
Assisted Discovery of On-Chip Debug Interfaces
Joe Grand (@joegrand)

Introduction

• On-chip debug interfaces are a well-known
attack vector

- Used as a stepping stone to further an attack
- Can provide chip-level control of a target device
- Extract program code or data
- Modify memory contents
- Affect device operation on-the-fly

• Inconvenient for vendor to remove functionality
- Would prevent capability for legitimate personnel
- Obfuscated or password protected instead

Introduction 2

• Identifying OCD interfaces can sometimes be
difficult and/or time consuming

← http://spritesmods.com/?art=hddhack

http://www.nostarch.com/xboxfree
http://www.nostarch.com/xboxfree

Goals

• Create an easy-to-use tool to simplify the
process

• Attract non-HW folks to HW hacking

Identifying Interfaces: External

• Accessible to the outside world
- Intended for engineers or manufacturers
- Device programming or final system test

• Usually hidden or protected
- Underneath batteries
- Behind stickers/covers

• May be a proprietary/non-standard connector

Identifying Interfaces: Internal

• Test points or unpopulated pads

• Silkscreen markings or notation

• Easy-to-access locations

Identifying Interfaces: Internal 2

• Familiar target or based on common pinout
- Often single- or double-row footprint
- JTAG: www.jtagtest.com/pinouts/

← www.blackhat.com/html/bh-us-10/bh-us-10-archives.html#Jack
→ www.nostarch.com/xboxfree

http://www.nostarch.com/xboxfree
http://www.nostarch.com/xboxfree
http://www.nostarch.com/xboxfree
http://www.nostarch.com/xboxfree

Identifying Interfaces: Internal 3

• Can use PCB/design heuristics
- Traces of similar function are grouped together (bus)
- Array of pull-up/pull-down resistors (to set static

state of pins)
- Test points usually placed on important/interesting

signals

← http://elinux.org/images/d/d6/Jtag.pdf

http://www.nostarch.com/xboxfree
http://www.nostarch.com/xboxfree

Identifying Interfaces: Internal 4

• Might be covered by soldermask

← Linksys WRT54G2 v1.3
→ http://elinux.org/File:Peekjtag3.png

http://elinux.org/File:Peekjtag3.png
http://elinux.org/File:Peekjtag3.png

PCB

*** 2x5 headers compatible w/ Bus Pirate probes,
http://dangerousprototypes.com/docs/Bus_Pirate

Target I/F (24 channels)

Propeller USB

Input protection

Level translation
Status

Op-Amp/DAC

http://dangerousprototypes.com/docs/Bus_Pirate
http://dangerousprototypes.com/docs/Bus_Pirate

*** INFORMATION: www.parallax.com/propeller/

*** DISCUSSION FORUMS: http://forums.parallax.com

*** OBJECT EXCHANGE: http://obex.parallax.com

• Completely custom, ground up, open source

• 8 parallel 32-bit processors (cogs)

• Code in Spin, ASM, or C

Propeller/Core

• Clock: DC to 128MHz (80MHz recommended)

• Global (hub) memory: 32KB RAM, 32KB ROM

• Cog memory: 2KB RAM each

• GPIO: 32 @ 40mA sink/source per pin

• Program code loaded from external EEPROM on
power-up

Propeller/Core 2

• Standard development using Propeller Tool &
Parallax Serial Terminal (Windows)

• Programmable via serial interface (usually in
conjunction w/ USB-to-serial IC)

Propeller/Core 3

USB Interface

• Allows for Propeller programming & UI

• Powers JTAGulator from bus (5V)

• FT232RL USB-to-Serial UART
- Entire USB protocol handled on-chip
- Host will recognize as a virtual serial port (Windows,

OS X, Linux)

• MIC2025 Power Distribution Switch
- Internal current limiting, thermal shutdown
- Let the FT232 enumerate first (@ < 100mA), then

enable system load

Adjustable Target Voltage (VADJ)
• PWM from Propeller
- Duty cycle corresponds to output voltage
- Look-up table in 0.1V increments (1.2V-3.3V)

• AD8655 Low Noise, Precision CMOS Amplifier
- Single supply, rail-to-rail
- Voltage follower configuration
- ~150mA output current @ Vo = 1.2V-3.3V

Level Translation

• Allows 3.3V signals from Propeller to be
converted to VADJ

• Prevents potential damage due to over-voltage
on target device's unknown connections

• TXS0108E Bidirectional Voltage-Level Translator
- Designed for both open drain and push-pull interfaces
- Internal pull-up resistors (40kΩ when driving low, 4kΩ

when high)

- Automatic signal direction detection
- High-Z outputs when OE low -> will not interfere with

target when not in use

Input Protection

• Prevent high voltages/spikes on unknown pins
from damaging JTAGulator

• Diode limiter clamps input if needed

• Vf must be < 0.5V to protect TXS0108Es

On-Chip Debug Interfaces

• JTAG

• UART

JTAG

• Industry-standard interface (IEEE 1149.1)
- Created for chip- and system-level testing
- Defines low-level functionality of finite state machine/

Test Access Port (TAP)

- http://en.wikipedia.org/wiki/Joint_Test_Action_Group

• Provides a direct interface to hardware
- Can "hijack" all pins on the device (Boundary scan/

test)
- Can access other devices connected to target chip
- Programming/debug interface (access to Flash, RAM)
- Vendor-defined functions/test modes might be

available

JTAG: Architecture

• Synchronous serial interface
→ TDI = Data In (to target device)
← TDO = Data Out (from target device)
→ TMS = Test Mode Select
→ TCK = Test Clock
→ /TRST = Test Reset (optional for async reset)

• Test Access Port (TAP) w/ Shift Registers
- Instruction (>= 2 bit wide)
- Data

- Bypass (1 bit)
- Boundary Scan (variable)
- Device ID (32 bit) (optional)

JTAG: TAP Controller
*** State transitions occur on
rising edge of TCK based on
current state and value of TMS

*** TAP provides 4 major
operations: Reset, Run-Test,
Scan DR, Scan IR

*** Can move to Reset state
from any other state w/ TMS
high for 5x TCK

*** 3 primary steps in Scan:
Capture, Shift, Update

*** Data held in "shadow"
latch until Update state

JTAG: Protection

• Implementation specific

• Security fuse physically blown prior to release
- Could be repaired w/ silicon die attack

• Password required to enable functionality
- Ex.: Flash erased after n attempts (so perform n-1),

then reset and continue

• May allow BYPASS, but prevent higher level
functionality

- Ex.: TI MSP430

JTAG: HW Tools

• RIFF Box
- www.jtagbox.com

• H-JTAG
- www.hjtag.com/en/

• SEGGER J-Link
- www.segger.com/debug-probes.html

• Bus Blaster (open source)
- http://dangerousprototypes.com/docs/Bus_Blaster

• Wiggler or compatible (parallel port)
- ftp://www.keith-koep.com/pub/arm-tools/jtag/

jtag05_sch.pdf

http://www.segger.com/debug-probes.html
http://www.segger.com/debug-probes.html

JTAG: SW Tools

• OpenOCD (Open On-Chip Debugger)
- http://openocd.sourceforge.net

• UrJTAG (Universal JTAG Library)
- www.urjtag.org

IDCODE Scan

• 32-bit Device ID (if available) is in the DR on
TAP reset or IC power-up

- Otherwise, TAP will reset to BYPASS (LSB = 0)
- Can simply enter Shift-DR state and clock out on TDO
- TDI not required/used during IDCODE acquisition

LSB

BYPASS Scan

• In BYPASS, data shifted into TDI is received on
TDO delayed by one clock cycle

BYPASS Scan 2

• Can determine how many devices (if any)
are in the chain via "blind interrogation"

- Force device(s) into BYPASS (IR of all 1s)
- Send 1s to fill DRs
- Send a 0 and count until it is output on TDO

UART

• Universal Asynchronous Receiver/Transmitter
- No external clock needed

- Data bits sent LSB first (D0)
- NRZ (Non-Return-To-Zero) coding
- Transfer speed (bits/second) = 1 / bit width

- http://en.wikipedia.org/wiki/Asynchronous_serial_
communication

*** Start bit + Data bits + Parity (optional) + Stop bit(s)

http://en.wikipedia.org/wiki/Asynchronous_serial_communication
http://en.wikipedia.org/wiki/Asynchronous_serial_communication

UART 2

• Asynchronous serial interface
→ TXD = Transmit data (to target device)
← RXD = Receive data (from target device)
↔ DTR, DSR, RTS, CTS, RI, DCD = Control signals
 (uncommon for modern implementations)

• Many embedded systems use UART as debug
output/console/root shell

UART Scan

• 8 data bits, no parity, 1 stop bit (8N1)

• Baud rates stored in look-up table
- 75, 110, 150, 300, 900, 1200, 1800, 2400, 3600,

4800, 7200, 9600, 14400, 19200, 28800, 31250,
38400, 57600, 76800, 115200, 153600, 230400,
250000, 307200

UART Scan 3

Possible Limitations

• No OCD interface exists

• OCD interface is physically disconnected
- Cut traces, missing jumpers/0 ohm resistors

• OCD interface isn't being properly enabled
- System requires other pin settings
- Non-standard configuration
- Password protected

• Strong pull resistors on target prevent JTAGulator
from setting/receiving proper logic levels

• Could cause target to behave abnormally due to
"fuzzing" unknown pins

*** Additional reverse engineering will be necessary

Future Work

• Support for other interfaces
- TI Spy-Bi-Wire, ARM Serial Wire Debug,

Microchip ICSP, Atmel AVR ISP, Freescale BDM,
LPC Bus, Flash memory (SPI NOR/eMMC NAND)

• Level-shifting module?
- Target voltage > 5V for industrial/SCADA

equipment

• Logic analyzer?
- Interface w/ sigrok

Get It

• www.jtagulator.com

*** Schematics, source code, BOM, block diagram,
Gerber plots, photos, videos, other documentation

• www.parallax.com
*** Assembled units, accessories

• http://oshpark.com/profiles/joegrand
*** Bare boards

http://oshpark.com/profiles/joegrand
http://oshpark.com/profiles/joegrand

Demonstration

