
Whitepaper

Blackbox iOS App Assessments Using idb
June 7, 2015 – Version 1.0

Prepared by
Daniel A. Mayer — Senior Security Consultant

Abstract
More than ever, mobile apps are used to manage and store sensitive data by both

corporations and individuals. In this paper, we review common iOS mobile app flaws

involving data storage, inter-process communication, network communications, and

user input handling as seen in real-world applications. To assist the community in

assessing security risks of mobile apps, we introduce our recent tool called idb and

show how it can be used to efficiently test for a range of iOS app flaws.

We will explore a number of vulnerability classes. Each class will first be introduced

and discussed before demonstrating how idb can enhance the testing for instances of

it. With this we illustrate how apps commonly fail at safeguarding sensitive data and

demonstrate how idb can arm security professionals and developers with the means

necessary to uncover these flaws from a black-box perspective. Furthermore, we will

provide illustration of how to mitigate each flaw. idb is open source and available to

the public.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Common iOS App Flaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Local Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Interaction with iOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Inter-Process Communication (IPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Binary Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Network / API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Simplified Pentesting with idb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Pentesting Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Basic Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Local Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Binary Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Inter-Process Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Other Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 | Blackbox iOS App Assessments Using idb NCC Group



1 Introduction

More than ever, businesses and individuals use mobile applications to manage and store sensitive data [Sta09].

When analyzing how users interact with their mobile devices, studies show that it is mostly via mobile apps and

not via the mobile web (see Figure 1). Compared to traditional applications where data is stored on a tightly

controlled server, mobile applications typically cache data locally for performance and availability reasons.

This leaves confidential data outside of the control of the corresponding service which provided the data.

Moreover, since mobile devices are by definition portable, they are prone to theft and loss [Smi13], [BSM12]

which opens up additional avenues for compromising data stored on the device.

Figure 1: Research shows that users mostly use apps on mobile devices.

Besides data storage flaws, mobile applications are prone to a number of different attack vectors. Compared

to platforms such as Android (Java-based) orWindows Phone (.NET-based), the assessment of iOS applications

poses a unique challenge in that these applications are compiled to native code and source code is not readily

available through decompilation or reflection. However, it is still possible to learn a significant amount about

iOS applications from a black-box perspective.

In the following, we review common iOS application flaws (see Section section 2) and then show how our tool

idb can be used to efficiently test for those flaws in a black-box manner (see Section section 3).

3 | Blackbox iOS App Assessments Using idb NCC Group



2 Common iOS App Flaws

The attack surface of mobile applications tends to be complex and vulnerabilities typically arise at trust

boundaries where data is exchanged with other components. Those include user input, communication with

backend services, on-device inter-process communication with other applications, and interactions with the

iOS operating system (see Figure 2). Below, we visit some of the more prevalent types of vulnerabilities in

these areas.

NetworkIPC

User Input

Backend
Service

iOS Interaction
Data Storage

Physical
Theft

Figure 2: Overview of the attack surface of iOS applications

2.1 Local Storage

Should an attacker gain physical access to an iOS device, it is typically possible to jailbreak it and subsequently

access any inadequately protected data on the device. Similar access may be achieved by reading device

memory directly or by remotely exploiting an appropriate flaw in iOS (should one exist). The description in

this section is kept brief and to the minimum required for understanding idb's features. See our upcoming

whitepaper and BlackHat USA 2015 talk titled ``Faux Disk Encryption: Realities of Secure Storage on Mobile

Devices'' for an in-depth discussion of this topic.

2.1.1 Storing Data in the File System

Sqlite databases and NSUserDefaults (plist files) are commonways for applications to store data on the device.

Both of these use the default protection provided by iOS which, as we will see below, is limited.

In order to store data such that it cannot be recovered by an attacker who has full system-level access to the

device, there must be some information that is inaccessible to the attacker. If one were simply to encrypt

data, the encryption key would need to be stored securely which leaves us with the same problem we started

with. In order to truly protect data, iOS incorporates the iOS passcode into a complex encryption hierarchy

[App15c]. This hierarchy allows different protection levels, referred to as Data Protection Classes to be used

by app developers (see Table 1) [App15a].

4 | Blackbox iOS App Assessments Using idb NCC Group



Protection Class Meaning

NSFileProtectionComplete Protected when device is locked.

NSFileProtectionCompleteUnlessOpen If open, file can be read when locked.

NSFileProtectionCompleteUntilFirstUserAuthentication Protected from boot until user unlocks.

NSFileProtectionNone No effective protection.

Table 1: Overview of iOS file protection classes.

As the default, iOS automatically encrypts the entire user file system using a device and file-specific key, but

it also transparently decrypts files for any read operation (NSFileProtectionNone). Since iOS 8, the default

protection was changed such that the decryption key is only available as long as the device is turned on and the

user unlocked the device at least once since boot-up (NSFileProtectionCompleteUntilFirstUserAuthentication)

[App15c]. On reboot or shutdown, the key is deleted andwill only be available once the user unlocks the device

again. Note that since the key is derived from the user's passcode, this only provides additional protection if

the user has a passcode set. Application developers can opt to use a more tight protection class which uses a

key that is also derived from the passcode but which is removed from the device as soon as the user locks the

device (NSFileProtectionComplete). Additional details on iOS data protection can be found in [MBD+12]

and [App15c] as well as in our upcoming whitepaper mentioned above.

Best Practices: In order to access protected files on the device, an attacker would generally jailbreak the

device or otherwise gain read-access to the file system. Most public jailbreaks require the device to be restarted

in the process and the default protection class NSFileProtectionCompleteUntilFirstUserAuthentication

may provide adequate protection in this attack scenario. However, there is no inherent need for a reboot in

the jailbreak process and previous attacks have demonstrated that this is not generally required. Therefore, in

order to protect sensitive data, developers should enable the NSDataProtectionComplete flag. Note that in

order for this setting to be effective, a strong device passcode must be set by the user.

2.1.2 Storing Data in the Keychain

Data stored using NSUserDefaults resides in a Property List file (.plist) [Wik14]. This kind of storage mech-

anism is often used to persist settings, cryptographic keys, and credentials, making it a high-value target for

an attacker. Data that is structured and small in size is a good candidate for being stored in the iOS keychain

instead of a file.

The iOS keychain provides similar protections options as the ones available for the file system discussed in

the previous section (see Table 2) [App15d]. The additional class kSecAttrAccessibleWhenPasscodeSetThis-

DeviceOnly can be used to ensure that sensitive data is only stored on the device when a passcode is set.

As mentioned previously, a passcode is required in order for kSecAttrAccessibleWhenUnlocked and kSe-

cAttrAccessibleAfterFirstUnlock to be effective. This new class ensures that data is not left unprotected

should the user choose to not have a passcode.

5 | Blackbox iOS App Assessments Using idb NCC Group



Protection Class Meaning

kSecAttrAccessibleWhenUnlocked Protected when device is locked.

kSecAttrAccessibleAfterFirstUnlock Protected from boot until user unlocks.

kSecAttrAccessibleAlways No protection.

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly Store data only when passcode set.

Table 2: Overview of iOS Keychain protection classes.

Best-Practices: Developers should store all sensitive data of reasonable size in the iOS keychain using kSe-

cAttrAccessibleWhenUnlocked or kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly.

2.2 Interaction with iOS

When applications call iOS library or framework functions, there exist several side channels and developers

may not be aware of the resulting data disclosure.

2.2.1 Background Screenshot

One notable quirk of iOS is that it stores an unencrypted screenshot when an application is backgrounded.

Any content displayed on the screen when the application is placed in the background is thus accessible by

an attacker.

Best Practices: Developers should remove or hide any sensitive content on the screen before the application

backgrounds by using the applicationDidEnterBackround delegate of UIApplication [App15f, App14b].

2.2.2 Cached Requests and Responses

Another data leak is the automatic request and response caching performed by NSURLConnection. Specifically,

it stores request and response data in Cache.db, an unencrypted sqlite database. This database is easily

accessed and queried by an attacker.

Best Practices: In order to prevent caching of sensitive data, developers should, e.g., implement the will-

CacheResponse delegate of NSURLConnection to disable caching [App15e].

2.3 Inter-Process Communication (IPC)

Because iOS does not provide a proper IPCmechanism, applications rely on other iOS features for this purpose.

2.3.1 iOS Pasteboard

Some applications exchange data through NSPasteboard. Since data stored in the pasteboard (including

private pasteboards) is accessible by any application on the device, it may be intercepted or modified by an

attacker.

Best Practices: The pasteboard should never be used to exchange any kind of sensitive data. Moreover,

consider deactivating the copy and paste mechanism for any fields that may contain sensitive data.

6 | Blackbox iOS App Assessments Using idb NCC Group



2.3.2 URL handlers

More commonly, URL handlers (schemes) are used to facilitate IPC. In this scenario, one application registers a

custom URL scheme and receives data when a second application opens a corresponding URL. However, any

application (even Safari) can call any URL scheme which means that data received via a URL handler should

be considered untrusted. In addition, the same URL scheme may be registered by more than one application

and Apple states that ``If more than one third-party app registers to handle the same URL scheme, there is

currently no process for determining which app will be given that scheme." [App15b]. As a result, data passed

via URL handlers can be hijacked by an attacker and researchers at FireEye have demonstrated that this is

in-fact exploitable in practice [XWZ+15].

Best Practices: Do not send sensitive data via URL schemes as it may be intercepted by a malicious applica-

tion. In addition, the receiving application has to check whether the calling application is trusted and perform

strict data validation on the URL data.

2.4 Binary Protection

Since iOS applications are compiled to native code, memory corruption flaws may be present which can

disclose any data accessible to the application. iOS provides advanced protections that make exploitation

of memory corruption flaws more difficult (e.g., Data Execution Prevention (DEP) and Address Space Layout

Randomization (ASLR)) [App15b, pp. 7-8]. However, in order to take full advantage of these features, some

flags have to be set when building the application.

Best Practices: In order to take advantage of ASLR, the developer must compile the application as a Position

Independent Executable (PIE) [App14a]. In addition, the developer should enable stack canaries [Wik15b]

and Automatic Reference Counting (ARC) [Wik15a]. The former provides some degree of buffer overflow

protection and the latter will help avoid use-after-free or double-free vulnerabilities.

2.5 Network / API

Finally, if the application communicates with backend systems (such as HTTP APIs), vulnerabilities similar to

those found in web applications may be present in the back-end. While most of these vulnerabilities are

not specific to iOS applications, SSL/TLS certificate validation deserves special attention. In general, all

applications should use SSL/TLS to protect data in transit between the application and the server.

Best Practices: In order for SSL/TLS to be effective, Man-In-The-Middle (MITM) attacks must be prevented

through strict SSL/TLS certificate validation (i.e., only establish a connection if the server's SSL certificate is

trusted). This is the default on iOS and should not be bypassed. For additional security, the validation can be

pinned to a single certificate or trusted Certificate Authority (CA) which prevents a malicious or compromised

CA from issuing certificates that may be used in a MITM attack. The resources at [iSE15] and [OWA15] can aid

in implementing certificate pinning in a proper manner.

7 | Blackbox iOS App Assessments Using idb NCC Group



3 Simplified Pentesting with idb

With the goal of making black-box testing for the above and other vulnerabilities easier and more efficient, we

developed a new tool called idb available at http://www.idbtool.com [May15b, May15a]. Where possible, idb

leverages existing tools and provides a unified interface (see Figure 3) to make them easier to use. In addition,

idb provides functionality that was not publicly available previously. idb's features developed over time and it

remains under active development with the latest version (2.8) having approximately 5,500 lines of ruby code.

In an attempt to remain platform-independent, idb is written in ruby using Qt for the GUI front-end. In the

following, we give an overview of idb's features and relate them to the common iOS vulnerabilities discussed

in the previous section.

Figure 3: Overview of idb's user interface.

3.1 Pentesting Setup

idb requires a jailbroken iDevice and communicates with it via SSH. One can either establish this connection

directly with the device's SSH server or use usbmuxd [usb] to tunnel SSH over USB. Any required usbmuxd

connections are established automatically and transparently.

3.1.1 Port Forwarding

idb provides optional port forwarding between the host running idb (client) and the iDevice (server ). The

forwarding settings follow the SSH naming conventions where Remote forwarding opens up a port on the

server and forwards it to the given host/port originating at the client. Conversely, Local forwarding opens up

a port on the client and forwards incoming connection to the specified host/port on the server side. One can

specify an arbitrary number of each forward type. This function is particularly useful for investigating traffic

from the device using an intercepting HTTP proxy. For example, assume your proxy is running on the client

and listens on port 8080 then you can define

8 | Blackbox iOS App Assessments Using idb NCC Group

http://www.idbtool.com


remote:8080 -> localhost:8080

This remote forward will open port 8080 on the device and forwards all incoming connections to port 8080 on

the host running idb. With this in place, one can configure the proxy server on the device as localhost:8080

and the traffic will be proxied via SSH (and USB).

3.2 Basic Application Information

After connecting to the device and selecting an application to analyze, idb immediately displays some basic

information on the application. This data is extracted from its Info.plist and related files and displayed in

the App Info tab:

1. Bundle ID

2. Bundle Name

3. UUID

4. Registered URL Schemes

5. Platform Version

6. SDK Version

7. Minimum OS Version

8. The folder where app data is stored (iOS 8+)

In addition, all of the app's entitlements are displayed as well.

Figure 4: idb's App Info tab.

9 | Blackbox iOS App Assessments Using idb NCC Group



3.3 Local Storage

idb has a number of functions related to local storage. All of them are geared to get a quick overview on which

data is stored on the device and whether it is adequately protected.

3.3.1 Special File Types

As a new function, idb provides convenient searching for sensitive files such as .sqlite, .plist, and Cache.db

files. For any discovered file, the content and Data Protection Class can be viewed. For iOS 8+, Each storage

related tab also displays the Default Data Protection of the app which is set via app entitlements. This class

defines the protection used for files created by the app if the developer does not explicitly specify a different

class. In order to determine the protection class for each file, idb uses a small helper utility which is available

at: https://github.com/dmayer/protectionclassviewer

3.3.2 File System Browser

In addition, idb includes a full file system browser. It provides an easy to use interface for browsing the app's

sandbox. All directories and files are listed in a familiar tree and list structure. A details pane displays file

permissions and the DataProtection class which applies to the file. This way one can easily verify that sensitive

files are properly protected. Moreover, double-clicking on any file will automatically download and open it on

the idb host with the application that is associated with the file extension.

Figure 5: idb's filesystem browser.

Sync+Git: In order to get a full mirror of the current application sandbox (and the data directory on iOS

8+), the Git+Rsync function can be used. It uses rsync to create an exact mirror of the remote file system

on the idb host. In addition, the entire directory structure is checked into a dedicated git repository. When

performing subsequent syncs using Git+Rsync, new revisions are created in the git repo and thus changes in

the application directory can be tracked. The directory where the git repository is held can easily be changed

10 | Blackbox iOS App Assessments Using idb NCC Group

https://github.com/dmayer/protectionclassviewer


in the user interface. This can, e.g., be used to compare or keep track of installations on different devices.

3.3.3 iOS Keychain

idb provides a convenient way for dumping, editing, and deleting the content of the iOS Keychain (adding

new keychain items is currently a work in progress). Figure 6 shows an overview screenshot of the keychain tab.

This tab allows easy dumping of the entire keychain content. The returned data includes Entitlement Groups,

Account, Service, Protection class, User Presence requirement, create and modification date. User presence

is a new feature in iOS which requires a user to authenticate either via TouchID or by entering their passcode

in order to access a keychain item. Note that there is no known way for bypassing this check since data is in

fact encrypted under the passcode and this processing happens in hardware through the Secure Enclave.

Figure 6: idb's keychain editor.

When selecting an entry in the table shown above, the data can be viewed as text, hexdump, or parsed as

XML in the case of binary plist data. In addition, each entry can be deleted and edited.

3.4 Binary Protection

To check the binary protections used by the application, idb displays basic information on the application

binary. This includes binary encryption, PIE, use of stack canaries, and ARC. If the application binary is en-

crypted, idb uses Stefan Esser's dumpdecrypted (https://github.com/stefanesser/dumpdecrypted) to decrypt

the application before downloading and analyzing it.

3.4.1 Shared Libraries

In addition, the Shared Libraries tab provides a listing of all the external libraries the application references.

This allows for the easy discovery of any suspicious frameworks or vulnerable libraries that may be in use by

the application. Internally, idb uses otool to analyze the binary.

11 | Blackbox iOS App Assessments Using idb NCC Group

https://github.com/stefanesser/dumpdecrypted


3.4.2 Strings

Application binaries frequently include data of interest such as API keys, credentials, encryption keys, URLs,

etc. The strings tab extracts all strings in the (decrypted!) application binary and displays them right in the UI.

3.4.3 Class and Method Signature Dumping

When reversing, instrumenting (e.g., using Cycript (http://www.cycript.org/) or Mobile Substrate (http://www.

cydiasubstrate.com/)), or simply trying to understand an application, knowing all of the classes and method

signatures of the application is of great help. idb provides a convenient way for obtaining these from compiled

iOS applications. Under the hood, this function uses cycript and the weak_classdump script by Elias Limneos

(https://github.com/limneos/weak_classdump).

3.5 Inter-Process Communication

idb provides functions for monitoring both the iOS pasteboard as well as URL schemes.

3.5.1 Pasteboard

idb's integrated pasteboard monitor displays any content copied to the general and private pasteboards in

near real time. In order to monitor the pasteboard, idb uses a small helper utility which is available at: https://

github.com/dmayer/pbwatcher

3.5.2 URL Handlers

For URL handler testing, a list of the registered schemes is provided and any URL scheme can directly be

launched from idb. Since input received via URL schemes is often used in unsafe ways, which can lead to

vulnerabilities including logic flaws and memory corruption, idb includes a basic URL scheme fuzzer. On the

Fuzzer tab, one can enter a number of fuzz strings as well as a fuzz template. In the template, $@$ is used to

mark potential injection points. For example, if a valid URL is

dvia://configure?input1=hello&input2=woot

one could specify

dvia://configure?input1=$@$&input2=$@$

as the template to fuzz both of the intended inputs. For each position, idb will cycle through all the possible

fuzz inputs and launch the URL handler (which launches the app) and then wait for several seconds before

killing it. In order to detect a crash, idb monitors the /var/mobile/Library/Logs/CrashReporter folder for

new crash reports for the application in question.

3.6 Other Tools

3.6.1 Certificate Manager

idb can be used to easily view, install, and remove SSL (CA) certificates on the device and the simulator. This

simplifies the setup for interception of HTTPS / SSL connections. In particular, if the device is proxied through

Burp Suite, one can install its CA certificate with a single click in idb.

12 | Blackbox iOS App Assessments Using idb NCC Group

http://www.cycript.org/
http://www.cydiasubstrate.com/
http://www.cydiasubstrate.com/
https://github.com/limneos/weak_classdump
https://github.com/dmayer/pbwatcher
https://github.com/dmayer/pbwatcher


3.6.2 Screenshot Tool

The screenshot utility is a simple wizard that can be used to test whether an app is disclosing sensitive data

in the automatic backgrounding screenshots taken by iOS. After starting the wizard, the Launch Application

button can be used to launch the app under investigation. After following the instructions of the wizard, idb

will download the screenshot and allow you to open it in the default image viewer.

3.6.3 Hosts File Editor

The /etc/hosts file editor provides a simple way to modify the hosts that applications connect to. In order

to intercept traffic for an app, one would typically use a tool such as Burp Suite and set the iOS system proxy

to forward application traffic to it. However, when the app does not respect proxy settings or communicates

via non-HTTP protocols, this may fail. Under these circumstances modifying the /etc/hosts may help in

overriding the DNS entry for a host and pointing the app at a running proxy instance which then forwards

traffic to the actual server expected by the app.

3.6.4 iOS Log

The Log tab can be used to view the syslog of the iDevice. Besides system messages, it also includes any log

statements that apps produce using NSLog which often disclose sensitive data. Internally, the log view uses

idevicesyslog which is part of libmobiledevice [lib].

13 | Blackbox iOS App Assessments Using idb NCC Group



4 Summary

Flaws in iOS applications arise in a variety of ways and by releasing our tool idb [May15b, May15a] we aim at

making iOS application assessments easier and more effective.

14 | Blackbox iOS App Assessments Using idb NCC Group



References

[App14a] Apple Inc. Technical Q&AQA1788 - Building a Position Independent Executable. https://developer.

apple.com/library/ios/qa/qa1788/_index.html, 2014. 7

[App14b] Apple Inc. Technical Q&A QA1838 - Preventing Sensitive Information From Appearing In The Task

Switcher. https://developer.apple.com/library/ios/qa/qa1838/_index.html, 2014. 6

[App15a] Apple Inc. File Protection Values. https://developer.apple.com/library/ios/documentation/Cocoa/

Reference/Foundation/Classes/NSFileManager_Class/index.html#//apple_ref/doc/constant_

group/File_Protection_Values, 2015. 4

[App15b] Apple Inc. Inter-App Communication. https://developer.apple.com/library/ios/

documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/

Inter-AppCommunication.html, 2015. 7

[App15c] Apple Inc. iOS Security. https://www.apple.com/business/docs/iOS_Security_Guide.pdf, April

2015. 4, 5

[App15d] Apple Inc. Keychain Services Reference. https://developer.apple.com/library/ios/documentation/

Security/Reference/keychainservices/index.html, 2015. 5

[App15e] Apple Inc. NSURLConnectionDataDelegate Protocol Reference. https://developer.apple.

com/library/mac/documentation/Foundation/Reference/NSURLConnectionDataDelegate_

protocol/index.html#//apple_ref/occ/intfm/NSURLConnectionDataDelegate/connection:

willCacheResponse:, 2015. 6

[App15f] Apple Inc. UIApplicationDelegate Protocol Reference. https://developer.apple.com/library/

ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/#//apple_ref/occ/intfm/

UIApplicationDelegate/applicationDidEnterBackground:, 2015. 6

[BSM12] Jan Lauren Boyles, Aaron Smith, and Mary Madden. Privacy and Data Management on Mobile

Devices. http://www.pewinternet.org/2012/09/05/main-findings-7/, 2012. 3

[iSE15] iSEC Partners. SSL Conservatory. https://github.com/iSECPartners/ssl-conservatory, 2015. 7

[lib] libimobiledevice - A cross-platform software protocol library and tools to communicate with iOS®

devices natively. http://www.libimobiledevice.org/. 13

[May15a] Daniel A. Mayer. idb - Github. https://github.com/dmayer/idb, 2015. 8, 14

[May15b] Daniel A. Mayer. idb - iOS App Security Assessment Tool. http://www.idbtool.com, 2015. 8, 14

[MBD+12] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and R.P. Weinmann. iOS Hacker's Handbook.

ITPro collection. Wiley, 2012. 5

[OWA15] OWASP. Certificate and Public Key Pinning. https://www.owasp.org/index.php/Certificate_and_

Public_Key_Pinning#iOS, 03 2015. 7

[Smi13] Gerry Smith. Apple, Samsung Face Grilling Over Stolen Smartphone Epidemic. http://www.

huffingtonpost.com/2013/06/05/apple-samsung-thefts_n_3383407.html, 2013. 3

[Sta09] Morgan Stanely. The Mobile Internet Report, 2009. 3

[usb] usbmuxd - A socket daemon to multiplex connections from and to iOS devices. http://cgit.

sukimashita.com/usbmuxd.git/. 8

15 | Blackbox iOS App Assessments Using idb NCC Group

https://developer.apple.com/library/ios/qa/qa1788/_index.html
https://developer.apple.com/library/ios/qa/qa1788/_index.html
https://developer.apple.com/library/ios/qa/qa1838/_index.html
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/index.html#//apple_ref/doc/constant_group/File_Protection_Values
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/index.html#//apple_ref/doc/constant_group/File_Protection_Values
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/index.html#//apple_ref/doc/constant_group/File_Protection_Values
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://developer.apple.com/library/ios/documentation/Security/Reference/keychainservices/index.html
https://developer.apple.com/library/ios/documentation/Security/Reference/keychainservices/index.html
https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSURLConnectionDataDelegate_protocol/index.html#//apple_ref/occ/intfm/NSURLConnectionDataDelegate/connection:willCacheResponse:
https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSURLConnectionDataDelegate_protocol/index.html#//apple_ref/occ/intfm/NSURLConnectionDataDelegate/connection:willCacheResponse:
https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSURLConnectionDataDelegate_protocol/index.html#//apple_ref/occ/intfm/NSURLConnectionDataDelegate/connection:willCacheResponse:
https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSURLConnectionDataDelegate_protocol/index.html#//apple_ref/occ/intfm/NSURLConnectionDataDelegate/connection:willCacheResponse:
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/#//apple_ref/occ/intfm/UIApplicationDelegate/applicationDidEnterBackground:
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/#//apple_ref/occ/intfm/UIApplicationDelegate/applicationDidEnterBackground:
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/#//apple_ref/occ/intfm/UIApplicationDelegate/applicationDidEnterBackground:
http://www.pewinternet.org/2012/09/05/main-findings-7/
https://github.com/iSECPartners/ssl-conservatory
http://www.libimobiledevice.org/
https://github.com/dmayer/idb
http://www.idbtool.com
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#iOS
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#iOS
http://www.huffingtonpost.com/2013/06/05/apple-samsung-thefts_n_3383407.html
http://www.huffingtonpost.com/2013/06/05/apple-samsung-thefts_n_3383407.html
http://cgit.sukimashita.com/usbmuxd.git/
http://cgit.sukimashita.com/usbmuxd.git/


[Wik14] Wikipedia. Property list — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.

php?title=Property_list&oldid=610572011, 2014. [Online; accessed 17-May-2015]. 5

[Wik15a] Wikipedia. Automatic Reference Counting — Wikipedia, The Free Encyclopedia. http:

//en.wikipedia.org/w/index.php?title=Automatic_Reference_Counting&oldid=654718993, 2015.

[Online; accessed 17-May-2015]. 7

[Wik15b] Wikipedia. Buffer overflow protection — Wikipedia, The Free Encyclopedia. http://en.wikipedia.

org/w/index.php?title=Buffer_overflow_protection&oldid=658859945#Canaries, 2015. [Online;

accessed 17-May-2015]. 7

[XWZ+15] Hui Xue, Tao Wei, Yulong Zhang, Song Jin, and Zhaofeng Chen. iOS Masque Attack Revived:

Bypassing Prompt for Trust and App URL Scheme Hijacking. https://www.fireeye.com/blog/threat-

research/2015/02/ios_masque_attackre.html, 02 2015. 7

16 | Blackbox iOS App Assessments Using idb NCC Group

http://en.wikipedia.org/w/index.php?title=Property_list&oldid=610572011
http://en.wikipedia.org/w/index.php?title=Property_list&oldid=610572011
http://en.wikipedia.org/w/index.php?title=Automatic_Reference_Counting&oldid=654718993
http://en.wikipedia.org/w/index.php?title=Automatic_Reference_Counting&oldid=654718993
http://en.wikipedia.org/w/index.php?title=Buffer_overflow_protection&oldid=658859945#Canaries
http://en.wikipedia.org/w/index.php?title=Buffer_overflow_protection&oldid=658859945#Canaries
https://www.fireeye.com/blog/threat-research/2015/02/ios_masque_attackre.html
https://www.fireeye.com/blog/threat-research/2015/02/ios_masque_attackre.html

	Introduction
	Common iOS App Flaws
	Local Storage
	Interaction with iOS
	Inter-Process Communication (IPC)
	Binary Protection
	Network / API

	Simplified Pentesting with idb
	Pentesting Setup
	Basic Application Information
	Local Storage
	Binary Protection
	Inter-Process Communication
	Other Tools

	Summary
	References

