
PASSIVE FINGERPRINTING OF HTTP/2 CLIENTS

Elad Shuster
Senior Security Researcher, Team Lead
Akamai

Before we begin….

Agenda
Ø Usage Statistics on Akamai’s Platform

Ø HTTP/2 Overview

Ø Passive Client Fingerprinting

Ø HTTP/2 Fingerprinting and it’s Use Cases

Ø HTTP/2 Threat landscape

❐ Threat Research Team @ Akamai Technologies

❐ Enjoying Big-Data

❐ CPA(il), MBA

❐ Love Single Malt Whiskeys!

❐ Uptime ~ 37 years

Acknowledgments

Aharon Friedman
Sr. Security Researcher
Akamai

This research was led by:

Ory Segal
Sr. Director Threat Research
Akamai

http://akamai.me/2qWIqON

DATA COLLECTION

The Intelligent Platform
• 220,000+ Edge Servers
• 3,315+ Locations
• 1200+ Cities
• 129 Countries
• 1,227+ Networks
• 60 Tbps at last peak

The Data
• 3 trillion hits per day
• 1 Billion unique IPs seen quarterly
• 13+ trillion log lines per day
• 260+ TB of compressed daily logs

15 - 30% of all web traffic http://wwwnui.akamai.com/gnet/globe/

http://tech.akamai.com/attack-globe/

AKAMAI

© 2017 AKAMAI | FASTER FORWARD™

1 Billion
Daily requests

27.2M
Unique IP Addresses

15.7K
Hosts

675.3K
User Agents

413.4M
Login requests

10%
Of Total Traffic

HTTP/2 Usage Statistics

HTTP/2 OVERVIEW

HTTP 1.x

GET /index.html HTTP/1.1

Host: www.fdsa.co

Connection: keep-alive

User-Agent: Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9,he;q=0.8

Ø Published during 2015:

§ RFC 7540 Hypertext Transfer Protocol Version 2 (HTTP/2)

§ RFC 7541 HPACK: Header Compression for HTTP/2

Ø Binary Protocol

HTTP/2 Overview

Ø Based on the SPDY Protocol (develop by)

Ø Addresses (performance) challenges in HTTP/1.x

Concurrency

Compression

Allows interleaving of request and response
messages on the same TCP connection

Uses an efficient coding for HTTP header fields, as
well as header compression (HPACK)

Adds a new interaction mode whereby a server
can push responses to a client, if it thinks the client
will need them

Server push<	/	>

Stream 0

Stream 1

Stream 2

Stream N

.

Stream 93

Frame

Frame Frame

Message

Stream
an independent, bidirectional sequence of frames
exchanged between the client and server

Frame

HTTP/2 Connection

Frame
smallest unit of communication in HTTP/2

Stream
bidirectional flow of frames within an established
connection - Assigned with a Unique ID and a Priority

Message
sequence of frames that map to a logical request or response

HTTP/2 Key Elements

Frame Types

Frame Structure

Length	(24	bit)	=	XXXXX

Type	=	0x1
HEADERS_FRAME

Flags	=	0x25
END_HEADERS	(0x4)	,	
END_STREAM	(0x1),	
PRIORITY	(0x20)	

R Stream	Identifier	(Stream	ID	=	73)

Pad	Length	=	0

E	=	1

Weight	=	220

Stream	Dependency	=	0

:method: GET
:authority: http2.akamai.com
:scheme: https
:path: /resources/h2.css
user-agent: Mozilla/5.0 (......) Chrome/62.0.3202.75

Frame Structure - Example

Stream 1 Stream 1 Stream 0 Stream 93

Stream 93 Stream 2 Stream 1Stream 7

HTTP/1.x
Text

Clear Text OR Encrypted

Multiple TCP Connections

Pipelining of requests

-

-

HTTP/2
Binary

Clear Text OR Encrypted

Single TCP connection

Request Multiplexing

HPACK Header Compression

Server Push Enabled

Ø HTTP/2 is binary (you can’t use netcat to draft traffic)

Ø HTTP/2 implementations use TLS

Ø Most intercepting proxies (e.g. Burp) don’t support H2

Keep in mind…

Server	side

Web	server	debug logs

Server Side

Client	side

Chrome://net-internals

Client Side

Let’s get familiarized with the logs….

Source Frame	Type Values

Server SETTINGS [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]

Stream 0

Source Frame	Type Values

Server SETTINGS [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]

Client SETTINGS [SETTINGS_HEADER_TABLE_SIZE(0x01):65536]										
[SETTINGS_INITIAL_WINDOW_SIZE(0x04):131072]										
[SETTINGS_MAX_FRAME_SIZE(0x05):16384]

Stream 0

Source Frame	Type Values

Client HEADERS <Flags, Headers>

Stream 15

Source Frame	Type Values

Client HEADERS <Flags, Headers>

Client WINDOW_UPDATE (window_size_increment=12451840)

Stream 15

Source Frame	Type Values

Client HEADERS <Flags, Headers>

Client WINDOW_UPDATE (window_size_increment=12451840)

Server HEADERS <Flags, Headers>

Stream 15

Connection	
Established

Settings	
Exchanged

Request

Response

❐ HTTP/2 is negotiated via the TLS ALPN extension

(Application Level Protocol Negotiation)

HTTP/2 Conversation

Connection	
Established

Settings	
Exchanged

Request

Response
❐ SETTINGS – Always Stream ID = 0

HTTP/2 Conversation

Connection	
Established

Settings	
Exchanged

Request

Response

❐ Client Send a HEADERS frame

❐ Stream ID = 1

HTTP/2 Conversation

Connection	
Established

Settings	
Exchanged

Request

Response

❐ Server Responds with a Message

❐ Message = HEADERS and DATA frames

❐ Stream ID = 1

HTTP/2 Conversation

Passive Client Fingerprinting

Passive Client Fingerprinting

Passive collection
of attributes that
might expose
consistent unique
behavior

Transport layer
Session layer
Application layer

Deduce about up-time,
OS (type and version),
Running Software, etc…

Fingerprinting
software clients
NOT end users

HTTP/2 Passive Client Fingerprinting

q Observe client’s behaviors while establishing a
connection

q Attributes sent by the client that might expose
consistent unique behavior:

ü Initial connection settings

ü Initial flow control settings

ü Prioritization

ü (Pseudo) Header Order

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Proposed Fingerprint Elements

q SETTINGS frame Conveys configuration parameters

q SETTINGS MUST be sent by BOTH endpoints at the
start of a connection

q Stream identifier for a SETTINGS frame MUST be zero

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order
Proposed Fingerprint

q Parameter default values vary between implementations

HTTP/2 Passive Client Fingerprinting

(0x1)

(0x2)

SETTINGS PARAMETERS

Firefox/55.0 - Mac OS X 10.11.6

Safari 10.1.2 - Mac OS X 10.11.6

EDGE 15.15063 – Windows 10

Chrome 60 – Android 8.0.0 Pixel XL

forging a fingerprint….

EDGE 15.15063 – Windows 10

[3:1024 ;]

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order
Proposed Fingerprint

EDGE 15.15063 – Windows 10

[3:1024 ; 4:10485760]

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order
Proposed Fingerprint

Firefox/55.0 - Mac OS X 10.11.6

[1:65536 ; 4:131072 ; 5:16384]

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order
Proposed Fingerprint

❐ Flow control element

❐ Window size can be set for entire connection or per stream

❐ Connection – Initial size can be set in SETTINGS

❐ RFC set default window sizes if not specified

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order
Proposed Fingerprint

Chrome 60 – Android 8.0.0 Pixel XL

[1:65536 ; 4:131072 ; 5:16384 |15663105]

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order
Proposed Fingerprint

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Chrome 60 – Android 8.0.0 Pixel XL

[1:65536 ; 4:131072 ; 5:16384 |15663105]

Proposed Fingerprint

* If frame is not sent – use 0 instead

❐ Set stream dependencies and priorities

Parent
Stream

Dependent
Stream

❐ Priority is set by assigning weights to
streams

❐ Weights express preference of resources
allocation

❐ No guarantees

“only a suggestion”

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Proposed Fingerprint

Parent
Stream

Dependent
Stream

❐ Used by some at the beginning of each
connection

❐ Each frame has three fields:

❐ Weight

❐ Stream Dependency

❐ Exclusivity Bit

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Proposed Fingerprint

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Firefox/54.0

3
201

5
101

7
1

0

9
1

11
1

❐ Collect dependency, weight, exclusivity

Proposed Fingerprint

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Firefox/54.0

3
201

5
101

7
1

0

9
1

11
1

Proposed Fingerprint

❐ Http2Session.cpp

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Proposed Fingerprint

User-Agent SETTINGS WINDOW UPDATE PRIORITY

Chrome 58.0 Mac OS X 1:65536 ; 3:1000 ;
4:6291456 15663105 0

okhttp/3.6.0 4:16777216 16711681 0

curl/7.54.0 3:100 ; 4:1073741824 1073676289 0

nghttp2/1.22.0 3:100 ; 4:65535 00 3:0:0:20,5:0:0:101,
7:0:0:1,9:0:7:1,11:0:3:1

Nice.
But still…

not enough
entropy

Request Pseudo Headers

❐ :method

❐ :scheme

❐ :authority

❐ :path

Response Pseudo Headers

❐ :status

Pseudo Headers

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Proposed Fingerprint

❐ HTTP/1.1 Request

GET / HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0
Accept: text/html

❐ HTTP/2 Request

:method: GET
:path: /
:authority: www.example.com
:scheme: https
User-Agent: Mozilla/5.0
Accept: text/html

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Proposed Fingerprint

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Proposed Fingerprint

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Proposed Fingerprint

Example from Chrome’s source code:

SETTINGS[;] | WINDOW_UPDATE | PRIORITY[,] | PSH-Order

Proposed Fingerprint

USE CASES

© 2017 AKAMAI | FASTER FORWARD™

Use Cases

Ø Positive Security

Ø Detect Browser Impersonators

Ø Tool Detection

Ø Anonymous Proxy / VPN Detection

* Fingerprinting should also combine other layers

HTTP/2 THREAT LANDSCAPE

© 2017 AKAMAI | FASTER FORWARD™

Most security tools lack H2 support:
✘ Burp Suite
✘ Zed Attack Proxy
✘ Fiddler
✘ SQLmap
✘ Acunetix
✘ AppScan
✘ NetSparker
✘ SentryMBA
✘ THC-Hydra

Ø Not enough incentive for Attackers

§ Web servers support both HTTP/1.X and HTTP/2

§ HTTP/2 libraries are not common

§ Cost exceeds the Gain

Ø Server Implementation Weaknesses found in 2016

§ Handling of Compression, Stream management

Why	?

Key Takeaways

Ø Basic understanding of how HTTP/2 works

Ø Key differences between HTTP 1.x and 2.0

ØPassive Fingerprinting

ØProposed fingerprint mechanism and Use Cases

Ø (Lack of) Threat Landscape

Questions

© 2017 AKAMAI | FASTER FORWARD™

THANK YOU
Elad Shuster

eshuster@akamai.com

