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1. Introduction 

The Intel Management Engine (ME) technology was introduced in 2005. 

Though more than 10 years have passed, it is still very hard to find any official 
information about ME on the Internet. The purpose of this document is to 

detail how ME 11.x stores its state on the Flash. 

 

If you need background information, please refer to the following additional 

materials: 

1. Platform Embedded Security Technology Revealed 

2. Intel ME Secrets 

3. Intel ME: The Way of the Static Analysis 

4. Intel ME 11.x Firmware Images Unpacker 

 

The SPI (Serial Peripheral Interface) Flash chip contains BIOS, data related to 

GbE (Gigabit Ethernet), ME Region, and so on. 

 

If Intel ME 11.x Firmware Images Unpacker parses the ME region, the output 

directory contains a file named *.MFS.part, which includes the MFS partition. 

http://www.apress.com/us/book/9781430265719
https://recon.cx/2014/slides/Recon%202014%20Skochinsky.pdf
https://www.troopers.de/downloads/troopers17/TR17_ME11_Static.pdf
https://github.com/ptresearch/unME11
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2. MFS Partition 

The MFS partition stores a file system that contains ME-related data between 

runs. MFS is designed with the view of the following Flash memory features:  

 Any byte could be written independently 

 Need erase (make all bits=1) before re-writing 

 Erasing with the precision of a block (e.g., 8K) only 

 Limited number of guaranteed erase cycles 

o Usually between 10,000 and 1,000,000 

o Inerasable block should be marked as “bad” 

 

After extraction of binary resources from fit.exe, it is easy to find three files 

that represent empty MFS containers: 

AFS_region_256K.bin 

AFS_region_400K.bin 

AFS_region_1272K.bin 

 

The container size is specified in the file name (256, 400, or 1272 KiB). The 
maximum number of files that can be stored in these containers is 512, 256, 

and 1024 respectively. 

2.1. MFS Pagination 

All the cbMFS bytes of MFS could be considered as a set of separate nPages 

with the size of MFS_PAGE_SIZE == 8192(0x2000) bytes each. The page size 

is likely to equal the size of Erase Block, which is a Flash memory property. 

#define MFS_PAGE_SIZE 0x2000 

cbMFS = sizeof(MFS); // Size of MFS partition 

nPages = cbMFS / MFS_PAGE_SIZE; // Total number of pages 

At any specific moment, “nPages/12” pages store System information. 

“nPages - nPages/12 – 1” pages contain files Data. One page is always 

Empty. 

nSysPages = nPages / 12; // Number of System pages 

nDataPages = nPages - nSysPages – 1; // Number of Data pages 
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Each page starts with an 18-byte header: 

typedef struct { 

  unsigned __int32 signature; // Page signature == 0xAA557887 

  unsigned __int32 USN; // Update Sequence Number 

  unsigned __int32 nErase; // How many times page was erased 

  unsigned __int16 iNextErase; // Index of Next-to-be-erased page 

  unsigned __int16 firstChunk; // Index of first chunk (for Data page) 

  unsigned __int8 csum; // Page Header checksum (for first 16 bytes) 

  unsigned __int8 b0; // Always 0 

} T_MFS_Page_Hdr; // 18 == 0x12 bytes 

The Empty page has an invalid sign field (!= 0xAA557887). The System page 

always has 0 in the firstChunk field. All the other pages are Data pages. 

2.2. Chunks 

Each page contains several 66(0x42)-byte chunks. A chunk is an MFS’ primary 

addressable (and modifiable) unit. 

The first 64(0x40) bytes of each chunk are used for payload storing. The next 
two bytes store CCITT CRC-16 calculated from the chunk data and chunk 

index. 

#define MFS_CHUNK_SIZE 0x40 

typedef struct { 

  unsigned __int8 data[MFS_CHUNK_SIZE]; // Payload 

  unsigned __int16 crc16; // Checksum 

} T_MFS_Chunk; // 66 == 0x42 bytes 

Note. Reversing CRC-16 allows easy calculation of the chunk index. 

2.3. System Page 

There is an array of 16-bit indices axIdx in the System page right after the 

Page Header. The number of entries in axIdx equals to the number of chunks 

+ 1. Each System page contains 120(0x78) chunks started from the 

260(0x104) offset. 

#define SYS_PAGE_CHUNKS 120 

typedef struct { 

  T_MFS_Page_Hdr hdr; // Page header 

  unsigned __int16 axIdx[SYS_PAGE_CHUNKS+1]; // Obfuscated indices 

  T_MFS_Chunk chunks[SYS_PAGE_CHUNKS]; // System chunks 

} T_MFS_System_Page; 

  

nSysPageChunks = (MFS_PAGE_SIZE – sizeof(T_MFS_Page_Hdr) - 2) /  

  (2 + sizeof(T_MFS_Chunk)); // 120(0x78) chunks per System page 

Initially, each axIdx entry contains the 0xFFFF value. The 0x8000 bit is 

cleared for the entry that follows the last used entry. The next bit 0x4000 is 

cleared for the used entries. Indices stored in axIdx are obfuscated by XORing 

with dynamic secret. The secret value depends on the previous value from 
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axIdx. Its calculation involves the modified version of CRC-16 (stripped to 14 

bits). 

2.4. Data Page 

There is the aFree byte array in the Data page immediately after the Page 

Header. The number of entries in aFree equals to the number of chunks. Each 

Data page contains 122(0x7A) chunks started from the 140(0x8C) offset. 

#define DATA_PAGE_CHUNKS 122 

typedef struct { 

  T_MFS_Page_Hdr hdr; // Page header 

  unsigned __int8 aFree[DATA_PAGE_CHUNKS]; // Free chunks map 

  T_MFS_Chunk chunks[DATA_PAGE_CHUNKS]; // Data chunks 

} T_MFS_Data_Page; 

 

nDataPageChunks = (MFS_PAGE_SIZE – sizeof(T_MFS_Page_Hdr)) /  

  (1 + sizeof(T_MFS_Chunk)); // 122(0x7A) chunks per Data page 

Initially, each entry of aFree contains the 0xFF value. When a chunk is used, a 

corresponding aFree entry is zeroed.  

2.5. Data Area 

All the chunks from Data pages build the Data area. Each Data page contains 

chunks with sequential numbers starting from hdr.firstChunk. Minimal value 

of the hdr.firstChunk field among all Data pages equals to nSysChunks 

(logical number of chunks in the System area). Each Data area has only one 

Data chunk with a specific index. 

The total number of nDataChunks is calculated by multiplying the number of 

Data pages and the number of chunks on a single Data page, which is 

122(0x7A). 

Data area capacity is calculated by multiplying the number of Data chunks and 

the chunk payload size, which is 64(0x40) bytes. 

nDataChunks = nDataPages * nDataPageChunks; // Number of Data chunks 
cbData = nDataChunks * MFS_CHUNK_SIZE; // Data area capacity 
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2.6. System Area 

Unlike the Data area, System chunks are stored not sequentially but in 
accordance with an update order. A Chunk index for the System page is 

derived from a corresponding value in axIdx. System chunks with a specific 

index are not unique, but only the last entry can be used. To restore a proper 

order, we need to handle System pages in accordance with USN growth. 

The System area starts with 14-byte Volume Header: 

typedef struct { 

  unsigned __int32 sign; // Volume signature == 0x724F6201 

  unsigned __int32 ver; // Volume version == 1 

  unsigned __int32 cbTotal; // Volume capacity (System area+Data area) 

  unsigned __int16 nFiles; // Number of file records 

} T_MFS_Volume_Hdr; // 14 bytes 

There is an array of 16-bit values aFAT right after Volume Header. The number 

of entries in aFAT equals to the number of file records + the number of data 

chunks. 

typedef struct { 

  T_MFS_Volume_Hdr vol; // Volume header 

  unsigned __int16 aFAT[vol.nFiles+nDataChunks];//File Allocation Table 

} T_MFS_System_Area; 

2.7. Data Extraction 

Low-level MFS implementation does not support file names. Files are identified 

by numbers (from 0 to nFiles-1, inclusive). A file size is not stored explicitly 

either. 

To extract a file with the specific iFile number, it is necessary to: 

1. Calculate the index in FAT: ind = aFAT[iFile]. The values 0x0000 

(unused) and 0xFFFE (erased) mean that the file does not exist. The 

value 0xFFFF means that the file is empty (length == 0). 

2. Make sure that nFiles <= ind < len(aFAT). 

3. Extract chunk data: data = dataChunk[ind - nFiles + nSysChunks]. 

4. Calculate the next index: ind = aFAT[ind]. 

5. If (0 < ind <= MFS_CHUNK_SIZE), then output first ind bytes of data 

and stop processing. 

6. Output all 64 bytes of data and proceed to step 2. 
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2.8. MFS Templates Statistics 

 256K 400K 1272K  

nPages 32 50 159 Total number of pages in MFS 

nSysPg 2 4 13 Number of System pages 

nDataPg 29 45 145 Number of Data pages 

 
    

nSysChunks 119 188 586 Number of System chunks 

(logical) 

 240 480 1560 Number of chunks on System 

pages (raw) 

nDataChunks 3538 5490 17690 Number of Data chunks 

     

nFiles 256 512 1024 Number of File slots 

     

cbSys 7616 12032 37504 System area capacity 

cbData 226432 351360 1132160 Data area capacity 

cbTotal 234048 363392 1169664 Total capacity 



   

 
 

 

9 

 

3. MFS Usage 

3.1. Special Files 

MFS file slots with numbers up to 8 are used for special needs. 

Slots 2 and 3 are used for the Anti-Replay (AR) table. The AR mechanism is 

intended to prevent replacement of files with their older copies (a counter 

value in file metadata should match a value in AR tables). 

Slot 4 is used to migrate file system encryption after SVN (Secure Version 

Number) upgrade.  

Slot 5 is used for File System Quota storage (accounting for the amount of FS 

storage used by a specific ME module and the number of Flash writes issued 

by the module). 

Slot 6 contains the /intel.cfg file that is necessary for ME file system 

deployment (first run). intel.cfg is provided by Intel and contains a default 

state of the ME file system. SHA256 of intel.cfg is stored in System Info 

manifest extension. 

Slot 7 contains the /fitc.cfg file that reflects vendor-specific deployment 

settings. A platform vendor can create a fitc.cfg file using Intel’s Flash 

Image Tool (fit.exe). 

Slot 8 contains the /home/ directory that is a base directory for all files stored 

in MFS (except /intel.cfg and /fitc.cfg). 
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3.2. intel.cfg (fitc.cfg) Structure 

File system configuration files are used for ME file system deployment. Both 

intel.cfg and fitc.cfg have an identical structure. 

A file system configuration file starts with a 32-bit value nRec representing the 

number of records in a file. An array of fixed-size records aRec is the 

following. All the other bytes in the configuration file contain file data. 

typedef struct { 

  char name[12]; // File name 

  unsigned __int16 unused; // Always 0 

  unsigned __int16 mode; // Access mode 

  unsigned __int16 opt; // Deploy options 

  unsigned __int16 cb; // File data length 

  unsigned __int16 uid; // Owner User ID 

  unsigned __int16 gid; // Owner Group ID 

  unsigned __int32 offs; // File data offset 

} T_CFG_Record; // 28 bytes 

 

typedef struct { 

  unsigned __int32 nRec; // Number of records 

  T_CFG_Record aRec[nRec]; // Records 

  unsigned __int8 data[]; // Files data 

} T_CFG; 

The mode field of T_CFG_Record is a set of bit fields: 

 Lowest 9 bits (8..0) represent UNIX-like Read/Write/eXecute 

permissions (rwx) for an owner, group, and others respectively. 

 Bit 9 is set for files that must have Integrity protection enabled. 

 Bit 10 is set for files that must have Encryption enabled. 

 Bit 11 is set for files that must have Anti-Replay protection enabled. 

 Bit 12 reflects a record type. It is set for a directory and cleared for an 

ordinary file. 

 All other bits are always zeroed. 

 

The opt field of T_CFG_Record is a set of bit fields too: 

 Bit 0 is set for records that can be overridden by a vendor using 
fitc.cfg. 

 Bit 1 is set for files updateable by the mca process. 

 Bits 3..2 are unknown up to now. 

 All other bits are always zeroed. 
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3.3. MFS Folder (Directory) 

An MFS directory is just an array of records describing containing files. MFS 

file #8 always represents the /home/ directory. 

typedef struct { 

  unsigned __int32 fileno; // iFS,salt,iFile 

  unsigned __int16 mode; // Access mode 

  unsigned __int16 uid; // Owner User ID 

  unsigned __int16 gid; // Owner Group ID 

  unsigned __int16 salt; // Another salt 

  char name[12]; // File name 

} T_MFS_Folder_Record; // 24 bytes 

The fileno field of T_MFS_Folder_Record is a set of bit fields: 

 Lowest 12 bits (11..0) represent a file slot index iFile used to identify a 

specific file. 

 Bits 27..12 contain 0 or a randomly generated value used as salt for 

integrity protection. 

 Bits 31-28 represent a FileSystem ID (that is always 1 for MFS stored 

files). 

 

The mode field of T_MFS_Folder_Record is a set of bit fields too: 

 Lowest 9 bits (8..0) represent UNIX-like Read/Write/eXecute 

permissions (rwx) for an owner, group, and others respectively. 

 Bit 9 is set for files that must have Integrity protection enabled. 

 Bit 10 is set for files that must have Encryption enabled. 

 Bit 11 is set for files that must have Anti-Replay protection enabled. 

 Bit 12 is always set to 0. 

 Bit 13 is set for files protected with Non-Intel keys (see below). 

 Bits 15..14 reflect a record type. It is 1 for a directory and 0 for an 

ordinary file. 
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3.4. Integrity, Encryption, Anti-Replay 

If bit 9 (Integrity) of the file mode is set, the raw file contains an additional 

security blob at the end (52 bytes long). The security blob is also obligatorily 

added to the Anti-Replay tables (iFile == 2, 3) and /home/ directory (iFile == 

8). 

typedef struct { 

  unsigned __int8 hmac[32]; // HMAC value 

  unsigned __int32 antiReplay:2; // Anti-Replay 

  unsigned __int32 encryption:1; // Encryption 

  unsigned __int32 unk7:7; 

  unsigned __int32 iAR:10; // Index in AR table 

  unsigned __int32 unk12:12; 

  union { 

    struct ar { // Anti-Replay data 

      unsigned __int32 rnd; // AR Random value 

      unsigned __int32 ctr; // AR Counter value 

    }; 

    unsigned __int8 nonce[16]; // AES-CTR nonce 

  }; 

} T_FileSecurity; // 52 bytes 

The first 32 bytes of the security blob contain an HMAC value. To calculate 

HMAC, it is necessary to set all bytes of T_FileSecurity.hmac to 0 and feed 

to an HMAC function: 

 File data 

 File security blob with hmac field zeroed 

 T_MFS_Folder_Record.fileno 

 T_MFS_Folder_Record.salt (extended to a 32-bit value) 

For files that have no T_MFS_Folder_Record (AR tables and /home/ directory, 

iFile == 2, 3, 8) fileno = 0x10000000+iFile, salt = 0. 
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4. File System Security Keys 

There are up to 10 security keys involved in protecting the MFS content. 

4.1. RPMC Keys 

Two of these keys (called RPMC HMAC keys) are used for handling RPMC 

(Replay-Protected Monotonic Counter). RPMC is an optional feature of the SPI 
Flash chip helpful for Anti-Replay Protection implementation. If this feature is 

not available, ME implements its own timer-based counter. 

4.2. Integrity and Confidentiality Keys 

MFS uses separate keys to protect Integrity and Confidentiality. 

There are two sets of keys: Intel keys and Non-Intel keys. A proper set is 

chosen accordingly with bit 13 (Non-Intel) of T_MFS_Folder_Record.mode. 

Please note that such rare modules as sigma, ptt, dal_ivm, mca use Intel 

keys. The majority of protected files (including AR tables and all directories) 

use Non-Intel keys. 

Derivation of security keys involves a 1-byte SVN (Secure Version Number) 
value, which is the property of ME Code Partition Directory Manifest. Keys 

calculated for current SVN are called “Current keys”. 

After SVN update (usually caused by fix of major security vulnerabilities), it 

must be impossible to install ME firmware with previous SVN (without direct 

writing SPI Flash with chip programmer). However, alteration of SVN causes 
alteration of related security keys. Therefore, a previous SVN value is stored in 

the PSVN partition and used to calculate “Previous keys”. Having access to 
both “Previous” and “Current” keys allows migration of file system from old to 

new keys. 

4.3. Hardware Security Engines 

ME has access to hardware implemented engines intended for AES, RSA, and 
Hash/HMAC calculation. Another hardware security module used by ME is 

called SKS (presumably stands for Secure Key Storage). 

SKS is able to store keys, provides AES/HMAC engines with access to stored 

keys, but prevents extraction of the keys. Slots 1..11 can contain 128-bit 

keys, while slots 12..21 are for 256-bit keys. 

Access to hardware security engines is limited. Modules able to use them are 

limited to ROM, bup, and crypto. 

In addition, there is a GEN device that contains source material for keys 
calculation. GEN data seems to be unique for every computer. ROM accesses 

GEN at an early execution stage and creates a copy of stored data. ROM uses 



   

 
 

 

14 

 

such data for keys derivation, but clears both GEN and copied data before 

passing control to rbe (initial module from ME firmware). 

It is interesting that before wiping GEN data and passing control to rbe, ROM 

searches and executes the idlm module from the DMLP partition (if any 

exists). Thus, idlm can access GEN data and perform any necessary operation 

on it (ME 11.8 firmware was seen using that trick). For sure, the DLMP 

partition must be properly signed with RSA-2048. 

4.4. Keys Derivation and Usage Practices 

Keys are usually derived in several steps: 

1. ROM uses GEN data to obtain HMAC Key. 

2. ROM derives Wrapping Key using HMAC Key. A resulting key is stored 

in SKS. 

3. ROM derives Root Key (which depends on SVN) using HMAC Key. 

4. ROM wraps Root Key (using AES) and stores it in memory. 

5. ROM wipes all intermediate keys (except Wrapping Key), GEN, and all 

data copied from it. 

6. ROM passes control to ME firmware. 

7. The bup module unwraps Root Key and loads it into SKS (unwrapping 

result can’t be stored outside SKS). 

8. bup derives Integrity/Confidentiality keys using an SKS-stored Root 

key. 

9. bup wraps derived key and stores it in memory (or passes to another 

module, e.g., vfs, if necessary). 

10. bup wipes plaintext key. 

To use wrapped key: 

11. The bup/crypto module unwraps requested Integrity/Confidentiality 

key and loads it into SKS. 

12. Final HMAC/AES operation is performed using the key from SKS. 

 

It is easy to see that Root Key is available in a non-wrapped form only during 
step 4, and there is no way to get it after the ROM execution is finished 

(control is passed to ME firmware). 

 

Final Integrity/Confidentiality keys are available in a non-wrapped form only 

during step 9. However, anyone having ability to execute code with bup 

privileges could re-calculate those keys by repeating steps 7 and 8. 
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5. Conclusion 

Our research does not claim to be exhaustive or error-free. 

Nevertheless, we hope that it could help researchers involved in studying 

Platform security and ME internals. 
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