
© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Remotely Abusing Android
Ryan Welton

➜ ~ whoami

● Ryan Welton

● Security Research @ NowSecure

● Twitter: @fuzion24

● Github: github.com/fuzion24

https://twitter.com/fuzion24
https://github.com/fuzion24

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Zip Directory Traversal

 A specially crafted zip file can

allow an attacker an arbitrary

file write

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Zip Directory Traversal -‐ Concept

Our directory tree looks as follows

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Zip Directory Traversal -‐ Concept
We have a zip file with a single file in it and extract it

The zip extracts exactly as we expect inside the unzip_directory

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Zip Directory Traversal -‐ Concept

Here’s a list of files inside our specially crafted Zip

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Zip Directory Traversal -‐ Concept

When we extract our specially crafted zip, it extracts outside of the intended directory (unzip_directory)

A file was written one directory higher than where we asked the zip library to unzip

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Zip Directory Traversal

● We can inject a file into a zip whose name is prefixed with an

arbitrary number of “ ../ “

● If the zip library does not take care to properly handle this case, it

would allow us to write outside of the intended extraction directory

● If the zip file is untrusted, this gives the attacker an arbitrary write

vulnerability

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Remote Attack Surface

● Many apps download resources in the form of a

.zip file

● Injecting a directory traversal into a .Zip file,

you can gain an arbitrary file write primitive

● Android’s ZIP APIs allow this behavior by

default

EXAMPLE:

“Vungle products provide necessary infrastructure for
app monetization through video ads. More than 200
million people worldwide see Vungle ad each month”

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Arbitrary File Write to Remote Code Execution

● Android’s Dalvik Executable format (.dex files) has limitations on the amount of classes a .dex file
can have

● To overcome this, Google built the MultiDex Support library (Android 5.x has built in support)

● MultiDex writes executable code where the app can change it

● Secondary .dex files are stored in the data directory of the application, writable by the app user

EXAMPLE:

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Our Demo Target

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

How Do We Exploit?

Process

1. Modify network traffic to inject our payload

2. Overwrite secondary .dex

3. ???

4. Profit

mitmproxy is a very effective

tool for this type of attack

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

My Talking Remote Code Execution

Link: https://www.youtube.com/watch?v=u9XqWuY0WG8

http://youtu.be/DTv9TwQF74I
https://www.youtube.com/watch?v=u9XqWuY0WG8

Next Victim

Samsung Keyboard by Swift runs as System user! (Why?)

Now that we know zip files on Android can be very dangerous, let’s look for other targets:

+

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Attempt 1

● Injecting into these zips failed because the hash of the zip is validated before extraction

● The server sends a manifest that includes the zip location and the correct sha1 of the zip

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Manifest is Malleable, Too

Precompute the hash of the payload, change the manifest — Arbitrary File Write as System User

Choosing a File Write Target

● We can inject a directory traversal and overwrite some Dalvik cache

● The cache we choose to overwrite should run as system and be present on most/all Samsung Devices.
Modifying the framework cache is hard, let’s avoid that

● This is a good target because it is not critical. It contains a Broadcast receiver which is executed on boot

● Flow:

○ Write our payload in Java :: FactoryTestBroadcastReceiver, the class declared in our
target’s manifest, contains our payload

○ Generate our .dex file with the ‘dx’ tool

○ Run ‘dalvikvm’ from the shell on target device, so that Android generates our cache.
Use this file to overwrite our target.

● Overwriting an .odex has some caveats that we need to deal with: 
 
 

● We can build a script to patch our generated cache to match the target cache

Generating Our Dalvik-Cache Target

dalvik-‐cache Caveats (cont’d)

● Each .odex file contains a reference to all of the other .odex files it was built against. Even on
different models of the same device, these can be different

● This means that we are going to have to serve up a specific payload to each device that
requests it.

● How do we know what we should be serving for each request then? The User-‐Agent string
from the HTTP request of the keyboard let’s us know what payload we should send it

○ 'User-Agent': 'Dalvik/1.6.0 (Linux; U; Android 4.4.2; SM-G900T
Build/KOT49H)’

● We just pre-‐generate all our dalvik-‐cache payloads and send the correct one off, when
requested

Attack Payload Structure

● Pre-generated dalvik-cache payload(s)

injected into the original language pack

●During startup, the payload is injected

into every zip for each device available

●We can support exploitation of many

devices models at once by properly routing

requests based on the User-Agent

Swift Keyboard Update Semantics

● Every time the device is rebooted, the first time the keyboard is open, the manifest is
requested. This is when we feed it our manifest with the hashes of the modified .zip files.
Additionally, every few hours the keyboard asks the server for a manifest update.

● If the current language in use has a ‘live’ directive, the keyboard automatically downloads the
zip file and extracts it. We make sure that all languages have this ‘live directive and that our
payload is injected into it.

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Samsung Keyboard -‐ RCE Demo

Link: https://www.youtube.com/watch?v=uvvejToiWrY

https://www.youtube.com/watch?v=uvvejToiWrY

Remotely Owning Samsung Devices

● Completely Stealth — No user interaction or indication the device was owned

● Exploit is very portable — The access complexity for this exploit is very low, not
requiring any kind of memory corruption and works reliably across many devices

● Runs in a very privileged context — In Android, the system user has many more
capabilities than a normal user app is granted. This gives allows us to have a
much greater impact on the things we can do once we have taken control of the
device

About this vulnerability

Accessibility of Exploit

● If you can take control of your victims network traffic, you win

● Geographically proximate attacks include : DNS Hijacking, Rogue WiFi AP or cellular base

station, ARP poisoning, etc..

● Completely remote attacks could be performed by stronger adversaries. Examples include:

ISP packet injection (Verizon), Quantum insert (NSA), National Firewall (ex. Used to DOS

Github)

● My test setup consisted of a Linux VM running hostapd in which I transparently redirected

HTTP traffic to mitmproxy. In this way, a vulnerable device only has to connect to the WiFi

access point to get owned.

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

What about Knox?

● Toted as an “enterprise security solution”
●Helps in some cases; generally making

exploitation harder
● It does help restrict the impact once code

execution is gained here. This exploit
can be easily chained with a kernel
vulnerability that affects these devices
like Towelroot/PingpongRoot to further
sidestep Knox

Zip Ownage

● This vulnerability was tested on a fully updated Sprint Galaxy S6 on June 15th,
2015 — Still vulnerable. The VZW S6 shipped vulnerable and likely still is

● There many “one-off” instances of applications insecurely downloading .zip
files

● Zip directory traversal appears to be handled the same way on iOS leaving the
Swift Keyboard vulnerable to the same attack sans code execution

Bonus

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Patching Cycle

● All software has bugs. It’s most important how these issues are dealt with that makes all the

difference

● Samsung was notified in November 2014 and they asked for *at least* a year to fix this issue

● Patch for this vulnerability has supposedly been applied to devices running Android 5.0 and

back ported to some older devices

● It’s still up to the discretion of the carriers as to how and when these patches are applied

● 1+ year patch cycle is an issue and needs to be addressed

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

Contributors and Acknowledgements

● Special thanks to Jake Van Dyke — helped with many ideas and the implementation of the exploit

● Greetings to the NowSecure Research Team

○ Sergi Alvarez

○ Sebastian Guerrero

○ Marco Grassi

○ Pau Oliva

○ Ole André Vadla Ravnås

○ David Weinstein

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

THANK YOU

Ryan Welton
Security Researcher, NowSecure

rwelton@nowsecure.com

@fuzion24

github.com/fuzion24

http://github.com/fuzion24

