
Taintless
Defeating taint-powered protection techniques

Abbas Naderi (aka AbiusX) 
Mandana Bagheri 
Shahin Ramezany

✓
While you obtain the tools and get ready, we’ll
warm-up our systems.

Before We Begin ✓
Describing the tool, its modes of operations and
goals.

Taintless

✓
What is Taint? What types of taint are there?
What processes use taint to defeat cyber-attacks?

Getting To Know Taint ✓
Trying Taintless on a bunch of software,
attempting to analyze and bypass their
protections and weaknesses.

Demonstration

✓
Studying a select group of candidate taint-based
techniques helps us better understand -and hence
defeat- taint.

Existing Techniques ✓
Covering any final thoughts the audience might
have.

Q&A

Covered Topicsy

if it breaks you, it makes you
stronger

❝

❞

k

Before We Begin

Let’s warm-up our systems by solving
this challenge while you get the tool:

⚡

You can’t run code on your brain! (Or can you?) 
http://ideone.com/C7bOrg

github.com/abiusx/taintless22 2 (needs2composer) 
github.com/abiusx/WP:SQLI:LAB 
github.com/abiusx/WP:SQL:SINK

If you solved both challenges, find harder ones on my twitter.com/abiusx

Data! Data! Data!" he cried
impatiently. "I can't make bricks

without clay.

❝

❞

0

+

Sources of Taint

What is Taint?

• Just like in real life, sources of taint
are typically people

• Applications are designed to work
well with proper input

• Improper input makes a program
sick

• Sick programs behave differently
and unexpectedly

a

+

Tainted Input

What is Taint?

• User-input to an application is
generally considered tainted

• Specially on web, were anyone
can visit!

• Tainted input needs to be sanitized
before use in the application

• Everybody knows that, nobody
does that.

• Our forefathers didn’t even know
that (Legacy Code)

a

+

Sinks

What is Taint?

• Everything entering the application
system is categorized as tainted
(e.g Second order attacks)

• Taint propagates throughout the
program, until it reaches a sink

• A sink is a [security] critical
operation inside the application
(e.g database query)

• Sinks are important, just like body
organs, as tainted input aims that
specific organ.

• Sinks are wrapped in taint-based
techniques

a

+

Taint Propagation

What is Taint?

• The more complex a code-base,
the more possible means of taint
spreading around

• Just like a virus in our body, taint
can play hide and seek to bypass
all sentinels and filters

• Taint may totally change form,
typically rendering it harmless, but
sometimes this change morphs it
into something dangerous  
(e.g encrypting an innocent string
into a piece of code)

a

+

What is Taint Tracking?

Taint Tracking

• Traditional taint-based technique
for protecting applications is
known taint tracking

• Already available in core at Perl,
Ruby, PHP and many others as
extensions

• Intensive processing, impossible
to accurately model

• Typically performed on strings,
treating them (or individual
characters) as black and white
(and sometimes gray)

• String operations throughout the
program propagate the taint

• Taint is increased, reduced or
morphed in the process

a

+

Taint Tracking Example 1

Taint Tracking

<?php 
$x=$_GET[‘input’]; 
$y=substr($x,0,10); //reduced

$z=str_replace($x,”a”,”b”); //modified

$w=str_repeat($x,3); //increased

mysql_query_(“SELECT * FROM users WHERE username=‘{$y}’”);

a

+

Taint Tracking Example 2

Taint Tracking

<?php 
$x=$_GET[‘input’];

if ($x*1>0) //its a number

mysql_query_(“SELECT * FROM users WHERE userid={$x}”);

a

+

Sink Analysis

Taint Tracking

• Parses SQL query (or any other
expected data) and marks critical
(security-intensive) tokens

• If taint exists in (or conforms) these
tokens, disinfects

• Easiest disinfectant is exit(-1)

• Policies define what to do with
gray areas.

a

+

Gray Taint

Taint Tracking

• If an string operation fades tainted data into mixed data, disallowing a one-to-
one mapping (or modeling), gray taint is made

• Example: 
$x=$_GET[‘input’]; 
$y=preg_replace($x,”(\d).(\d)”,”9$29$19”);  
$z=md5(“username=‘{$x}’”);

• $y has gray taint because it’s hard to model regular expression taint
propagation

a

+

Gray Taint (2)

Taint Tracking

• Example: 
$x=$_GET[‘input’]; 
$y=preg_replace($x,”(\d).(\d)”,”9$29$19”);  
$z=md5(“username=‘{$x}’”);

• $z has gray taint because its impossible (infeasible) to model md5 taint
propagation

• It’s not always impossible for the attacker!

a

+

Treating Gray Taint

Taint Tracking

• Whether to consider gray taint as
safe or unsafe, is a matter of
threshold.

• Thresholds result in false negative
and positives

• Most solutions claim to handle
gray taint well, but non of them
actually do. They just ignore it to
make the program work, rather
than stop them and break the
code.

• Totally in contrast with what our
bodies do!

a

+

Positive Taint

Taint Tracking

• So far all taint mentioned was
negative taint, i.e bad

• Positive taint is what we know to
be good:

• Track it and assume
everything else to be bad (just
like our bodies)

• Will break the programs more, but
is intrinsic to the nature of
application (no attacker control)

a

+

Positive Taint Tracking

Taint Tracking

• Very few solutions for positive taint
tracking

• e.g Diglossia, Halfond et. al.

• They suffer from the same
propagation hardships of negative
taint tracking

• Hard to model many
operations

• Impossible to model some
others

• Typically configured very
loosely

a

The world is full of obvious things which
nobody by any chance ever observes.

❝

❞

1

-

Inferring Taint

Taint Inference

• Since we can’t track taint
accurately, and are bound to
approximation; why not employ
approximation from the start?

• Instead of tracking taint from
application input to the sink,
modeling every organ in its
complicated body; inspect the
value from time to time, and infer
which parts are tainted

• Way lower accuracy, way more
simple and fast

1

-

Example

Taint Inference

• <?php 
function mysql_query_($query) { 
 $input=$_GET[‘u’];  
 $len=strlen($input);  
 $match=substr($query, strpos($input,$query),len);  
 if (levenshtein($match,$input)/$len<0.1) exit(-1);  
} 
mysql_query_(“SELECT * FROM users WHERE username=‘{$_GET[‘u’]}’ ”);

1

-

Feasibility

Taint Inference

• Approximating input/output correspondence seems very easy, but is actually
very computation hungry 
 
foreach $query in $queries  
 foreach $input in $inputs  
 $match=approximateFind($input,$query); 
 $distance=stringDistance($match,$input) /
 length($match)  
 if ($distance>$threshold) die(); 
 
O(x L x M x I)  
N=number of queries, M=number of inputs, L= query size, I = input size

1

-

Feasibility (2)

Taint Inference

• A typical application has 20
queries, and a few inputs.

• Queries don’t typically grow very
large (at most a few kilobytes), but
inputs typically do.

• Specially when they upload their
files

• Still in the optimum case, a
polynomial of power 4 is not very
fast.

1

-

Positive Taint Inference

Taint Inference

• All discussed so far regarded
negative taint inference, i.e
inferring bad tainted input in the
output

• Positive taint inference finds good
parts of the output, inferring the
rest as bad

• Remember, as long as nothing
critical is bad, we’re good

• Not as impossible as positive taint
tracking

1

Taint-Tracking vs Taint-Inference

Taint Inference1

Protected2
ApplicationUser2Input

Sink
Protected2
ApplicationUser2Input

Sink

Detection is, or ought to be, an exact
science, and should be treated in the
same cold and unemotional manner.

❝

❞

p

We will briefly study one sample from each category:

Existing Techniquesp

Positive Taint
Tracking 

 
2013

Diglossia
+

Negative Taint
Tracking

!
2011

PHP Aspis
-

Negative Taint
Inference  

(Sekar et. al.)  
2009

NTI
-

Positive Taint
Inference  

 
2013

S3
+

Hybrid Taint Inference 
 

2014

Joza
- +

=

PHP-Aspis

Existing Techniques

• Started as a taint-tracking paper

• Turned into a PhD thesis
(Imperial College folks)

• They tried to model every single
function, by re-writing PHP
interpreter

• There’s a lot of details on how it
(should) works and how they
modeled everything

• But it’s not actually used anywhere
(last update 2011)

• Can you guess why?

p

https://github.com/jpapayan/aspis

=

Diglossia

Existing Techniques

• Started as a positive taint-tracking
paper on ACM CCS 2013

• Keeps track of user inputs, and
converts application strings mixed
with user-input, on a character by
character basis (mapping them to
Korean)

• Rewrites PHP interpreter

• At the sink, critical tokens should
be Korean.

• The paper overcomplicates things
to make the reader feel it’s doing
magic, but basically it’s positive
taint tracking.

• Only works on very simple
operations.

p

=

NTI (by Sekar)

Existing Techniques

• Very clever method, uses negative
taint inference

• Compares query at the sink with all
user inputs, looking for possible
approximate matches

• Uses a threshold to catch
similarities

• Works pretty well to protect against
trivial attacks

• Encoded input is doomed, so is
transformed one

• Uses mod_security for wrapping

• Hasn’t been used widely (why?)

p

=

S3 (DNA Shotgun Sequencing)

Existing Techniques

• Uses positive taint inference

• Uses string fragments inside an
application to build a query at sink

• If sensitive parts are not built by
application code, they are built
with user input!

• Doesn’t rely on user-input

• Doesn’t rewrite PHP interpreter,
instead uses a lib (or binary) and
minor code modifications (one
include + sink wrappings)

• Only breaks if major query parts
are built dynamically (almost
never)

p

=

Joza

Existing Techniques

• Mixes NTI and PTI synergistically

• Very hard to break (0 false
positive/negative on studies)

• Easy maintenance

• Faster NTI due to PTI

• Taintless can help break it, but just
helps.

• Immune to second-order attacks

p

Joza Overview

Existing Techniquesp

It has long been an axiom of mine
that the little things are infinitely the

most important.

❝

❞

/

Taintless Modes of Operation

Taintless/

These can be used in the construct phase to build
payloads that fully match positive taint sources. Not all
the strings are extracted as many of them are typically
used in HTML or other sources. Multiple levels of
filtering and optimization is performed on the extracted
strings to enable faster and more accurate processing.

Extracts plausible strings from
an application as sources of
positive taint

Extract

Analyzes all string operations in the application code,
marking hard-to-model operations as more likely to
break. Breaks down application segments, suggest weak
points for manual code review and the likelihood of
vulnerability in the app. Detects sinks.

Analyzes an application,
providing very useful details

Useful for automated scripts. Based on rigorous modified
NP-complete algorithms. Even if a payload is not fully
synthesized with positive taint, as much of it as possible
will be covered. Requires a source of extracted
fragments.

Constructs an attack payload
using positive taint

Analyze Construct

Static Analysis

Taintless

• PHP is a very irregular language

• Impossible to amalgamate

• Impossible to statically
analyze

• Slow to dynamically analyze

• Taintless statically analyzes a PHP
application, finding possible points
of failure when protecting with taint

• Analysis is based on a data file
which defines how hard string
operations are to model, both for
tracking and inference

/

/

Sample Analysis Result

Taintless/

/

Sample Analysis Result (2)

Taintless/

/

Extraction

Taintless

• Parses every single file in an
application, extracting strings

• Placeholder strings (e.g printf
format string, PHP inner-concat)
are broken down into multiple
strings

• The final list of strings is filtered for
those with SQL (or any other
attack) tokens, and the rest are
discarded

• Strings with binary (terminating)
characters are discarded

• The list is sorted and duplicates
removed

/

/

Sample Extraction Result

Taintless/

/

Construction

Taintless

• Solves modified maximum
coverage problem (NP-Complete)
to build a string with available
fragments in an application

• Whitespaces and comments are
extended and/or shrieked for
better matching results

• Possible forms of a token are all
searched for (e.g union all, union)

• SQL payload is not parsed as it is
not a full query, the user is in
charge of determining if all critical
tokens are matched

• SQLMap tamper script included

/

/

Sample Construction Result

Taintless/

/

Sample Construction Result (2)

Taintless/

/

1 A Special Thanks To
University of Virginia, ZDResearch, OWASP,
Etebaran Informatics and all others that made
development of this tool possible.

2 Follow Us Twitter:
Twitter:
AbiusX
ZDResearch
OWASP Iran
Shahin Ramezany 
 
We will be hosting a CTF with taint-protected
challenges soon, cash prizes included!

3 Test Taintless Yourself
WP-SQLI-LAB and WP-SQL-SINK tools provide a
great test-bench for Wordpress SQL injection.
Simplified implementations of Taint Tracking, NTI and
PTI are available, and detailed implementations can
be obtained by emailing respective authors.

Questions?

Q&A⚡

Abbas%Naderi%(aka%AbiusX)%
Mandana%Bagheri%
Shahin%Ramezany

Challenge%Wall%of%Fame
Siavash%Mahmoudian%
Mykola%Ilin%
Shivam%Dixit%
Mathias%Bynens%
Abouzar%Parvan%
Ahmad%Moghimi%
Mohammad Teimori Pabandi

There is nothing new under the
sun. It has all been done before.

❝

❞

:)

