Fed Up Getting Shattered and Log Jammed?

A New Generation of Crypto is Coming

David Wong

Snefru

MD4

MD4

MD4
MD5

Merkle-Damgard

SHA-1

SHA-2

Merkle-Damgard

SHA-1

SHA-2

Merkle-Damgard

SHA-2

SHAttered

The first concrete collision attack against SHA-1
https:/shattered.io

G Coode | Na®

e ‘
38762cf7f55934b34d1793e6a4c80cadccbb7f0a 1.pdf
38762cf7f55934b34d179ae6a4c80cadccbb7an 2.pdf

0.64C @

‘i/ Sbsum *

be787a73e37352f923833be7e2902936d1059ad9f1ba6daaa9c1e58ee6970d0 1.pdf

Merkle-Damgard

SHA-2

National Institute of Standards and Technology _
NE Information Technology Laboratory SIS

',n " g &!m AR GS

@%mputer Secunt?'ﬂ!bource Center

r?‘..

-

CSRCHome About Projects/Research Publications News & Events

) CSRC HOME > GROUPS > CT > HASH PROJECT > SHA-3
Cryptographic Hash & SHA-3

Standard Development SHA-3 COMPETITION (2007-2012)

Pre-SHA3 Competition (2004-2007)

SHA-3 Competition (2007-2012) Researc':h Result.s. on.SHA-1 Colhs:or.ws (201 7).

. . NIST announced a public competition in a Federal Register Notice on November
Sub R t
HOTISSION REQHIGMENTS 2, 2007 to develop a new cryptographic hash algorithm, called SHA-3, for
Round 1 standardization. The competition was NIST’s response to advances made in the
Round 2 cryptanalysis of hash algorithms.

Round 3 NIST received sixty-four entries from cryptographers around the world by
October 31, 2008, and selected fifty-one first-round candidates in December
SHA-3 Standardization (2013-2015) 2008, fourteen second-round candidates in July 2009, and five finalists —
SHA-3 Derived Functions (2016) BLAKE, Grastl, JH, Keccak and Skein, in December 2010 to advance to the
third and final round of the competition.

NIST Policy on Hash Functions

Hash Forum Throughout the competition, the cryptographic community has provided an
enormous amount of feedback. Most of the comments were sent to NIST and a
public hash forum; in addition, many of the cryptanalysis and performance
studies were published as papers in major cryptographic conferences or leading
cryptographic journals. NIST also hosted a SHA-3 candidate conference in each
round to obtain public feedback. Based on the public comments and internal
review of the candidates, NIST announced Keccak as the winner of the SHA-3
Cryptographic Hash Algorithm Competition on October 2, 2012, and ended the
five-year competition.

Contacts

WANJINIM] T L YIS

uww\..w oIV S, e e -
olpgle l -1 ‘w—{—j— HE Jrce Center‘ q R (-
L L gug! |

CSRC Home About Pro]ectsl Research Publications News & Events

) CSRC HOME > GROUPS > CT > HASH PROJECT > SHA-3 > ROUND 1
Cryptographic Hash & SHA-3

Standard Development FIRST ROUND CANDIDATES

Pre-SHA3 Competition (2004-2007)

Official comments on the First Round Candidate Algorithms should be submitted

SHA-3 Competition (2007-2012) using the "Submit Comment" link for the appropriate algorithm. Comments from
Submission Requirements hash-forum listserv subscribers will also be forwarded to the hash-forum listserv.
Round 1 We will periodically post and update the comments received to the appropriate

algorithm.
Round 1 Candidates

Round 1 Conference
Round 1 Report

Please refrain from using OFFICIAL COMMENT to ask administrative questions,
which should be sent to hash-function@nist.gov

By selecting the "Submitter's Website" links, you will be leaving NIST webspace. We have
Round 2 provided these links to other web sites because they may have information that would be of
Round 3 interest to you. No inferences should be drawn on account of other sites being referenced, or not,

from this page. There may be other web sites that are more appropriate for your purpose. NIST
does not necessarily endorse the views expressed, or concur with the facts presented on these
SHA-3 Standardization (2013-) s{;es. Further, NIST does not endorse any commercial prod&cts that may be mentioned on these
sites.

NIST Policy on Hash Functions

F o
Hash Forum History of Updates

Contacts

Algorithm Name Principal Submitter* Comments

** Abacus [9M] Neil Sholer =Ubmit Lomment
View Comments

ARIRANG [18M] Jongin Lim S\;J.bmiEComment
Updated Algorithm [16M] lew Comments
Submitter's Website***

AURORA [12M] Masahiro Fuijita Submit Comment
T L e S A U b k' i S (e e I View Comments

Keccak

BLAKE, Grostl, JH, Skein

outline

1. Intro

2. SHA-3
3. Strobe, a protocol framework derived from SHA-3

4. Noise, a full protocol framework not derived from SHA-3
5. Strobe + Noise = Disco

Part I: SHA-3

Big things have small beginnings

permutation-based cryptography

AES is a permutation

input

output

input

output

AES is a permutation

key

ojjojloljollollollolfollollooMolloBloloR o

Sponge Construction

Sponge Construction

O O O | O | O O | o | o

R oo O = | = | O | = | O

> <

Sponge Construction

o 1 O O | O | O

()

\4
= | = | O | = | O

-

Sponge Construction

—

Q
=

message

o 1 O O | O | O

()

Sponge Construction

-

message

o 1 O O | O | O

()

Sponge Construction

message

o 1 O O | O | O

()

Sponge Construction

message

o 1 O O | O | O

()

Sponge Construction

message

o 1 O O | O | O

()

Sponge Construction

Sponge Construction

message

o 1 O O | O | O

()

absorbing

Sponge Construction

message output

o 1 O O | O | O

()

absorbing

Sponge Construction

message output

A . .
U/ U/ U/
:

o 1 O O | O | O

()

absorbing

absorbing

Sponge Construction

message

)
L/

o 1 O O | O | O

()

f f

output

absorbing

Sponge Construction

message output

)
L/

o 1 O O | O | O

()

f f f

Sponge Construction

message output

A . .
U/ U/ U/
:

absorbing squeezing

o 1 O O | O | O

()

Guido Bertonil, Joan Daemen!/2, Michaél Peeters! and Gilles Van Assche!

1STMicroelectronics
2Radboud University

This page lists all the third-party cryptanalysis results that we know of on Keccak, including FIPS 202 and SP 800-
185 instances, KancarooTwewve and the authenticated encryption schemes Keme and Kevak. We may have forgotten
some results, so if you think your result is relevant and should be on this page, please do not hesitate to contact us.

The results are divided into the following categories:

« analysis of the Keccak (covering also KancarooTwerve, FIPS 202 and SP 800-185 instances) in the context of
(unkeyed) hashing;

« analysis that is more specifically targetting keyed modes of use of Keccak, including the Keme and Kevax
authenticated encryption schemes;

« analysis on the (reduced-round) Keccak-f permutations that does not extend to any of the aforementioned
cryptographic functions. A

In each category, the most recent results come first.

Analysis of unkeyed modes

First, the Crunchy Crypto Collision and Pre-image Contest contains third-party cryptanalysis results with practical
complexities.

K. Qiao, L. Song, M. Liu and J. Guo, New Collision Attacks on Round-Reduced Keccak, Eurocrypt 2017

In this paper, Kexin Qiao, Ling Song, Meicheng Liu and Jian Guo develop a hybrid method combining algebraic and
differential techniques to mount collision attacks on Keccak. They can find collisions on various instances of Keccak
with the permutation Keccak-f{1600] or Keccak-f{800] reduced to 5 rounds. This includes the 5-round collision
challenges in the Crunchy Contest. In the meanwhile, they refined their attack and produced a 6-round collision that

took 259 evaluations of reduced-round Keccax-f{1600].

D. Saha, S. Kuila and D. R. Chowdhury, SymSum: Symmetric-Sum Distinguishers Against Round Reduced

Files

Specifications summary

Tune Keccak to your requirements
Third-party cryptanalysis

Our papers and presentations
Keccak Crunchy Crypto Collision
and Pre-image Contest

The Keccak Team

...

The FIPS 202 standard

The Keccax reference

Files for the Keccak reference
The Keccax SHA-3 submission
Keccax implementation overview
Cryptographic sponge functions
all files...

Note on side-channel attacks and
their countermeasures

Note on zero-sum distinguishers
of Keccak-f

Note on Keccak parameters and
usage

On alignment in Keccax

Sakura: a flexible coding for tree
hashing

A software interface for Keccak

Part Il: Strobe
From SHA-3 to protocols

Sponge Construction

message output

A . .
U/ U/ U/
:

absorbing squeezing

o 1 O O | O | O

()

Duplex Construction

iInput output Input output Input output

o 1 O O | O | O

()

init |0 duplexing duplexing duplexing

Keyed-mode
key

o 1 O | O | O O

o

init |0 duplexing

Keyed-mode
key

secret part

leak

o 1 O | O | O O

o

init |0 duplexing

Encryption
key

ciphertextl

&— plaintextl

SP)

o

init |0 duplexing

Authenticated Encryption

key
ciphertextl tagl
0 &— plaintextl
° |
0 D D—
0
0

o

init |0 duplexing duplexing

Sessions

key
ciphertextl tagl ciphertext2 tag2
0 &— plaintextl @— plaintext2
° \ |
0 é &b— B—
0
0

o

init |0 duplexing duplexing duplexing duplexing

Strobe

myProtocol = Strobe init(“myWebsite.com™)
myProtocol.AD(sharedSecret)

buffer = myProtocol.send ENC(“GET /)
buffer += myProtocol.send_MAC(len=16)

message = myProtocol.recv ENC(ciphertext|[:-16])

ok = myProtocol.recv_MAC(ciphertext[-16:])
i1f ok {

buffer
buffer

buffer
buffer

buffer
buffer

buffer
buffer

Strobe

myProtocol.send ENC(plaintextl)
+= myProtocol.send MAC(len=16)

myProtocol.send ENC(plaintext2)
+= myProtocol.send MAC(len=16)

myProtocol.send ENC(plaintext3)
+= myProtocol.send MAC(len=16)

= myProtocol.send ENC(plaintext4)
+= myProtocol.send _MAC(len=16)

Operation Flags

AD A
KEY AC
PRF I AC

send CLR A T
recv CLR IA T
send ENC ACT
recv ENC IACT

send MAC CT
recv MAC I CT
RATCHET C

Hash Function

myHash = Strobe init(“hash™)
myHash.AD(“something to be hashed™)
hash = myHash.PRF(outputlLen=16)

Key Derivation Function

KDF = Strobe init(“deriving keys™)
KDF .AD(keyExchangeOutput)

keys = KDF.PRF(outputLen=32)

keyl = keys[:16]

key2 = keys[16:]

operation =AD

®-

o 1 O | O | O O

-

INit 0

operation =AD

] data=010100...
0
0 3 |
0 L/
0
0
0
Init |0

Init

operation =AD

®-

data=010100...

operation =send_ENC

o8

o 1O O O | O

o

INit

operation =AD

®-

data=010100...

operation =send_ENC

o 1 O | O | O O

o

INit

operation =AD

®-

data=010100...

operation =send_ENC

N
O

o 1 O | O | O O

-

data = hello

ciphertext

|

operation =AD operation =send_ENC operation =send_MAC

. data =010100... data = hello tag
) ciphertext !
len =16
0 N ' A T 2
U/ \U \U
0
0

o

INit 0

send AEAD
—m

operation =AD operation =send_ENC operation =send_MAC
: data=010100... data = hello tag
; ciphertext ‘
len=16
° @ & . b -
0
0

o

INit 0

O ® [Strobe protocol framework X David

& C' @ Secure https://strobe.sourceforge.io/specs/ vw SJ E3 u ©

STROBE protocol framework

overview specification example protocols code papers

Scope

This spec describes the operation of the Strose framework. It only covers the symmetric portion.
For applications including elliptic curve crypto, see the examples page.

Table of Contents

1. Version
2. Definitions and notation
2.1. Formatting
3. StroBE Instances
4. STROBE parameters
5. State of a Strose object
5.1. Initial state
6. STROBE operations
6.1. Low-level operations
6.1.1. AD: Provide associated data
6.1.2. KEY: Provide cipher key
6.1.3. CLR: Send or receive cleartext data
6.1.4. ENC: Send or receive encrypted data
6.1.5. MAC: Send or receive message authentication code
6.1.6. PRF: Extract hash / pseudorandom data
6.1.7. RATCHET: Prevent rollback

6.2. Ogerations and flags
strobe.sourceforge.io

http://strobe.sourceforge.io

Strobe

. flexible framework to support a large number of protocols

. large symmetric cryptography library

- fits into tiny loT devices (less than 1000 lines of code)

- relies on strong SHA-3 standard

Part lll: Noise

A modern protocol framework

TLS

. TLSis the de facto standard for securing communications

. complex specification

+ supported by other complex specs (asn.1, x509, extensions, ...)

+ design carrying a lot of legacy decisions

huge and scary libraries
- cumbersome configuration...

. often dangerously re-implemented (custom implementations)

. orre-invented (proprietary protocols)

Complexity is the enemy of security

00 3% The Noise Protocol Framework x David

< C ® noiseprotocol.org/noise.html#payload-security-properties w SJEB Y & qh :

The Noise Protocol Framework

Author: Trevor Perrin (noise@trevp.net)
Revision: 33

Date: 2017-10-04

PDF: noise.pdf

Table of Contents

1. Introduction
2. Overview
o 2.1. Terminology
o 2.2. Overview of handshake state machine
* 3. Message format
4. Crypto functions
o 4.1. DH functions
o 4.2. Cipher functions
o 4.3. Hash functions
* 5. Processing rules
o 5.1 The CipherState object
o 5.2. The symmetricState object
o 5.3. The HandshakeState object
e 6. Prologue
7. Handshake patterns
o 7.1. Pattern validity
o 7.2. One-way patterns
o 7.3. Interactive patterns

www.hoiseprotocol.org

http://www.noiseprotocol.org

The Noise Protocol Framework

- It’s a protocol framework to achieve something like TLS

- “easy” to understand, to analyze, to extend and to implement

+ no need for a PKI

-+ many handshakes to choose from (flexible)

+ it’s straight forward to implement (<2k LOC)

+ and small (18kb for Arduino by Virgil Security)

- there are already libraries that you can leverage

- minimal (or zero) configuration

- if you have a good excuse not to use TLS, Noise is the answer

- DH

+ 25519

. 448

The crypto functions

- AEAD - HASH

+ Chacha20-Poly1305

+ AES-GCM

» SHA-256

+ SHA-512

- BLAKE2s

. BLAKE2Db

A simple state machine

ephemeral key

Client Server

ephemeral key
4—

handshake

A simple state machine

ephemeral key

Client Server

ephemeral key
4—

Diffie-Hellman() handshake Diffie-Hellman()

' '

keys keys

A simple state machine

ephemeral key

Client Server
ephemeral key
4—
Diffie-Hellman() handshake Diffie-Hellman()
keys encrypted data keys

—_—- ———

encrypted data
———————————————————

post-handshake

A simple state machine

Client El Server

g

handshake

keys encrypted data keys

encrypted data
———————————————————

post-handshake

Handshake Patterns

> e
«e,ee

Handshake Patterns

Noise NN():

> e
«e,ee

Tokens

- @: ephemeral key

- s: static key

. ee: DH(client ephemeral key, server ephemeral key)
» es: DH(client ephemeral key, server static key)

» se: DH(client static key, server ephemeral key)

. ss: DH(client static key, server static key)

- psk: pre-shared key

| »
l 00 / ¥ The Noise Protocol Framework \: avid

-> s, se

< C @ noiseprotocol.org/noise.html#handshake-patterns * B Y &« @
NN(): KN(s):
-> e -> S
<- e, ee
-> e
<- e' ee' Se
NK(rs): KK(s, rs):
<- s -> 8
.« <- S
-> e' es . e 0
<- e, ee -> e, es, ss
<- e' ee' Se
NX(rs): KX(s, rs):
-> e -> 8
<- e' ee' e o o
- e
<- e' ee' Se, S, es
XN(s): IN(s):
<- e' ee <- e' ee' Se
-> s, se
XK(s, rs): IK(s, rs):
<- S <- s
-> e' 38 -> e' es, 8' 88
<- e, ee <- e, ee, se
-> s, se
XX(s, rs): IX(s, rs):
<- e' ee' <- e' ee' Se, S, eS

Handshake Pattern

Static key for the server Xmitted ("transmitted") to the client

No static key for the client j /

Noise NX(rs):
> e
< e, ee,s, es

Noise NX(rs):
> e
< e, ee,s,es

Client Server

Noise NX(rs):
> e
< e, ee,s,es

Client Server

Noise NX(rs):
> e
< e, ee,s,es

Client Server

Cpublic

— — >

Noise NX(rs):
> e
e, ee,s, es

Client Server

Cpublic

payloadl

e — e ———

—_—

Noise NX(rs):
> e
< e, ee, s, es

Client Server

Cpublic

payloadl

e — e ———

F€public
4—

Client

Noise NX(rs):
> e
< e, ee, s, es

Cpublic

payloadl

[€public

Server

Client

Noise NX(rs):
> e
< e, ee,s, es

Cpublic

payloadl

S —————

[€public
— T ,.—_Y.].Dm

EKl(S)

—_—

Server

Client

Noise NX(rs):
> e
< e, ee,s,es

Cpublic

payloadl

S —————

[€public
— T ,.—_Y.].Dm

EKl(S)

—_—

Ex2(payload2)

—_—

Server

— 4—- <— “Noise_NX_25519_AESGCM_SHA256” Initialization

e.public_key

<«— payloadl

()¢ F€public

re.public_key

— Ekl(rspublic)

payload2

<+— Ex2(payload2)

Cpublic
_—

payloadl

_—

[€public
4—

Ekl(rspublic)
4—

Ev2(payload?)

<+— Eia(rspuplic) @ — 0

<+— Ex(payload2)

Part IV: Noise + Strobe = Disco

A modern cryptographic {protocol, library} based on
SHA-3 and Curve25519

payloadl

E(rspublic) —>

E(payload2) —

F€public

e.public_key

re.public_key

rs.public_key

payload2

“Noise NX 25519 AESGCM SHA256” Initialization

Cpublic
- .

payloadl

————

[Cpublic
-—

E(rspublic)

- -

E(payload2)

- -

no need for IVs or nonces

|- ¢——— “Noise_NX_25519_AESGCM_SHA256” Initialization

S» e.public_key

S

S

AR

ot

payloadl

S aaad T d €. pUblic_key

rs.public_key

E(rspubtic)

tag

rs.public_key

E(rspubllc)

Cpublic
- o oo66-=-=©-©—©2B0B© ©—--- -

payloadl

-_—

[€public
-—

E(rspublic), tag

A————————————————————————————————————

E(payload2), tag

M———————————————————————————————————

The state of Disco

+ Noise is still a draft
. Strobeis alpha (v1.0.2)

- Disco is a draft specification extending Noise (experimental)

- libDisco is a plug-and-play protocol+library

- the Golang library is here: www.discrocrypto.com

- it’s ~1000 lines of code

+ ~2000 lines of code with Strobe

+ +2000 lines of code with X25519

I Disco and libdisco are still experimental

- we need more eyes, more interoperability testing, ...
. THIS IS NOT REPLACING TLS

http://www.discrocrypto.com

| write about crypto at
www.cryptologie.net

| tweet my mind on
twitter.com/lyon01_david

and | work here

http://www.cryptologie.net
http://twitter.com/lyon01_david

