
Luca De Fulgentis ~ luca@securenetwork.it

Luca De Fulgentis
Offensive Security Adept

OWASP Mobile Project Contributor

Chief Technology Officer at Secure Network

Consuming brain power with InfoSec since 2001

About /me

 Introduction – Research Idea and Objectives

 The Chronicles of Windows Phone Security

 Attacking Windows Phone Store Apps

 Physical Access Based Attacks Against Windows Phone Devices

 Network Attacks Against Windows Phone Devices

 Final Considerations

Agenda

Introduction
Research idea, motivations and objectives

WindowsPhone wp = (WindowsPhone)new BlackBerry();

Powering nearly 3% of the

overall mobile devices

Natural integration with pre-existent

Microsoft network technology

Need to better address threats and attack

scenarios involving Microsoft mobile platform

Need to support breakers with attack

techniques to demonstrate vulnerabilities impact

No offensive-oriented study on Windows Phone platform and applications

Need to vertically investigate apps’ exploiting conditions for specific issues

Study on physical-access based attacks involving a public but not yet patched vulnerability

Focus on apps’ data stealing – it has been the driver for most of my research

Motivations and Objectives

{

The Chronicles of

Windows Phone Security
Security research achievements (2010-2015)

 Windows Phone platform security has been partially researched

 Some noteworthy hacks are

 The Windows Phone Marketplace Hemorrhage (2011) by Justin Angel

 Authorization issue allowing arbitrary XAP files download – including paid apps

 Windows Phone 7 SMS of Death (2011)

 Issue related to Arabic chars parsing resulting in device rebooting

 Windows Phone on Lumia 1020 Brower Exploiting (Pwn2Own, 2014) by VUPEN

 IE exploitation allowed IE cookies database exfiltration – no sandbox escape

 Various WP Hacks (2010-2015) - Heathcliff74, GoodDayToDie, _Wolf_, Djamol, etc. from XDA

 Mostly security issues that allowed different level of OS unlocking

The Chronicles of WP Security – part I

 Some good articles and papers have been released on WP app security

 Pentesting WP7 apps (2011) by Siddarth Adukia, Intrepidus Group

 Windows Pwn 7 OEM – Owned Every Mobile? (Blue Hat v11, 2011) by Alex Plaskett, MWR

 Windows Phone 7 Internals and Exploitability (Black Hat USA, 2012) by Tsukasa Oi

 Inspection of Windows Phone Applications (BH Abu Dhabi, 2012) by Dmitry Evdokimov and Andrey Chasovskikh

 Windows Phone 8 Application Security (HackInParis, 2013) by Dmitry Evdokimov and Andrey Chasovskikh

 Navigating a Sea of Pwn (Syscan, 2014) by Alex Plaskett and Nick Walker, MWR

 Windows Phone App Security for Builders and Breakers (AppSecEU Amsterdam, 2015) by Secure Network

 The Windows Phone Freakshow (Hack in The Box Amsterdam, 2015) by Secure Network

 Pwning a Windows Phone, from Shadow to Light (MOSEC, 2015) by Nicolas Joly - thanks Luca Carettoni

The Chronicles of WP Security – part II

Attacking Windows Phone Store Apps
Injecting, hijacking and stealing sandboxed data

 Windows + Windows Phone Store have 585,000+ apps (source: Microsoft)

 Apps represent a good target for bad guys

 Sensitive/reserved/private data are often handled by apps on the device

 Apps security is not always comparable to the OS one ⇒ easier targets to hack into

 In our experience, WP apps are widely vulnerable to Client Side Injections

 We explored the security of WebView and WebBrowser controls injections

 Focus on attack techniques resulting in local/remote sandboxed files stealing

 Our research also focused on Inter Process Communication (IPC) attacks

 Both onboard malware and physical access based attacks may abuse these mechanisms

Attacking Windows Phone Store Apps

 Injection flaws: feeding an interpreter with untrusted input

 Input is concatenated with static strings to compose a command

 The command is then executed by an interpreter (e.g., SQL parser or HTML renderer)

 If no proper input validation is implemented, command semantic can be manipulated

 Most common sources for untrusted data

 Back-end responses – because of hacked servers or hijacked traffic with a MitM attack

 Data exchanged via Inter Process Communication (IPC)

 HTML and JavaScript injections represent the most relevant flaws

Client Side Injection Flaws

 Windows Phone platform provides

 Microsoft.Phone.Controls.WebBrowser – Windows Phone Silverlight 7.0-8.1

 Windows.UI.Xaml.Controls.WebView – Windows Phone WinRT

 Both WebBrowser and WebView controls allow loading of

 Web content from network – Navigate(Uri uri) or using the Source property

 Dynamically generated web content – NavigateToString(string html)

 Static web content – Navigate(Uri uri) or using the Source property

 From application package using ms-appx:// or ms-app-web:// (WebView only)

 From application local data storage using ms-appdata:// (WebView only)

HTML Rendering on Windows Phone

Loading Web Content with WebBrowser

webBrowser.Navigate(new Uri("https://www.securenetwork.it", UriKind.Absolute));
…
webBrowser.NavigateToString("<html><body><h1>Hello Black Hat!</h1></body></html>");
…
webBrowser.Navigate(new Uri("/Html/index.html", UriKind.RelativeOrAbsolute));
…
webBrowser.Navigate(new Uri("a.html", UriKind.Relative));
…
<phone:WebBrowser x:Name="webBrowser"

Source="https://www.securenetwork.it"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Loaded="Browser_Loaded"
NavigationFailed="Browser_NavigationFailed"/>

Loading Web Content with WebView

WebViewControl.Navigate(new Uri("https://www.securenetwork.it", UriKind.Absolute));
or
WebViewControl.NavigateWithHttpRequestMessage(myHttphttpRequestMessage);
…
WebViewControl.NavigateToString("<html><body><h1>Hello Black Hat!</h1></body></html>");
…
WebViewControl.Navigate(new Uri("ms-appx-web:///Html/index.html", UriKind.Absolute));
…
WebViewControl.Navigate(new Uri("ms-appdata:///local/MyFolder/file.html", UriKind.Absolute));
…
Uri url = WebViewControl.BuildLocalStreamUri("MyTag", "/MyPath/default.html");
WebViewControl.NavigateToLocalStreamUri(url, myResolver);
…
<WebView x:Name="WebViewControl"

Source="https://www.securenetwork.it"
NavigationCompleted="Browser_NavigationCompleted" />

 The components also provide mechanisms to inject JavaScript code into the view

 WebView.InvokeScript() (Windows Phone < 8.1) and WebView.InvokeScriptAsync()

 WebBrowser.InvokeScript()

 The methods could be vulnerable to JavaScript injection if the attacker is capable

to manipulate the second argument’s value – the eval()-ed JS code

Injecting JavaScript into the View

webBrowser.InvokeScript("eval", new string[] { "alert(‘Hello folks!’);" });

WebViewControl.InvokeScriptAsync("eval", new string[] { "document.write('Hello folks!')" });

 Methods used to load web content are subjected to HTML/JavaScript injections

 JavaScript injection attacks can be defeated by setting isScriptEnabled=false (by default)

 WebView does NOT implement the isScriptEnabled property

 Preventing JS execution does NOT imply having secure WebView or WebBrowser controls

 What about script-less attacks?

 Most critical attacks via HTML/JavaScript injections

 View layout manipulation

 Stealing files stored in app’s local folder

 Stealing session cookies

 Exploiting impact depends on the adopted control technology

Attacking the Rendering Mechanisms

 NavigateToString("<html><body><evil html..")

 Attackers can inject an iframe element and use the x-wmapp0: protocol to access

 Local folder files stored in C:\Data\Users\DefApps\APPDATA\{app-GUID}\

 Package installation folder files in C:\Data\programs\{app-GUID}\Install\

 No remote exploitation is allowed because of the Same-Origin Policy (SOP)

 Injected JavaScript code cannot access the iframed content

 App’s files content can be leaked with local attacks involving copy/paste

Dissecting WebBrowser Injections Exploitation – take I

 Access files in the local data storage with x-wmapp0:my_file.txt

 Access files in the app installation folder with x-wmapp0:/Html/index.html

Exploiting NavigateToString()

private void Browser_Loaded(object sender, RoutedEventArgs e)
{

Browser.IsScriptEnabled = true;
string injection =

"<html><body><iframe src='x-wmapp0:__ApplicationSettings'></iframe></body></html>";
Browser.NavigateToString(injection);

}

Exploiting NavigateToString()

 Navigate(new Uri("controlled_page.html", UriKind.Relative))

 Sandboxed files can be exfiltrated if the HTML page contains attacker-controlled code

 Malicious JavaScript code can access iframed content via x-wmapp0: protocol

 Local HTML files are trusted and SOP is not applied

 Alex Plaskett and Nick Walker from MWR first demonstrated the attack

 If scripting is not allowed, the attacker can still perform local attacks

 Same attacks as the NavigateToString() one

Dissecting WebBrowser Injections Exploitation – take II

Exploiting Navigate()

string html =
"<html><body>" +
"<iframe id='leak' src='x-wmapp0:__ApplicationSettings'></iframe>" +
"<script>function leak() { var iframe = document.getElementById('leak'); " +
" var data = iframe.contentWindow.document.body.innerHTML; alert(data); } " +
" var frame = document.getElementById('leak'); " +
" frame.onload = function() { leak(); }</script></body></html>";

IsolatedStorageFile isoStore = IsolatedStorageFile.GetUserStoreForApplication();
StreamWriter writer =

new StreamWriter(new IsolatedStorageFileStream("poc.html", FileMode.CreateNew, isoStore));

writer.WriteLine(html);
writer.Close();

Browser.Navigate(new Uri("poc.html", UriKind.Relative));

 Navigate("http://remote-host.com")

 An attacker can feed the view with malicious content

 Compromising remote-host.com and manipulating the server’s responses

 Performing a MitM attack against an unencrypted channel

 No access to sandboxed files is allowed

 Standard browser security policies are properly applied

 UI manipulation attacks to steal user-typed information are the best options

 Scripting is not strictly required – isScriptEnable=true does not help!

Dissecting WebBrowser Injections Exploitation – take III

 InvokeScript("eval", new string[] {"malicious_javascript_code();"})

 JavaScript injection is feasible if

 InvokeScript calls the eval() function; and

 The attacker controls the second argument – which is eval()-ed

 InvokeScript() could be abused to remotely exfiltrate sandboxed file

 Malicious JavaScript can access iframed content via x-wmapp0: protocol

 The method allows controlling a “trusted” HTML page

 If scripting is disabled, local attacks are still feasible

Dissecting WebBrowser Injections Exploitation – take IV

Exploiting InvokeScript()

Browser.InvokeScript("eval",
new string[] {
"document.write(" +
"\"<iframe id='leak' src='x-wmapp0:__ApplicationSettings'></iframe>" +
"<script>" +
" function leak() {" +
" var iframe = document.getElementById(\'leak\'); " +
" var data = iframe.contentWindow.document.body.innerHTML; " +
" alert(data); " +
" } " +
" var frame = document.getElementById(\'leak\'); " +
" frame.onload = function() { leak(); } " +
"</script>\");"

}
);

 Things are getting harder with WebView on Windows Phone 8.1

 WebView simply DOES NOT allow loading files from local data storage

 No more local file stealing attacks

 It is still possible – and useless? – to frame content from the deployment folder

 UI manipulation and cookies stealing probably are attacker’s best options

Dissecting WebView Injections Exploitation

<iframe id='leak' src='ms-appx-web:///Html/test.html'></iframe>

 Windows Phone provides limited support for Inter Process Communication (IPC)

 WP 7.x does not support IPC while WP 8.x provides files and URIs association

 Basically an app can register – via its manifest – a protocol or file type

 The app will run automatically if the user tries to open the registered protocol/file type

 A third undocumented IPC exists – Windows Phone 8 only

 Shell_PostMessageToast (ShellChromeAPI.dll) allows a malicious app to send a toast

message that, once tapped, opens an arbitrary XAML page of an arbitrary target app

 The method has been first identified by cpuguy from XDA

Inter Process Communication (IPC) Attacks

app://{GUID}/_default#/AssemblyName;component/Page.xaml?par=val1&par2=val2

 Term coined by Alex Plaskett and Nick Walker from MWR

 Common attack scenarios

 Malware on device sends toast messages and attacks other apps’ authZ or validation issues

 Malicious user sideloads an app-exploit and attacks the victim's installed apps

 Physical access to targeted device is requires

 Back in 2013, the technique has been used to access a hidden registry editor

shipped with the Samsung Diagnosis app

 The registry access allowed the Interop-unlock achievement with WP 8.0 on Samsung Ativ S

Cross Application Navigation Forgery Attack

VIDEO
Bypassing security passcode mechanism

app://47e5340d-945f-494e-b113-b16121aeb8f8/_default#/Dropbox.WindowsPhone80;component/Pages/Lock/LockPage.xaml?type=1

protected override void OnNavigatedTo(NavigationEventArgs e)
{

// [...]

this.ViewModel.Init(Enum.Parse(typeof (LockPageType), this.NavigationContext.QueryString["type"]));
}

public void Init(LockPageType type)
{
this.NbrTry = 0;
this.Type = type;

if (this.Type == LockPageType.CHANGEPIN)
this._createstep = CreationStep.ENTEROLDPASSCODE;

this.ManageType();
}

namespace Dropbox.Core.ViewModels.Lock
{

public enum LockPageType
{

UNLOCK, // 0
CREATEPIN, // 1
CHANGEPIN, // 2
DISABLEPIN, // 3

}
}

this.Type = LockPageType.CREATEPIN

public void ManageType()
{

switch (this.Type)
{

case LockPageType.CREATEPIN:

switch (this._createstep)
{

case CreationStep.ENTERPASSCODE:
this.LegendText = AppResources.ProtectionEnterPin;
break;

case CreationStep.VERIFYPASSCODE:
this.LegendText = AppResources.ProtectionVerifyPin;
break;

}

…component/Pages/Lock/LockPage.xaml?type=1

this.Type = LockPageType.CREATEPIN = 1

{
So we can overwrite the

previous passcode!

Physical Access Based Attacks against

Windows Phone Devices
”Instead, only try to realize the truth... there is no sandbox”

 In the mobile security world physical access based attacks may involve stolen or

lost devices

 I have friends, customers and colleagues that widely suffer from these issues.. do you?

 During our research we focused on implementing attack techniques to

 Steal data placed into sandboxed file system areas

 Compromise apps’ code integrity in order to backdoor pre-installed software

 An “arsenal” has been developed to assist my researches

 Tools source code will be available in days here: https://github.com/securenetwork

Physical Access Based Attacks against WP Devices

 SD cards support has been introduced since Windows Phone 8.0

 WP 8.0 – apps can only read data from SD card

 WP 8.1 – apps can read and write data from SD card

 Lots of WP-powered devices out there support external SD cards

 Nokia | Microsoft Lumia 520, 530, 540, 625, 635, 640, 830, 930, 1320, etc.

 WP 8.1 users are allowed to move their apps to an external SD card

 Users can move their apps to the SD card to save device memory space

 The OS copies both the app binaries and local data to the SD card

Windows Phone and SD Card Support

 The OS creates a series of folders to store the user ’s files
 D:\Documents

 D:\Downloads

 D:\Music

 D:\Pictures

 D:\Videos

 Apps moved by users into SD cards are located in D:\WPSystem

 The directory is hidden BUT its properties can be changed – “unlocking” it

 Binaries and data contained in D:\WPSystem and its subfolders are encrypted by the OS

SD Card File System Layout

D:\WPSystem

\AppData

\Local

\AppRepository \Apps

\WindowsApps

\Deleted

\SharedData
WPAppSettings.dat

(file)

WPSettings.dat

(file)

\{GUID}

XAP Install

Folders

\{GUID}

XAP Data Folders

Apps data
Apps binaries

 In 2014 a critical issue affecting SD card-powered WP devices has been identified

 Djamol from XDA first released the bug in November 2014

 Basically it is possible to replace pre-installed binaries located into the SD card

 The OS will not perform any code integrity check post-replacement

 Binaries used to replace the original app inherit its privileges – in term of capabilities

 The hack has been used to replace OEM apps with registry editors to customize the OS

 As of 06/17/2015 Windows Phone 8.1 is still vulnerable !

 Confirmed on my Lumia Nokia 625 – OS version 8.10.14219.341

Weakness Related to SD Card Apps Storage

wait
binaries are stored encrypted so.. how can we just “replace” them?

Encrypted files

D:\WPSystem\Apps\{GUID}\Install

WMAppManifest.xmlDLLs Other
Resources

{

D:\WPSystem\Apps\{GUID}\Install

WMAppManifest.xmlDLLs Other
Resources

WMAppManifest.xmlDLLs Other
Resources

D:\WPSystem\Apps\{GUID}\Install

WMAppManifest.xmlDLLs Other
Resources

The OS will “magically”

encrypt the replaced files

D:\WPSystem\Apps\{GUID}\Install

WMAppManifest.xmlDLLs Other
Resources

Replaced app can now

be executed without

any runtime error
{

 We developed an utility – Replacer – capable to replace app moved into the SD card

 Replacer performs simple tasks

 Change D:\WPSystem folder attribute from System.IO.FileAttributes.Hidden System.IO.FileAttributes.Normal

 Delete the targeted app binaries and move the new ones into the D:\WPSystem\apps\{GUID}\Install

 The new XAP application – our payload – must be stored into the SD card by the operator

 The “Replacer” must be stored into the phone memory – not on the SD card, D:\

Introducing XAP Replacer

VIDEO
Demonstrating the “Capability Hack” against

 A developer-unlocked device is required to exploit the described issue

 An arbitrary Microsoft account can be configured to unlock the device via Visual Studio

 Dev unlock is required to sideload the “Replacer” app

 The only (real) conditions to successfully exploit the bug are

 The device must be PIN-unlocked – it is not possible to sideload apps on a locked device

 The device must support external SD cards

 Payload’s starting navigation page MUST have the same name as the victim one

On Successful Exploitation

<Tasks>
<DefaultTask Name="_default" NavigationPage="EntryPointPage.xaml" ActivationPolicy="Resume" />

</Tasks>

 Targeted apps’ background agent must be disabled via Battery Saver options

 Code replacement will not be allowed by OS if the agents are running

On Successful Exploitation

 The attack has been successfully conducted against XAP applications only

 The bug allows the Capability Unlock on Windows Phone 8.1 platform

 1st (Microsoft) and 2nd (OEM) parties capabilities can be accessed

 Windows 10 does not seem to be vulnerable to the SD card attack

 Our research focused on the detailed bug to demonstrate attacks against

 Apps code integrity

 Apps data confidentiality

Further Considerations

Attacking Apps Code Integrity
Overview on apps backdooring

 The described vulnerability can be exploited to compromise apps code integrity

 Application code can be entirely replaced

 (Ab)use of OEM capabilities to execute privileged operation on locked devices

 App code can be patched

 Changing app’s runtime behavior for testing purposes

 Backdooring pre-installed applications

 Mono.Cecil based utility can be developed to easily patch pre-installed apps

Attacking Apps Code Integrity

XAP

Unzip
XAP

Patch
DLL

Repack
XAP

XAP

APP

Replacer

XAP

APP

Replacer

Device must be PIN and

developer unlocked

Attacking Apps Data Confidentiality
(almost) all your sandboxed data are belong to me

 BitLocker disk encryption technology is supported since Windows Phone 8.0

 BitLocker is disabled by default

 BitLocker can be enabled via Exchange ActiveSync‘s policy RequiredDeviceEncryption

 Critical data should never be stored on a device – even if encrypted

 Microsoft provides built-in encryption mechanisms to protect stored data

 Data Protection API (DPAPI)

 PasswordVault class

App Data Confidentiality

 The “Capability Hack” can be further abused to violate apps data confidentiality

 An application can be replaced with a malicious one capable to exfiltrate local data

 We developed a simple utility named EXFILTRApp that, once executed, allows

 Zipping all the files placed into the replaced-app’s local folder

 Transmitting the newly created ZIP archive to an attacker-controlled server

 EXFILTRApp can be adopted as an app data backup utility as well

Attacking App Data Confidentiality

Victim App

Replacer

EXFILTRApp

Attackers sideloads the Replacer app onto the

device and stores EXFILTRApp in the SD card

Local folder

Replacer
Victim app code is replaced

with the EXFILTRApp’s one

Local folder

EXFILTRAppVictim App

Replacer

Local folder

EXFILTRApp

Local folder files are zipped and sent to a

remote attacker-controlled server

On Videos..

VIDEO
Exfiltrating data from ‘s sandbox

DPAPI
is the “silver bullet” technology for safe data storage?

 Definitely not a silver bullet – probably a bronze one

 DPAPI encrypts/decrypts using a per user unique key, derived from logon password

 Apps belonging to the same user can encrypt/decrypt each other DPAPI-protected data

 Quoting MSDN documentation – applies to Silverlight technology

Is DPAPI a Silver Bullet?

“A small drawback to using the logon password is that all applications running under the

same user can access [and decrypt] any protected data that they know about. […] “

Plain
Data 1

SandboxApp 1

Enc.
Data 1

Plain
Data 1

Is DPAPI a Silver Bullet?

App 1

App 2
Enc.

Data 1

Sandbox

Enc.
Data 1

public static async Task<string> EncryptDataString(string inString)
{

// [...]
str = Convert.ToBase64String(ProtectedData.Protect(Encoding.UTF8.GetBytes(inString), null));

public async Task Write(BinaryWriter writer)
{

writer.Write(6);
writer.Write((int) this.SiteId);
writer.Write(this.UseQAEnvironment);
writer.Write(this.MediaPlexId ?? string.Empty);
writer.Write(this.HasAUserSignedIn);
writer.Write(await CryptoUtility.EncryptDataString(this.UserName));
writer.Write(await CryptoUtility.EncryptDataString(this.UserAuthTokenIAF));
writer.Write(await CryptoUtility.EncryptDataString(this.UniqueDeviceID));
writer.Write(this.UserLocation != null);

Settings preferences are stored

in the ebaysettingsprefs.bin file

into the app’s local folder

DPAPI are used to

protect user’s settings

VIDEO
Defeating ‘s DPAPI encryption

One
more trick.. what happens if we try moving WhatsApp to SD card?

User can prevent app

deployment to SD cards with a

specific manifest option

 Microsoft allows developers to prevent installation to SD card

 So we cannot just replace the code and exfiltrate the local message databases..

 However, WhatsApp allows to backup data via Settings → chat settings → backup

 Messages are saved in SD card as encrypted files

 Messages are also saved into C:\Data\SharedData\OEM\Public\WhatsApp

 The app holds the ID_CAP_OEMPUBLICDIRECTORY to write into that folder

 Bad news: data saved into OEM\Public\WhatsApp is NOT encrypted

 Moreover, backup files are not deleted when WhatsApp is uninstalled..

So What?

 Find an app that holds the ID_CAP_OEMPUBLICDIRECTORY capability

 The target app must allow attackers to move its code to SD cards

 Replace the app with a modified version of EXFILTRApp

 ZIP every files in OEM\Public\WhatsApp

 Send the archived data to an attacker controlled server

 Enjoy the extracted (and unencrypted) messages database

Our Spell against WhatsApp

VIDEO
Leaking backup files with Lumia Camera

Network Attacks against Windows

Phone Devices
Expecting the unexpected

 During our research we investigated the security of the Store app

 We found that the Store app mixes TLS and non-TLS traffic

 Apps downloading is performed via https - certificate pinning is properly implemented

 However.. apps search and details visualization are performed via http protocol

 The Store app is vulnerable to MitM attacks !

 An attacker may perform a MitM attack in order to manipulate apps search results

 Apps name, description and icon can be “replaced” with attacker controlled ones

 Basically an attacker may trigger the victim to install an arbitrary MS-approved app

Attacking the Store

App Search

App Details

 A successfully attack requires the following conditions

 Attack should be able to successfully perform a MitM attack against victim’s device

 Victim must be attacked while using the Store app

 Store app can be opened via URL within IE. The same URL can be sent via SMS/MMS, mails, etc.

 https://www.windowsphone.com/s?appid={GUID}

 Victim must be induced into opening the installed app

 The impact heavily depends on the malicious app implementation details

 However attacker is not required to develop and publish a “real” malware

 Think about a flash backup app – few clicks to “save” ‘em all

On Attack Conditions and Impacts

Final Considerations

 Our research focused on exploitation techniques involving WP 8.x

 We explored attacks involving apps and based on physical/network access

 Focus on data stealing attacks

 Identification of exploiting conditions and evaluation of attacks impact

 We had fun exploiting Silverlight-based app vulnerabilities

 We had headaches while exploiting WinRT-based app vulnerabilities

 Reduced attack surface and exploitation possibilities compared to Silverlight-based apps

 Windows 10 will introduce changes that will require further research in the field

Final Considerations

@_daath ~ luca@securenetwork.it ~ blog.nibblesec.org

Thank you!

