
Mobile SSL Failures

Tony Trummer
Tushar Dalvi

ABSTRACT

SSL and TLS are the most widely used protocols for securing
data on the Internet between mobile devices and their
supporting remote servers. Most people are aware of the
encryption these protocols provide, but the authenticity
aspect is often overlooked.

Our research, focused primarily SSL/TLS usage on the
Android operating system and applications, with some
additional research on iOS and Windows 8 mobile.

We believe our research has demonstrated that there are
systemic issues, largely opaque, to all but the most technical
users. These are with the manner in which SSL/TLS is
implemented, certificate validation is performed in
applications and to a lesser degree, failure to encrypt
sensitive data.

While we are not the first to investigate SSL/TLS issues on
mobile devices, we demonstrate methods by which
implementations, intended to make these protocols more
resource efficient, open mobile devices up to the possibility
of novel attacks.

Keywords
SSL, TLS, HTTPS, vulnerabilities, Android, iOS, Windows
Mobile, mobile application security, certificate validation,
SSL session cache

INTRODUCTION

Commonly used in web browsing, SSL and TLS have served
as the standard means for securely transferring data across
untrusted networks such as the Internet. They are commonly
used for general purpose computing, where one or more of
the parties, or IP addresses, is not known prior to the
connection and the connections are generally transient.
Whereas solely symmetric encryption, is commonly deployed
between two or more previously known endpoints where
shared secrets can be exchanged prior to the initial
connection being made.

One of the main drivers for the ubiquitous adoption of
SSL/TLS is the fact that it facilitates the ability for two
parties, having no established relationship with one another,
to rely on presumed indifferent, “trusted” third-party
certificate authorities to validate the identities of one, or both
of the communicating parties.

Mobile devices, are by their nature transient, connecting to
many different networks, even within the same day, including
automatically connecting to some carrier configured, default

SSIDs for WiFi networks, partly by design, to reduce cellular
network traffic usage. We believe this makes them more
susceptible to Man-in-the-Middle attacks, compared to most
types of common computing platforms.

Our research covers common implementation errors related
to SSL/TLS certificate validation, lack of encryption and
insecurely implemented features such as SSL session
caching.

OVERVIEW OF OUR RESULTS

Our research has uncovered that numerous well-known
organizations responsible for publishing many of the most
popular mobile applications have failed to properly protect
data, transmitted by their applications , from interception and
eavesdropping, via man-in-the-middle attacks or passive
network sniffing. This data included authentication tokens,
passwords, credit card numbers and personally identifiable
information (PII).

We believe this is mainly due to simple human error,
compounded by inadequate quality assurance and security
review practices. Further, we believe the “roll your own”
mentality for mobile applications, is a particularly dangerous
one, which assumes a level of uniform technical security
proficiency, which beyond the current state in most
organizations. In a broader sense, we believe this approach
also fails to leverage the lessons learned and communal
knowledge acquired from decades of browser security
vulnerabilities.

In a brief, non-exhaustive examination, we discovered many
of the most popular applications failed to either validate that
certificates were signed by trusted Certificate Authorities,
that the Subject Alternate or Common Names on the received
certificates matched the DNS hostname they were attempting
to contact, on certificates that were from trusted CAs, or
relay any warning indicator to the user.

Since many organizations are accustomed to the development
paradigms related to web applications, in many cases, they
appear to mistakenly carry over the same thought processes
into their mobile development practices. As pointed out by
Moxie Marlinspike[6], there is really no reason for mobile
applications to use third-party certificate authorities at all. By
forgoing their use, many of the vulnerabilities we discovered
would be eliminated altogether.

Lastly, we discovered the ability to perform nearly
undetectable, albeit limited, MitM attacks against mobile
devices leveraging the fact that they implement SSL session
caching mechanisms to increase efficiency. This was made

possible due to the fact that these mechanisms, by design,
only check the certificate validity on the initial connection,
but the both the application and operating systems fail to
properly invalidate sessions when a certificate has been
removed from a device. This presents an opportunity for a
would-be attacker. While this vulnerability is not unique to
mobile devices, it's exploitation is substantially more likely
on a mobile device.

OVERVIEW OF SSL HANDSHAKE

The basic flow of the SSL Handshake is that first the client
will send a “Client Hello” message, to which the server will
reply with a “Server Hello” message. It is at this point that
certificate validation occurs as well as a check of
cryptographic parameters. After this, the client sends a secret
key encrypted with the server's public key and optionally a
client certificate. The remainder is irrelevant to our topic.
This should not be taken to be an exhaustive explanation. See
http://tools.ietf.org/html/rfc6101 Section 5.5 for additional
detail [4]

SSL CERTIFICATE VALIDATION

Upon receiving a server's certificate, a client will verify
whether the CA name on the certificate is a trusted CA, or
traverse up the hierarchy of trusted CAs until it finds a
trusted CA that issued the untrusted CA's certificate. If it fails
to identify a trusted root CA in the chain, validation will fail.
If it does find a match, it will then verify the certificate's
signature, using the public key, to ensure it was actually
signed by the private key of the CA.

SSL SESSION CACHING

Following a successful, full SSL handshake, in which
certificate validation is performed and cipher suites are
exchanged, the server and client can cache a session
identifier. This allows subsequent connections to skip the
certificate validation and cipher suite exchange, speeding up
the process and saving computing resources on both ends. By
default, this cached session has a lifetime determined by the
server's configuration.

FAILURE TO VALIDATE TRUST CHAIN

Every application in this section failed to validate a
certificate received, with the correct hostname, had a trust
chain, which led back to a trusted root CA. This would make
exploitation simple, as they would accept a certificate, with
the correct hostname (in most cases), signed by any CA,
trusted or not. In our testing, we used the BurpSuite
application's Proxy feature with the “Generate CA-signed
per-host certificates” setting, without first installing the
PortSwigger CA certificate on our devices. Nearly all of the
examples below would have allowed for interception and
decryption of passwords and/or credit card numbers. In a few
cases it may have been limited to authentication tokens, PII
and/or allowed for malicious content injection, but for legal

reasons, we do not wish to distinguish exactly, unless
otherwise noted. Lastly, we have not categorized these
applications by operating system, so the vulnerability may
have been in the app for Android, iOS or both.

Disabling trusted CA validation is routinely accomplished, in
Android apps, by creating a custom X509TrustManger
interface that ignores any CertificateException exceptions
raised.

Separately, SSL certificate errors can also be disabled in
WebViews via the SslErrorHandler class, by invoking the
proceed() method[15]. List of vulnerable applications:

1. Hootsuite
2. ClubLocal
3. Pocket
4. OKCupid
5. Sylphone (a Salesforce Partner)
6. Slack
7. Pocket
8. StumbleUpon
9. Uber
10. Starbucks
11. Pizza Hut
12. Walgreens
13. CostCo
14. Staples
15. SouthWest Airlines
16. Sears
17. Macy's
18. Office Depot
19. Kmart
20. iTunes Connect
21. Android's Google Cloud Messaging1

22. Microsoft Skype
23. Cisco Webex
24. TimeWarner Cable
25. Piwik
26. Piwik2
27. CNNMoney
28. NewEgg
29. Zappos
30. SecureAuth OTP
31. Authy
32. SafeNet (VPN client)
33. SplashID
34. SonicWALL Mobile Connect
35. Cisco Technical Support
36. Kayako (helpdesk software)
37. Honeywell TC
38. Bing (login)
39. Outlook.com
40. US Bank
41. ADP

1 May have been discovered independently in [1], but
Boneh did not recall when asked informally

42. CapitalOne Spark Pay
43. Amazon Kindle

FAILED TO VALIDATE HOSTNAME MATCHED

All of the applications in the following list, failed to validate
that the certificate actually matched the hostname they were
contacting. This was tested using Burpsuite's Proxy with the
Generate a CA-signed certificate with a specific hostname
enabled, but specifying a mismatched hostname. Any
duplications from the previous list, mean either they were
vulnerable to both or had different vulnerabilities on different
platforms (eg. iOS vs. Android).

Disabling of hostname validation is routinely accomplished,
in Android apps, by creating a HostnameVerifier interface
which always returns true.

Again, SSL certificate errors can also be disabled in
WebViews via the SslErrorHandler class, by invoking the
proceed() method[15].

1. Yahoo! Mail
2. Yahoo! Screen (iPad and iPhone)
3. GoDaddy
4. Microsoft Lync 2010 and 2013
5. Slack(twice)
6. Cisco OnPlus (remote access)
7. Serve AMEX
8. MA SolarWinds
9. WesternDigital MyCloud
10. Cisco Webex
11. Intuit Tax Online Accountant
12. Intuit TurboTax Snap Tax
13. American Express BlueBird
14. Ask
15. WesternUnion
16. MedScape (medical information)
17. WordPress
18. myAT&T
19. AT&T U-Verse
20. AT&T Global Network Client
21. Orbitz
22. Huntington Mobile (Bank)
23. AMC (Theaters)
24. Kayak
25. Weibo
26. Angie's List Mobile
27. Oracle Now
28. Dominos Pizza
29. Swivel Secure (OTP)
30. Groupon
31. Citrix Receiver
32. OfficeMax
33. OK Cupid
34. Vine
35. Groupon
36. E-Trade

37. Uber
38. Yahoo! Finance
39. Vimeo
40. Relate IQ
41. Wordpress
42. Pinterest
43. Google Earth
44. Yammer
45. Shopify
46. Freelancer
47. SplashID Safe “Teams”
48. Onavo Extend
49. Myntra
50. Juniper Innov8
51. Buffer
52. Buffer Daily
53. BitCasa
54. USBank – Access Online
55. Yelp
56. SoundCloud
57. ADP Dashboard
58. Hootsuite
59. WesternDigital MyCloud

The bold items in the list above were all iOS applications,
found over one year after our initial round of testing. They all
failed to properly validate SAN/CNs matched the DNS
hostname they were connecting to. Many of these
applications failed because of one of numerous insecure
configurations in AFNetworking, a widely used networking
library for iOS applications.

Our report to the Yelp security team led directly to an unsafe
default configuration being patched in version 2.5.3, when a
member of their team reported the issue to the AFNetworking
maintainers.

While there were many certificate validation issues in
AFNetworking, we believe, ultimately, the burden is on the
implementer to ensure their application functions as intended.
We have found organizations, aware of the frequency of this
type of issue, discovered the unsafe defaults themselves and
made the necessary updates to their software to avoid being
impacted by the vulnerabilities. We however are unable to
cite specific examples of this for reasons outside of our
control.

Lastly, following our disclosure to CERT, they issued an
advisory entitled “Multiple Android applications fail to
properly validate SSL certificates” 19 in an effort to draw
greater attention to the issue, citing us as contributors. In a
presentation at RSA 2015, Will Dormann, a researcher at
CERT claimed to automate the testing process using a tool
named Tapioca to scan over 1 million applications, finding
23,667 vulnerable. However, without context, these findings
are misleading as there may be situations in which improper
SSL/TLS usage is non-impactful from a security perspective.
Mr. Dormann's presentation included evidence of this as he
received correspondence from numerous developers claiming

that their applications contained no sensitive data, or
otherwise were not impacted by their lack of proper
certificate validation. While we applaud this effort, we
believe it shows that a manual approach, using dynamic
testing, or thorough source code analysis, with context as to
the impact of the findings, is at times preferable.

FAILED TO ENCRYPT

The following lists contains apps that failed to encrypt
sensitive data, such as credit cards, passwords and/or
authentication tokens/cookies.

1. RockBot
Passwords
Full credit card information

2. Angie's List Business Center
Passwords

3. Skype
Auth cookies over plain-text HTTP

4. Quora
Auth cookies over plain-text HTTP

5. Cisco WebEx
Passwords2

6. Redbox
Millions of installations
Passwords
Credit cards, including CVV,
full PAN and expiration

7. Nearby Live
Passwords

8. American Express AXConnect
Passwords

In fairness, we'd like to highlight that although, we did not
perform as much testing on Windows 8 (mobile), none of the
applications we did test, showed this behavior.

We are uncertain at the time of this paper, what the
explanation is for this. It could be that Microsoft has more
stringent requirements for checking apps into their store,
something unique in their coding or build processes or simply
chance.

We did also notice on our Windows 8 test device from
Verizon, there was a device level toggle to disable certificate
validation, which we've incorporated in our
recommendations as a good practice to help avoid human
error being baked into the code.

While the Windows 8 (mobile) environment seemed to
display the best overall results, we'd like to point out that
determining what certificates are actually installed on a
device would be next to impossible for an ordinary user.

Since certificates can be installed from clicking on an email
attachment, this seems to us to be a dangerous combination.

2 This was due to a redirect from HTTPS to HTTP

We'd like to see the list of installed certificates made more
accessible.

CONSEQUENCES

While we feel we've enumerated some of the technical
security risks of these types of vulnerabilities throughout this
paper, we wanted to highlight a recent decision on a case
related to this topic. On March 28th, 2014. The FTC released
a statement that they had settled a case against Fandango and
Credit Karma, where certificate validation failures in their
mobile apps was listed as one of the main complaints[14] .

Additionally, due to security assurances they made to
consumers, regarding their use of SSL, there were allegations
stating they had “misrepresented the security of their mobile
apps”.3

The results of this were that both Fandango and Credit
Karma are to establish comprehensive security programs and
undergo independent security assessments every other year
for the next 20 years. While there were no direct financial
penalties, in the form of fines, the costs of additional
oversight and legal fees will undoubtedly be significant and
far greater than any conceivable benefit gained from
allowing certificate validation to be disabled in development.

SSL/TLS SESSION CACHING

During our research, we noticed that after rebooting an
Android device, via either the “Restart” or “Power Off”
options and subsequently powering it back on, we were
repeatedly still able to see encrypted traffic from some
applications, such as Google Maps, being intercepted by our
proxy, despite not being vulnerable to attacks mentioned
elsewhere in this paper. Unlike in the previous scenarios, the
proxy's CA certificate had been installed and trusted when a
connection was initially made from the apps, but
subsequently removed prior to reboot.

Upon discovering this, we tested the same applications on
iOS and they exhibited the same behavior when a previously
installed CA certificate was removed, but only up to the point
that the device was rebooted.

This implied that the tested applications must have been
using file based storage on Android, but not on iOS, which
we have since confirmed[2][7].

Digging deeper and with help from the Android security
team, it was determined this was due to SSL/TLS session
caching. Android has a class named SSLSessionCache which
[14]implements a “File-based cache...which can span
executions of the application”[3]. This also means that it can
persist when there is no power to the device.

3 http://www.ftc.gov/news-events/press-
releases/2014/03/fandango-credit-karma-settle-ftc-charges-
they-deceived-consumers

Because, in both cases, there is no visible indication to the
user that there was a previously installed certificate, on most
Android and iOS devices, an attacker, with the ability to
install and remove certificates on the device, could instantiate
a network connection with any application using this feature
and, in effect, create a staged MitM attack.

Due to the persistence “feature” in Android, this could
potentially allow installation of “invisible” certificates
anywhere in the supply chain, possibly in the same manner
that malicious Netflix apps appeared earlier this year on
brand new devices[5].

At the time of this paper, we are currently unaware of any
reasonable programmatic means to install certificates via a
malicious application, on non-rooted devices, that does not
require user interaction and therefore social engineering.
Remote certificate installation without user interaction is an
area of active research for us. Additionally, it is assumed that
any remote social engineering attacks would work regardless
of the vulnerabilities outlined in this paper, thereby negating
their relevance to this topic.

Despite the fact that physical access is currently thought to be
required, we feel this is a plausible attack, specifically,
because physical control of mobile devices can be harder to
maintain when generally compared to fixed assets.

With regards to screen-locking being a further deterrent to
physical attacks, in a recent study[13] Google found that 52%
of users used a “simple slide or gesture” to unlock their
devices. Even if reasonably complex screen-lock passwords
or drawings are implemented, researchers have shown these
can be determined with 68% accuracy[10]. Finally, there have
been numerous bypasses historically, including in the last
year[8][9].

We believe there are several plausible scenarios where an
individual may be compelled or social engineered into
relinquishing control of their device, if even for a short time,
and having a session staged on it. Examples could include
having your device seized while being detained by law
enforcement or governmental agencies, losing the device or
having it stolen, only to have it “miraculously” returned later
or if the device is purchased second-hand. Additionally, a
session could be staged anytime prior to a device being first
given to a user, either by their cellular carrier or IT
department.

We have confirmed the ability for persisting sessions in
excess of 24 hours and are currently researching the
feasibility of increasing session cache timeouts, to arbitrarily
high values, to create an enduring MitM situation. A duration
of about 2 years, is assumed sufficient to persist for any
individual owner, in most cases. This would presumably
align with cell phone contract renewals and is well within the
maximum DNS TTL[11].

Additionally, we believe it is reasonable to assume that

because the certificate validation only occurs on the initial
handshake any of these connections, this ability to endlessly
cache sessions would allow for certificates that are revoked
or expired to remain active indefinitely. This is an area of
ongoing research for us.

We believe this leaves maintaining the MitM position as the
main obstacle to wide-spread abuse. It is assumed this would
require some means to consistently poison DNS responses,
by modify the hosts file, changing the DNS server settings or
possibly configuring a VPN on the device. If the device were
rooted, this obstacle is easily overcome, but is believed to be
non-trivial on non-rooted devices, provided the adversary is
not a governmental entity, an ISP or in the supply chain. As
an example, in 2013 Nokia was found to be performing a
massive MitM on their customer's traffic.4

Some interesting possibilities, for the most determined of
attackers, could be using a drone similar to the “Snoopy”[12]
drone, to follow the victim pretending to be a trusted SSID or
strategically placed hot-spots in areas they are likely to use
their apps.

A recently published article claims that researchers have
discovered novel attacks that make cracking WPA2
security[17] possible. If accurate, this may make obtaining or
maintaining MitM position significantly easier.

RECOMMENDATIONS

For Organizations

Train development, quality assurance and security staff on
the importance of SSL certificate validation and how to test
for it. Implement policies to prohibit disabling these
validations in code at any point in the release process. Invest
in moving away from the use of public CAs in mobile
applications or at a minimum implement certificate pinning.

For Developers

Remove the need for certificate authorities altogether by
locally verifying the received certificate. If that is not
possible, consider implementing certificate pinning and add
your test servers' certificates to the list of trusted certificates,
rather than disabling certificate validation globally. If none of
these options work for your organization, install a trusted CA
certificate, from your development environment, on your
development device or emulator, which only take a few
seconds. Weigh the risk/reward scenarios cautiously before
implementing any SSL session caching functionality in client
apps, especially if they are persistent across reboots.

4 http://www.ftc.gov/news-events/press-
releases/2014/03/fandango-credit-karma-settle-ftc-charges-
they-deceived-consumers

For Security and QA Testers

Ensure certficate validation is included in part of your pre-
release testing. Familiarize yourself with how this is
defeated in code for the platforms you support and perform
pre-release code reviews for this specific issue.

For the Public

Never trust that an application is as safe as a browser, until
such a time as there are mandatory visual indicators that warn
of potential issues, similar to the way the padlock works in a
browser. Uninstall any pre-installed applications you can,
when acquiring a new device. Disable all automatic
connections to WiFi networks, especially those that are easily
guessed by attackers.

For SmartPhone OS developers

Force a visual indicator, similar to the browser padlock on all
secure connections. Remove the ability to disable certificate
validation from the developer's hands. Alternatively, make
the ability to ignore certificates a toggle on the device and/or
emulator, rather than in the code. Clear all SSL/TLS session
caches when a certificate is removed from a device, or force
a reboot in iOS. Force an app to get permission from the user
before allowing it to disable certificate validation.

App store owners

Perform static code analysis for all submitted applications to
ensure they do not have certificate validation disabled prior
to releasing them. Refuse to accept any that do not.

RELATED WORK

Independent of this work, Georgiev, et al. [1], provided an in-
depth look at certificate validation issues related to non-
browser software, including mobile applications, but
focusing on mainly mobile banking apps. By contrast, our
work includes a survey of the common nature of this issue,
across numerous types of apps, citing numerous specific
examples. Additionally, our research focuses exclusively on
mobile applications and operating systems, not a broader
discussion. Finally, their paper makes no mention of attacks
against session caching or failing to encrypt data all together.

Independent of this work, H. Shacham, et al. [2] , make
reference to potential weaknesses for “cached” certificates,
but appear to assume a compromise of PKI as a whole is
necessary and neglect to consider client-side attacks.

Independent of this work, IOActive published a blog post
describing very similar findings, but appears to focus on
mobile banking apps on iPad and iPhone. In contrast, we did
not focus on any apps in particular, other than the fact that
their needed to be a reasonable expectation that sensitive data
was transmitted by them. Additionally, the majority of our
research was focused on Android. Additionally, they did not

mention any findings around session caching.

CONCLUSION

The main takeaway from this paper would be that
organizations need to ensure they are not actively defeating
client-side security mechanisms in mobile applications, even
during the development process.

As more and more Internet traffic moves towards mobile
platforms, organizations need to re-think the way mobile
applications are developed, deployed and tested. While
mobile applications may commonly implement HTTP, they
are not traditional web applications and present unique
security issues.

Following the advice from Moxie Marlinspike[6] by either
locally validating the certificate or implementing certificate
pinning, would eliminate most of these certificate related
vulnerabilities and has the added benefits of potentially
limiting exposure to compromised certificate authorities.

REFERENCES
[1] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh,
V. Shmatikov. The Most Dangerous Code in the World.
https://crypto.stanford.edu/~dabo/pubs/ab
stracts/ssl-client-bugs.html, 2012

[2] H. Shacham, D. Boneh, E. Rescorla.
Client Side Caching for TLS.
http://crypto.stanford.edu/~dabo/abstract
s/fasttrack.html

[3] How SSLSessionCache class caches sessions
http://developer.android.com/reference/an
droid/net/SSLSessionCache.html

[4] How SSL Handshake works
http://tools.ietf.org/html/rfc6101

[5] Pre-installed malware turns up on new phones
http://www.pcworld.com/article/2104760/pr
einstalled-malware-turns-up-on-new-
phones.html

[6] Your app shouldn't suffer SSL's problems
http://www.thoughtcrime.org/blog/authenti
city-is-broken-in-ssl-but-your-app-ha/

[7] TLS Session Cache on iOS
https://developer.apple.com/library/ios/q
a/qa1727/_index.html

[8] New Samsung flaw allows 'total bypass' of Android lock
screen http://www.zdnet.com/new-samsung-
flaw-allows-total-bypass-of-android-lock-
screen-7000012888/

[9] Another lock screen bypass reported in iOS 7

http://www.zdnet.com/another-lock-screen-
bypass-reported-in-ios-7-7000021462/

[10] Smudge attack
http://en.wikipedia.org/wiki/Smudge_attac
k

[11] Clarifications to the DNS Specification
http://www.ietf.org/rfc/rfc2181.txt

[12] 'Snoopy' drone which can can hack your phone and steal
all your data let loose in London
http://www.mirror.co.uk/news/technology-
science/technology/snoopy-drone-can-hack-
your-3280351

[13] Over half of Android users fail to lock their phones
http://www.net-security.org/secworld.php?
id=16577

[14] Fandango, Credit Karma Settle FTC Charges that They
Decieved Consumers By Failing to Securely Transmit
Sensitive Person Information
http://www.ftc.gov/news-events/press-
releases/2014/03/fandango-credit-karma-
settle-ftc-charges-they-deceived-
consumers

[15] SslErrorHandler
http://developer.android.com/reference/an
droid/webkit/SslErrorHandler.html

[17] WPA2 wireless security cracked
http://sciencespot.co.uk/wpa2-wireless-
security-cracked.html

[18]Nokia 'hijacks' mobile browser traffic, decrypts HTTPS
data
http://www.zdnet.com/nokia-hijacks-
mobile-browser-traffic-decrypts-https-
data-7000009655/

[19]Multiple Android applications fail to properly validate
SSL certificates
http://www.kb.cert.org/vuls/id/582497

