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Traditional fault attacks
Need physical proximity

Need separate equipment
Soldering, crocodile clips, wire, etc



Energy Management
CLKSCREW: Exposing the perils of security-oblivious

New attack vector that exploits energy management

Practical attack on trusted computing on ARM devices

Impacts hundreds of millions of deployed devices

Lessons for future energy management designs to be security-conscious
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Dynamic Voltage and Frequency Scaling (DVFS)

Energy consumption

Frequency

Voltage

DVFS



Hardware & Software Support for DVFS

Software

Hardware

DVFS

Frequency
Regulator

Voltage
Regulator

Power Governor

Vendor Device Driver

Memory-Mapped Registers



Our Target

Nexus 6 - ARMv7
Quad-core 2.6GHz

Snapdragon Krait SoC



Nexus 6 - HW Regulators and SW Interfaces

SoC Processor
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Operating frequency and voltage can be configured
via memory-mapped registers from software

Frequency regulators Voltage regulators

https://github.com/0x0atang/clkscrew/blob/master/faultmin_SD805/glitch_sd805.c



First sign of trouble…

Curious crashes 



Thinking out of the box…

Temperature matters



Do hardware regulators impose limits 
to frequency/voltage changes?



Freq / Voltage Operating Point Pairs (OPPs)

✓   Unintended computing behaviors

✓   Software-controlled frequency and voltage settings

 ✓    Verify frequency and voltage settings are indeed properly configured

cat /d/clk/krait0_clk/measureFrequency:

Voltage: cat /d/regulator/krait0/voltage



Freq / Voltage Operating Point Pairs (OPPs)

Vendor-recommended
Legend:

Nexus 6
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Lower voltage       
Lower minimum required 
frequency to induce instability

No safeguard hardware limits

Max OPP reached before instability

Legend:
Vendor-recommended

Frequency / Voltage Operating Point Pairs (OPPs)
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Do regulators operate across security boundaries?

Trusted Execution Environments (TEE)



Is DVFS Trustzone-Aware?

CPU Core

Trustzone
Trusted code

Normal
Untrusted code

Hardware-enforced isolation

Frequency & Voltage Regulators

Regulator HW-SW interface

Frequency and voltage changes

No!
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Can we attack Trustzone code execution
using software-only control of the regulators?



Induce timing faults

confidentiality
integrity

availability



How do faults occur (due to over-raising frequency)?

1
flip-flop flip-flop

input output input output

CLK signal

1intermediate logic path
input 
1

output 
11



How do faults occur (due to over-raising frequency)?

flip-flop flip-flop
input output input output

CLK signal

intermediate logic path
input output 

10

higher frequency

0

less time for data 
to propagate⟹

‘1’
timing violation

‘0’
⟹



How dangerous are faults
induced by software-based overclocking/undervolting?



Faults induced by software-based overclocking

Influence control flow

Expected: Authentication fails Runtime Fault Attack: Induce authentication to pass



Faults induced by software-based overclocking

Influence data flow

Expected: Computation should return (0, 1, 2) Runtime Fault Attack: Corrupt result to (nan, 1, 2)



CLKSCREW Challenges & Solutions

#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution



#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution

Addressed earlier in DVFS regulators
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#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution

Cores have different frequency regulators

Core pinning

Coretarget

Coreattack

attack
thread

victim
thread

start
fault

end
fault

code execution 
to inject fault

CLKSCREW Challenges & Solutions



#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution

Disable interrupts during attack

Core pinning

Coretarget

Coreattack

attack
thread

victim
thread

start
fault

end
fault

code execution 
to inject fault

disable
interrupts

enable
interrupts

CLKSCREW Challenges & Solutions



#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution Cache-based execution timing profiling

High-precision timing loops in attack 
architecture

Victim thread

~1,100,000,000,000 clock cycles

~65,000 clock cycles

asm volatile("1:  subs %0, %0, #1 \n" 
             "    bhi 1b  \n"::"r" (loops));

CLKSCREW Challenges & Solutions
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Subverting Trustzone Isolation with CLKSCREW

Trustzone Normal

secret  
key ciphertext

plaintext

Confidentiality Attack
infer secret AES key stored 
within Trustzone

AES 
decryption

I.
Trustzone Normal

RSA 
decryption

plaintext 
hash

#
SHA-256  

hash
verify & 

load app

== signed app

Integrity Attack
load self-signed app into 
TrustzoneII.

app binary

digital  
signature

public key



Key Inference Attack: Threat Model

Victim app: AES decryption app executing in Trustzone

Trustzone Normal

secret 
key

AES
Decryptor ciphertext

plaintext

Attacker’s goal: Get secret AES key from outside Trustzone

Attacker’s capabilities: 1) Can repeatedly invoke the decryption app
                               2) Has software access to hardware regulators

CLKSCREW



Trustzone Normal

secret 
key ciphertextAES

decryption

Faulty

Differential 
Fault Analysis [1]

Key Inference Attack: Summary

faulty
plaintext

      Idea: Induce a fault during the AES decryption
Infer key from a pair of correct and faulty plaintext

Trustzone Normal

secret 
key ciphertext

correct
plaintext

AES
decryption

Correct

CLKSCREW

[1] Tunstall et al. Differential Fault Analysis of the Advanced Encryption Standard using a Single Fault. In IFIP International Workshop on Information Security Theory and Practices (2011).

secret 
key



Key Inference Attack: CLKSCREW Parameters

Differential Fault Analysis needs CLKSCREW to deliver a 
one-byte fault to the 7th AES round

Base voltage:

Low frequency:

High frequency:

Fault injection duration: 

1.055V

3.69GHz

2.61GHz

680 no-op loops (~39 μsec)



Key Inference Attack: Differential Fault Analysis

Fault

Reduce key search space
with a system of equations

Credits: Tunstall et al. Differential Fault Analysis of the Advanced Encryption Standard using a Single Fault. In IFIP International Workshop on Information Security Theory and Practices (2011).

Propagation of fault induced in the input of 8th AES round

Check out code at: https://github.com/Daeinar/dfa-aes

https://github.com/Daeinar/dfa-aes


Key Inference Attack: Timing Profiling

Execution timing of Trustzone code can be profiled with 
hardware cycle counters that are accessible outside of Trustzone



How varied is the execution timing of the victim decryption app?
Victim AES Thread

Execution time (in clock cycles)

N
or

m
ali

ze
d 

fre
qu

en
cy

Not too much variability in terms of execution time

Key Inference Attack: Timing Profiling



Can we effectively control the timing of the fault delivery with no-op loops?
Attack Thread

Number of no-op loops is a good proxy to control timing of fault delivery

Key Inference Attack: Timing Profiling



Our fault model requires our attack to inject fault

Exactly one AES round at the 7th round

Corruption of exactly one byte

Key Inference Attack: Fault Model
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Precision: How likely can we inject fault in exactly one AES round?

More than 60% of the resulting faults are precise enough to corrupt exactly 
one AES round

Key Inference Attack: Fault Model
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Transience: How likely can we corrupt exactly one byte?

Out of the above faults that affect one AES round, more than half are transient 
enough to corrupt exactly one byte

Key Inference Attack: Fault Model



Controlling Fpdelay allows us to precisely time the delivery 
of the fault to the targeted AES round
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Cycle length ratio: ggNTattack/ggNTtarget
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Statistics:
~20 faulting attempts to induce one-byte fault to desired AES round.
~12 min on a 2.7GHz quad core CPU to generate 3650 key hypotheses

Key Inference Attack: Results
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Real-world Apps in Trustzone

Trustzone Normal

:

- Apps running in Trustzone are building blocks for security
- Eg: widevine (DRM), keymaster (hardware-backed key storage)

- Trustzone apps loaded from binary blob files at runtime

- Trustzone OS checks for a valid RSA signature before loading app

widevine app

App binary
widevine
process

keymaster
process

widevine
binary blob

file Certificate chain of 
digital signatures

Associated public keys in chain



RSA Signature Attack: Threat Model

To attack: RSA signature chain verification routine in Trustzone

Attacker’s goal: Trick routine into accepting a self-signed binary

Attacker’s capabilities: 1) Can repeatedly invoke Trustzone to load app
                               2) Has software access to hardware regulators
                               3) Know when the app has been loaded successfully



RSA Signature Attack: Summary

      Idea: - Self-sign an app binary and invoke the app loading
- Inject fault during signature verification

 - Corrupt RSA modulus used at runtime

Trustzone Normal

RSA 
decryption

plaintext 
hash

#
SHA-256  

hash
verify & 

load app

== signed app

app binary

digital  
signature

public key



Attack Exploration and Formulation

Trustzone Apps: How to craft self-signed app binary files?

Trustzone OS: How, where and when to inject the CLKSCREW fault? 



Trustzone Apps: Format of Binary Files

- Trustzone firmware updates contain the Trustzone app binary files

- App = a collection of files
          = app.mdt    +    app.b00    +    …    +    app.b03

ELF Header
Meta-data

Certificate chain
Signature blobs

Program code
(split by sections)



Trustzone Apps: Format of Binary Files

ELF Header

.mdt file

Program Headers

Loader Meta-data

.bXX File Hashes

Certificate Chain

Certificate[0]

Certificate[1]

Credits: 
  - Gal Beniamini: http://bits-please.blogspot.com/2016/04/exploring-qualcomms-secure-execution.html
  - Tal Aloni: http://vm1.duckdns.org/Public/Qualcomm-Secure-Boot/Qualcomm-Secure-Boot.htm

.mdt Signature

Certificate stored in proprietary Motorola HAB 
(“High Assurance Boot”) binary format

Actual Certificate[1] in <widevine.mdt>

Subj: O=Motorola Inc, OU=Motorola PKI, CN=CSF CA 637-1
Issuer: O=Motorola Inc, OU=Motorola PKI, CN=APP 637-1-2; …

Public exponent, e: 0x10001

Modulus, N: c44dc735f6682a261a0b8545a62dd13df4c646a5ed…

Signature: 3cc1961f0d833a6197bd5537ee3f7d784dcf5dfb83b0…

Code: https://github.com/0x0atang/clkscrew/blob/master/pycrypto/parse_mdt_certs.py

http://bits-please.blogspot.com/2016/04/exploring-qualcomms-secure-execution.html
http://vm1.duckdns.org/Public/Qualcomm-Secure-Boot/Qualcomm-Secure-Boot.htm


Attack Exploration and Formulation

Trustzone Apps: How to craft self-signed app binary files?

Trustzone OS: How, where and when to inject the CLKSCREW fault? 



Quick Review: How signatures are verified

Signature: 0def2f02…

Modulus, N2: c61364d7…

Certificate

Binary Data to protect

Root Trusted Key

Modulus, N1: ae02d4f5…

Embedded in Firmware (Trusted)

SHA-256-HASH(           ) #1

RsaDecrypt(      ,        ) #2

if (   ==   )#1 #2



What if we modify the binary data (Our App)?

Signature: 0def2f02…

Modulus, N2: c61364d7…

Certificate

Binary Data to protect

Root Trusted Key

Modulus, N1: ae02d4f5…

Embedded in Firmware (Trusted)

SHA-256-HASH(           ) #1

RsaDecrypt(      ,        ) #2

if (   ==   )#1 #2



Why do we need to inject fault at runtime?

Signature: 0def2f02…

Modulus, N2: c61364d7…

Certificate

Root Trusted Key

Modulus, N1: ae02d4f5…

Embedded in Firmware (Trusted)

#1

#2

if (   ==   )#1 #2

- We need #1 == #2

- But root key N1 is fixed

RsaDecryptfaulted(      ,        )

RsaDecrypt(      ,        )



Digging deep into the firmware

Nexus 6 Trustzone Firmware (Shamu Build: MOD31S)

Super Root Key (SRK) modulus
2048-bit

RSA-2048

Root Trusted Key

Modulus, N1: ae02d4f5…

Embedded in Firmware (Trusted)



Digging deep into the firmware

Nexus 6 Trustzone Firmware (Shamu Build: MOD31S)

RsaDecrypt(  S  ,  N  ,  e  ) = Se mod N =
signature modulus

public exponent
(0x10001)

decrypted 
hash



Digging deep into the firmware

RsaDecrypt(  S  ,  N  ,  e  )
signature modulus

public exponent
(0x10001)



Digging deep into the firmware

RsaDecrypt(  S  ,  N  ,  e  )
signature modulus

public exponent
(0x10001)

Reverse engineering approaches:

- Statically via IDA
- Emulation using angr - http://angr.io/

- Dynamic code instrumentation on 
Trustzone code on actual phones 
(more details in future!)

http://angr.io/


Digging deep into the firmware

RsaDecrypt(  S  ,  N  ,  e  )
signature modulus

public exponent
(0x10001)

- Computes modular exponentiation: Se mod N

[1] KOC, C. K. High-speed RSA implementation. Tech. rep., Technical Report, RSA Laboratories, 1994. 

- Implemented with an efficient form of 
multiplication called Montgomery Multiplication[1]

- Uses a memory-intensive function that reverses 
memory buffers



Digging deep into the firmware

RsaDecrypt(  S  ,  N  ,  e  )
signature modulus

public exponent
(0x10001)

- Computes modular exponentiation: Se mod N

[1] KOC, C. K. High-speed RSA implementation. Tech. rep., Technical Report, RSA Laboratories, 1994. 

- Implemented with an efficient form of 
multiplication called Montgomery Multiplication[1]

- Uses a memory-intensive function that reverses 
memory buffers

Where to inject the runtime fault?



Corrupting FlipEndianness with Runtime Fault

Nexus 6 Trustzone Firmware (Shamu Build: MOD31S)



Corrupting FlipEndianness with Runtime Fault

Base voltage:

Low frequency:

High frequency:

Fault injection duration: 
1.055V

4.10GHz

2.68GHz

5 no-op loops (~0.287 μsec)

Code:    https://github.com/0x0atang/clkscrew/blob/master/faultmin_SD805/

Demo:    https://asciinema.org/a/5vvn3s9nzula930xui1z7tg65

Expected modulus:      … bc099b4a …
Faulty modulus used:   … bc094a4a …



Digging deep into the firmware

RsaDecrypt(  S  ,  N  ,  e  )
signature modulus

public exponent
(0x10001)

- Computes modular exponentiation: Se mod N

[1] KOC, C. K. High-speed RSA implementation. Tech. rep., Technical Report, RSA Laboratories, 1994. 

- Implemented with an efficient form of 
multiplication called Montgomery Multiplication[1]

- Uses a memory-intensive function that reverses 
memory buffers

Where to inject the runtime fault?

How to craft attack signature SA’?



How to craft attack signature?

Trickier than expected!!

Line 3:
Line 4:

original N

corrupted/faulted N

Line 15:
=

different moduli N’s used
(More cryptanalysis in white paper…)

https://github.com/0x0atang/clkscrew/blob/master/pycrypto/pycrypto.py



When (during execution) to inject fault?

- DecryptSig() is invoked 4 times when verifying an app
- 1) SRK.modulus => CERT[0]
- 2) CERT[0].modulus => cert chain meta-data
- 3) CERT[0].modulus => CERT[1]
- 4) CERT[1].modulus => .mdt file hashes

- We need a way to profile when invocation (4) executes within Trustzone

- Attack Enabler: Memory accesses from outside Trustzone can evict cache 
lines used by Trustzone code

Side-channel-based 
cache profiling



When (during execution) to inject fault?

- Instruction-cache Prime+Probe profiling more reliable than data-cache ones
- More info on side-channel-based profiling attacks on ARM [1, 2, 3]

- I-Cache profiling not as convenient as D-Cache profiling
- Instead of using memory read operations
- Need to execute instructions at memory address congruent to cache sets 

we are monitoring
- Create a JIT compiler — Given a list of cache sets to monitor
- Allocate a large chunk of executable memory
- Chain relative BR branch instructions in addresses congruent to monitored 

cache sets 
[1] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches. USENIX 2015
[2]  LIPP, M., GRUSS, D., SPREITZER, R., MAURICE, C., AND MANGARD, S. Armageddon: Cache attacks on mobile devices. USENIX 2016.
[3] ZHANG, X., XIAO, Y., AND ZHANG, Y. Return-Oriented Flush- Reload Side Channels on ARM and Their Implications for Android Devices. CCS 2016.



When (during execution) to inject fault?

- Sketch of I-Cache profiling
- Pick a few code areas before the target victim code to monitor
- Monitor for I-Cache eviction for these cache sets simultaneously (We 

monitor 4 sets)
- Say E is the event when all these cache sets are found to be evicted
- Track the next time E happens
- Use an incrementing counter (as a high-precision timer) to track the 

duration between consecutive E’s
- Call this duration between consecutive E’s — g 
- Time-series g => a fine-grained proxy of Trustcode code execution



Timing-Based Code Execution Profiling

Sample ID over time
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Cache set eviction profile (Validation of the 4th RSA signature)

Sample ID over time

 
Cache-profiling feature

(Consecutive I-Cache eviction interval, g)

- 4) CERT[1].modulus => .mdt file hashes

IDEA

Create hand-crafted features based on g to help us fine-tune 
the timing anchor



Timing-Based Code Execution Profiling

Sample ID over time
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Cache-profiling feature

(Consecutive I-Cache eviction interval, g)

- 4) CERT[1].modulus => .mdt file hashes



Timing-Based Code Execution Profiling

Track a “Fault success” as successfully corrupting targeted N modulus

Both feat_cache1 and feat_cache2 can influence success rate of faults



Timing-Based Code Execution Profiling

But these features alone are insufficient!
Too much variability given any value of pre-fault delay loops, Fpdelay



Timing-Based Code Execution Profiling

But these features alone are insufficient!
Too much variability given any value of pre-fault delay loops, Fpdelay

IDEA

Instead of a fixed Fpdelay, devise an adaptive Fpdelay  to target a 
specific position within N



Timing-Based Code Execution Profiling

Sample lots of faulting parameters and resulting faulted buffer position, Fpos

Fpos ~ featcache1 + featcache2 + Fpdelay + temperature + intercept

Create a linear regression model based on the empirical observations:

At runtime, we can then adjust our adaptive pre-fault delay loops, Fpdelay

Fpdelay = f ( Fpos, featcache1, featcache2, temperature, intercept)



Putting it together
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Statistics:
- ~20% of faulting attempts (1153 out of 6000) result in a successful desired fault in 

the Nrev buffer we want
- These faults consist of 805 unique values, of which 38 (4.72%) are factorizable
- One instance of the desired fault in ~65 faulting attempts



Summary of Attack Enablers

I. No hardware safeguard limits in regulators

II. Large range of possible combinations of freq/volt for fault injection

III. Cores deployed in different freq/volt domains

IV. Hardware regulators operate across security boundaries

V. Execution timing of Trustzone code can be profiled with hardware cycle 
counter from outside Trustzone

VII. Trustzone code execution can be profiled using side-channel-based 
attacks, like Prime+Probe cache attacks



Outline

I. DVFS and Deep Dive into Hardware Regulators

II. The CLKSCREW Attack

III. Trustzone Attack 1: Secret AES Key Inference

IV. Trustzone Attack 2: Tricking RSA Signature Validation

V. Concluding Remarks



Attack Applicability to Other Platforms

Energy management mechanisms in the industry is trending towards 
finer-grained and increasingly heterogeneous designs

v8

Cloud computing providers



Possible Defenses

Hardware-Level
Operating limits in hardware
Separate cross-boundary regulators
Microarchitectural Redundancy

Software-Level
Randomization
Code execution redundancy



New attack surface via energy management software interfaces

Not a hardware or software bug
Fundamental design flaws in energy management mechanisms

Future energy management designs must take security into 
consideration

Sound Bytes
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