code-whitepaper-

2006-06.pdf

[6] Ormandy, T. “Sophail: A Critical Analysis of Sophos Antivirus”.

Retrieved from https://lock.cmpxchg8b.com/sophail.pdf

[7] Padilla, O. (May 12th, 2005). “Analyzing Common Binary Parser

Mistakes”. Uninformed e-zine Vol. 3. Retrieved from

http://uninformed.org/index.cgi?v=3&a=1&t=pdf

[8] Miller, C. (Oct 20th, 2007). “Fuzzing with Code Coverage By

Example”. ToorCon 2007. Retrieved from

http://fuzzinginfo.files.wordpress.com/2012/05/cmiller_toorcon2007.

pdf

104

References

[9] Miller, C. (Mar 28th, 2008. “Fuzz By Number: More Data About

Fuzzing Than You Ever Wanted To Know”. CanSecWest 2008.

Retrieved from https://cansecwest.com/csw08/csw08-miller.pdf

[10] TIS Committee. (1995). “Executable and Linking Format (ELF)

Specification v 1.2”. Retrieved from

http://www.uclibc.org/docs/elf.pdf

[11] van Sprundel, I. (Dec 8th, 2005). “Fuzzing: Breaking software

in an automated fashion”. Retrieved from

http://events.ccc.de/congress/2005/fahrplan/attachments/582-

paper_fuzzing.pdf

[12] Wysopal, C., Nelson, L., Zovi, D. D., and Dustin, E. (2007).

“Local Fault Injection” (Ch. 11) in The Art of Software Security

Testing, pp. 201-229. Retrieved from

http://www.securityfocus.com/images/infocus/Wysopal_CH11.pdf

105

Special Thanks

� To all the researchers / coders from whom

I’ve learned cool ELF stuff and fuzzing:

Silvio Cesare, the ELF shell crew, mayhem,

scut, the grugq, Itzik Kotler, Electronic

Souls, Julien Vanegue, Andrew Griffiths,

dex, beck, Brian Raiter, Rakan El-Khalil,

Jared DeMott, skape, JunkCode, Sebastian

Krahmer, Paul Starzetz, Charlie Miller,

Ilja van Sprundel, Chris Rohlf, aczid,

Rebecca Shapiro, Sergey Bratus and some

others I forgot to mention

... Thanks !
106

Thanks !

107

/ Alejandro Hernández

/ @nitr0usmx

In Memorial †

Dedicated to the memory of one of my best friends,

Aaron Alba.

108

