Inside Android’s
SafetyNet Attestation

Collin Mulliner & John Kozyrakis

About

Dr.-Ing. Collin Mulliner
collin@mulliner.org

@collinrm

Independent Security Researcher
Mobile Security since 1999

Worked on: J2ME, PalmQOS, Symbian, Windows
Mobile, iOS and Android Security. Co-authored
‘The Android Hacker’s Handbook’, built an
Android-based device.

John Kozyrakis

john@koz.io

@ikoz

Applied Research Lead, Mobile, Synopsys SIG R&D
6y+ Security Consultant @ Cigital

Mobile app protection design & testing for several
large US & UK orgs
Mobile static & dynamic analysis tools

Agenda

Mobile App Security
SafetyNet & Attestation
Developer's Perspective

Bypassing SafetyNet
Conclusions & Future

Rooting & root detection

Mobile App Security

e App is the gateway to the service
o More so if mobile first or mobile only (and no public APIs)

e Data displayed & managed by app

o User is allowed to see content in the app but isn’t allowed to copy it

Mobile App Security protects: Service, Revenue, Brand, User / Customer

Rooting

e Why attack a mobile app?
o Analyse internals, use enrolled identity, disable security controls, use low-level APIs etc

e Having the ability to escalate the privileges of a process to “root”
o Regain full control over device
o Just one step towards attacking apps

e Access any resource
o Take screenshot, debug any app, instrument process

e Read / Write any file
o Read private app data

e Modify OS and software framework
o APl returns different result

Highly dependent on Android version due to SELinux (longer discussion...)

Attack patterns

e OS Modification

o Root device » break security assumptions
(read private data, take screenshot, instrument app, ...)
o Enables post-installation app tampering & hooking

e Static App Modification

o Make custom app version that does “something else”, bypass security controls

e Network Traffic
o Modify request / response (mostly solved with TLS and cert-pinning)

OS modification methods

e Userspace vulnerabilities
o symlink errors, arbitrary write etc
o various escalation techniques follow

e Kernel/ TEE vulnerabilities
o temporary escalation of privileges of exploit process to root

e Bootloader unlock

o Allows flashing or booting into custom system images

o Change recovery -> edit /system via recovery

o Change kernel -> custom kernel with backdoor to gain root

o Change operating system -> new OS comes with root preinstalled

Device integrity detection the old Days

e Check for traces for “rooting”

o Presence of files: access(“/system/xbin/su”, F_OK)
Presence of apps: com.chainfire.supersu installed?
Presence of running processes, root shells etc
Unexpected output of commands, exec(“which su”)

o O O O

° Check for instrumentation tools
o Xposed installed ?

e Emulator detection
o if (getDeviceld() == 0)

That’s a low bar

e Developer, easy to:
o Understand
o Implement
o Deploy (app doesn’t start or tells backend to deny access)

e Attacker, easy to:
o Understand
o Circumvent (remove check from app, rename file, ...
o (Ab)use app

Hardcoded checks

e The remote backend does not reliably know if checks were executed
e Device integrity = app integrity
e [t all runs within the process space of the (unprivileged) app

e All client-side checks can eventually be bypassed, but we can raise the bar

Attackers can easily disable detections

isRooted = findRoot () findRoot {
if ('isRooted) { if (Config.rootDetectON) {
business logic() return doChecks ()

Usually easy to change one variable and disable all root detection across app

Attackers can easily feed checkers with bad data

e Ifimplemented in Java:
o Smali editing / repackaging
o Runtime hooking (substrate, xposed, frida)
e |f obfuscated Java:
o Mass function tracing to discover checks, then hooking of OS APIs
m access(), open(), stat()
e Ifimplemented in C/C++
o C APl tracing & hooking (frida, library injection etc)
e |[f syscall invocation via ASM:
o Syscall tracing & custom kernel hooking

Raising the bar

e Collect data on the client but enforce restrictions on the backend

e Attacker can’t just patch out checks but has to

o Find which pieces of collected data is important (moving target)
o Fake that data in meaningful ways
m Much more work and uncertainty about what is used for check

e This is what SafetyNet Attestation does

SafetyNet History & Architecture

SafetyNet

The system Google uses to keep the Android ecosystem in check and gather
metrics on on-going attacks

e Performs some on-device checks
e Collects device data
e Sends results back to Google for analysis

Google, over time, can create a profile of each device using these data points.

Google also holds “compatibility” profiles for certain devices via CTS

SafetyNet details

e SafetyNet mostly collects data as the GMS process
o Slightly elevated privileges
e Data sentto Google
o Behavioral analysis
o Machine learning
o Visibility over whole ecosystem, attack patterns & trends
o CTS profile comparison

e System is highly flexible (pushed configs, pushed binary updates)
e High level of integrity protection (signed binaries)
e High complexity

SafetyNet Attestation

SafetyNet Attestation is one of several services offered by SafetyNet to developers.
“OK Google, what do you think about the device I’'m running in?”
The response can be:

e This device is definitely tampered & rooted

e This device is tampered in some way that diverges from device profile
o Not “Google-approved any more”

e All seems good

Attestation result depends on a subset of collected data

caveats

e Attestation aims to let developers understand if a device is tampered
o Compared to it’s factory state

e |t does not warn if the device is vulnerable
o Although the current patch level & kernel & OS version are collected

e [tis notthe best way for reasoning about application integrity

Criticism

e Attestation will not pass on non-CTS devices

O

O
(@)
(@)

Depends on Google Play Services

Excludes amazon, lineage, cyanogen, copperhead...

Some view it as an attempt to further monitor & control the Android ecosystem
Some say it’s anti-competitive

e Privacy

O

o O O O O O

Checks are not transparent

Documentation was lacking - getting better over time

Initially not obfuscated jar, that changed on Oct 2016

Snet attempts to avoid “accidental” collection of private information (strict regexes)
Several collectors disabled by default, enabled if/when needed in response to threats
Most collected info does not actually require or use elevated system privileges

Most ad & root detection libs collect more sensitive info

SafetyNet JAR

e SafetyNet is a Play Services chimera dynamite module
e The code for most collectors/checkers lives in a signed jar file (dex)
e This file is downloaded through a static URL by GMS at runtime

o Loaded into memory
o Pinned connection

e Safenet jar is updated every couple of months.
e [atest: https://www.gstatic.com/android/snet/11292017-10002001.snet
e Finding the latest:

o https://www.gstatic.com/android/snet/snet.flags
o https://www.qgstatic.com/android/snet/snet_goodg.flags
o Automate download: https:/github.com/anestisb/snet-extractor/ by Anestis @ Census

https://www.gstatic.com/android/snet/11292017-10002001.snet
https://www.gstatic.com/android/snet/snet.flags
https://www.gstatic.com/android/snet/snet_goog.flags
https://github.com/anestisb/snet-extractor/

S n et H |St0 ry (not comprehensive)

1626247 - December 2014
1839652 - April 2015
2097462 - July 2015
2296032 - September 2015
2495818 - December 2015
10000700 - August 2016
10000801 - September 2016
10001000 - March 2017
10001002 - April 2017
10002000 - November 2017
10002001 - December 2017

SafetyNet modules

apps

attest

captive_portal_test °
carrier_info
davlik_cache_monitor
device_admin_deactivator
device_state

event_log

su_files

gsmcore
google_page_info
google_page
ssl_handshake

locale

logcat

mx_record
default_packages

proxy
ssl_redirect

sd_card_test

selinux_status

settings

setuid_files

sslv3_fallback
suspicious_google_page
system_ca_cert_store
system_parition_files
mount_options

app_dir_wr

phonesky

internal_logs

app_ops
snet_verify_apps_api_usage

Example: device_state

static DeviceState getDeviceState(Context ctx, GBundle gbundle) {
Object propertyName;
Iterator iter;
DeviceState deviceState = new DeviceState();
deviceState.verifiedBootState = DeviceStateChecker.systemPropertyStringValue("ro.boot.verifiedbootstate");
deviceState.verityMode = DeviceStateChecker.systemPropertyStringValue("ro.boot.veritymode");
deviceState.securityPatchLevel = DeviceStateChecker.systemPropertyStringvValue("ro.build.version.security_patch");
deviceState.oemUnlockSupported = DeviceStateChecker.systemPropertyIntValue(“ro.oem_unlock_supported”);
deviceState.oemLocked = Build$VERSION.SDK_INT > 23 7 DeviceStateChecker.getFlashLockState(ctx) : DeviceStateChecks
deviceState.productBrand = DeviceStateChecker.systemPropertyStringvValue(”ro.product.brand");
deviceState.productModel = DeviceStateChecker.systemPropertyStringValue("ro.product.model”);
deviceState.kernelVersion = Utils.readVirtualFile("/proc/version");
List systemPropertyNames = !?undl?.getSystemPropertyNames();

. ;
Al mismrdrmamNeAanAantibhlaman ~d A

e securityPatchLevel
e verifiedBootState e oemUnlockSupported
o Verified, e oemlLocked
o SelfSigned e productBrand
o Un'verified e productModel
© Failed e kernelVersion
e verityMode _ e systemPropertyList
o enkymng ° SOFTWARE_UPDATE_AUTO_UPDATE setting
o logging e Samsung fotaclient installation

SafetyNet Attestation: Overview

e

= 1111

L —

Google Pla |
9 Y . SafetyNet Attestation

. _ App Backend
. (Google Play Services)

SafetyNet Attestation: Call Chain

R:eq Req — < il
Res:p Resp Resp
Google Play

SafetyNet

! , App Backend
. (Google Play Services)

SafetyNet Attestation: Request Attestation

> Il

Req

. include
. Nonce

i
H .
{
E

Google Play

SafetyNet (GMS) App Backend

SafetyNet Attestation Overview: Request Attestation

Inspect . R

[—)

Req Req <A

- e

Inspect

E]
I ——

Google Play

SafetyNet Attestation App Backend

ThIS is what every app used to |mplement for themselves

SafetyNet Attestation: Forward Data

Req Il

(data from inspection

Google Pla : |
9 Y - SafetyNet Attestation App App Backend

SafetyNet Attestation: Attest Device & App

Py
®
¥l

e —

8
E
E

=N TTTTE

; T
nalyze Data |

Google Pla : |
9 Y - SafetyNet Attestation App 5 App Backend

SafetyNet Attestation: Deliver Result

> Il

orward Resp ,
- SafetyNet Attestation App App Backend

Google Play

SafetyNet Attestation: Deliver Result

e —

= 1111

orward Resp !
- SafetyNet Attestation App App Backend

L —

Google Play

Response is cryptographically protected - signed by Google

SafetyNet Attestation: Deliver Result

Validate Attestation

orward Resp !
SafetyNet Attestation App App Backend

=N TTTTE

Google Play

Using it in apps

|deal implementation

App Backend Mobile App Play Services Google Backend

initiate request

getCreditCard() + nonce

>

attest() request + nunc%_

runs checks if needed

collected data + nonce,

>

< signed response

signed response

_.(creditt:ard + signed response

validate response

App Backend Mobile App Play Services Google Backend

Reference: https://www.synopsys.com/blogs/software-security/using-safetynet-api/

https://www.synopsys.com/blogs/software-security/using-safetynet-api/

Attestation result validation

can be implemented in multiple ways, not all of them are secure

e Where to validate?
o Only at server, not inside mobile app

e How to use?
o Tie validation to your own APIs is ideal
o Run attest/validate throughout user session, not just on app start

Use & validate nonces

Check all returned fields

Check crypto

Decide if using just basiclntegrity or ctsProfileMatch too
Handle errors

Cert Chain .
Attestation Data .

Signature
base64(rsa_sign(sha-256(base64(header)+baseb4(attest_data))))

Attestation Result

Format: JSON Web Signature (JWS)

eyJhbGciOiJSUzI1INiIsInglYyI6WyJIJNSULFZmpDQOEyYWdBA01CQWAJISVZaeD1NZDVhb3JVAORRWUpLblpJaHZjTkFRRUXCUUF3U1RFTE1Ba0dBMVVFQMhNQ1ZWTXhFekFSQmdOVkJBb1RDa2R2YjJkclpTQkpibU14S1RBakJnT1ZCQU1USE
VkdmIyZHNaUOJKYmS5SbGNtNWxkQ0JCZFhSb2IzSnBkSGtnUnpJdOhoY05NVFV3TORNeE1qQXp0alEOV2hjTk1UWXdPRE13TURBA01EQXdXakJzTVFzdONRWURWUVFHRXdKV1V6RVRNQkVHQTFVRUNBAO tRMk ZzYVdadmN tNXBZVEVXTUJRROEx
VUVCd3dOVFc5MWJuUmhhVzRnVml sbGR6RVRNQkVHQTFVRUNNAO tSMj12WjJ4bE1FbHVZekViTUJrROEXVUVBA3dTWVhSMFpYTjBMbUZ 1WkhKdmFXUXVZMJj10TU1JQk1qQU5CZ2 txaGtpRz13MEJBUUVGQUFPQOFROEFNSU1CQ2dLQOFRRUEZzaW
PVemNKOH13Nmh1YnpiQTRYbDJIsSOTMOdG96SFYyNWdJZ2VMNnUOeWVNNE4yMTh4WitPMWhke1BLbmR6bjArc1VuUHNTek16SWZiMzV3Nk9xRD1xLysyd1lk50UN3T2cORXF2QXU20TV1ZjVibzFjNk4 rcHpNOWRWMDZIR3dSdUUXUE10Y2Y4Y01C
UEJDZy9jWmo2bUlsbFdGVXFERLIFMVES5tL25vU01ucmg2WUpUOWhvdUJ6U2d5ZE1Kb2NsYnZEdjl1EcThFQl1WUVhFanA4Z00yVWNnOTNTZXh jb2xmZCtLVUFrNXdkaVBTeXhINFVRaDFvV25iMFR1bzJzeUpQZHh1cWQ3MVRFd1NweES5wcDZx ZE
Ficy9XNE8vZ2swMVVXWEVgbFZvaFhmSE1lsbHZsZEd5dWhEM0Z0dFIzOEFEbOdRaWVUVn1zK2VaZWY3ZXYzem9QuNFFJREFRQUJVNE1CULIRDQOFVRXdIUV1EV1IwbEJCWXdGQV1JS3dZQkJRVUhBAOVHQONZROFRVUZCAO1DTUIWROEXVWRFUVEFX
TUJTQOVtRjBkR1Z6ZEM1aGJtUnliMmxrTG10dmJUQmMICZ2dyQmdFRkJRY0JBUVIjTUZvdOt3WU1Ld11CQ1lFVSE1BSO0dIMmgwZEhBNkx50XdhMmt1WjI5dloyeGxMbU52Y1M5SFNVRKhNaTVgY25Rd0t3WU1LAd11CQ1FVSE1BROAIMmgwZEhBNk
x50WpiR2xsY¥Ym5Sek 1ITNW5iMjluYkdVdVkyOXRMM] 1qY zNBAOhRWURWU jBPQkJZRUZIVGh6cHVGbTNYcGs5¢c2xScD1RLzZNSTGVNK2NNQXdHQTFVZEV3RUIvd1FDTUFBAOh3WURWU jBqQkJIJnd0ZvQVVTADBHRmMh10D1 taTFkd1dCdHJ0aUdycGFn
Uzh3RndZRFZSMGACQkF3RGpBTUInb3JCZ0VFQWRaNUFnVUJNREFHQTFVZEh3UXBNQ2N3SmFBam9DROAIMmgwZEhBNkx50XdhMmt1WjI5dloyeGxMbU52Y1M5SFNVRkhNaTVqY213dORRWUpLblpJaHZjTkFRRUXCUUFEZ2dFQkFENkXLN25UZ1
haUzZEMTg1lZ1QvencxVGp0SUx0ditrY1E3bVJZT2Z6dzY5bW1xWGNaeFppZ1llsNXRsdWVNZOxzWFNFOWJQRXNKZk 9hZzJLSnFiTVhXUUpGR1F5cmJI10Gs zeDZXNDEVNWkzdU1 6ZWsvTm5hZ00yV2hmK21YcWerdkxmakgyV1JoRmtQQ2k4Z21D
TDZneEZidm51dUd5UlpyMEEr S3NOUUXMMW1SQ3RjLzZRYWF0ZWV5Uy 9TMmVGcVJIaT2NIN2hpak 95QTdvRU04 ZDNIJMn10ZXdJISm1Wd2dMZDNmYWRyekpwVmFyN1ZRR21 jRnJUKOdoVnpHS1d4U1lEOVEQzdUhZYOhHZTAWR2VYUVoxMms 3SE tEWD
RpRUNrek9jMEtXbG1WVXNXMXRrMTJInTitXQX1kM0QrVkdhV11lwQjNYeWd4VytTd3JrSkZoalpOaURBRKEIIiwiTULJRDhEQONBAG1nQXdJQkFnSURBanFETUEWRONTcUATSWIzRFFFQkN3VUFNRU14Q3pBSkJInT1ZCQV1UQWXWVE1SWXAGQV1E
V1FRSO0V3MUhaVz1VY25WemRDQkpibUl1TVJIzd0dRWURWUVFERXhKSFpXOVViblZ6ZENCSGIJHOW1ZV3dnUTBFdOhoY05NVE13TkRBMU1UVXhOVFUyV2hjTk1UWXhNak14 TWpNMUSUVTVXak JKTVFzdONRWURWUVFHRXdKV1V6RVRNQkVHQTFVRU
NoTUtSMjl2WjJ4bE1FbHVZekVsTUNNROEXVUVBeE1jUjI5dloyeGxJRWx1ZEdAWeWJtVBJRUYXZEdodmNtbDBlUOJITWpDQOFTSXdEUV1KS29aSWh2Y05BUUVCQ1FBRGANRVBBRENDQVEvQ2dnRUJBSndxQkhkYzJGQ1IPZ2FqZ3VEWVVFaThp
VC94R1hBYW1FWis0SS9GOF1uT011NWEvbUVOdHPKRW1hQjBDMUSQVMFUT2dtS1Y3dXRaWDhiaEJZQVN4RjZVUDd4Y1NEajBVL2NrNXZ1UJjZSWEV6L1JURGZSSy9KOVUzbjIrb0d0dmg4RFFVQjhvTUFOQTInaHpVV3gvL3pvOHB6Y0dqcjFMRV
FUcmZTVGU1dm44TVhIN2xOVmc4eTVLcjBMU3krckVhaHF5ekZQZEZVdUxI0GdaWVIvTmShZytZeXVFT1dsbGhNZ1p4VV1pK0ZPVnZ1TOFTaERHS3V5Nmx5QVJ4eml1aRUFTZzhHRjZsU1dNVGXKMTRy YnRDTWIVL0O00aWFyTk96MF1EbDVIRGZz
Q3gzbnV2U1RQUHVGNXhOOTcwS1NYQORUVOpuWjM3RGhGNW1SNDN4YStPY21rQ0F3RUFBYU9CNXpDQjVEQWZCZ05WSFNNRUdAEQVAnQ1RBZXBob2pZbjdxdl ZrREJGOXFUMWx 1 TXIJNVGpBZEJnT1ZIUTRFRMdRVVNOMEdGaHU40W1pMWR2V0J0cn
RpR3JWYWATOHJEZ11EV1IWUEFRSC9CQVFEQWAFRO1DNEJDQ3NHQVFVRkJ3RUJCQO013SURBZUINZ3JCZOVGQ1FjdOFZWVNhSFIwYORvdkwyY3VjM2xO0WTIJRAVkyOXRNQk 1HQTFVZEV3RUIvd1FJTUFZQkFmMOENBUUF3T1FZRFZSMGZCQzR3TERB
cW9DaWdKbl1lrYUhSMGNEb3ZMMmN1YzNsdFkySXVZMj1l0TDJOeWJITXZaM1JuYkc5aV1Xd3VZMOpzTUJJROEXVWRIQVFRTUEOdORBWUtLA11CQkFIV2VRSUZBVEFOOmdrcWhraUc5dzBCQVFzRkFBTONBUUVBcXZxcE1NMXFaNFBOWHRSKzNoMO
VmKOFsQOmdERkpQdXB5QzF0ZnQ2ZGd tVXNnV0O0wiWmo3cFVzSUL0TXN20TErWk 9t cWNVSHFGQ1140TBTcE1oTk1KYkh6Q3pUV2Y4NEXx1VXQ1blgrUUFpaGNnbHZ jcGpacES55NmplaHNnTmIxYUhBMzBEUD1 6NmVYMGhHZm5JT2k 5UmRvekhRWkp4
anlYT04vaEtUQUFgNzhRMUVLN2dJNEJ6ZkUwWMExzaHVrT11RSHBtRWN4cHc4dTFWRHUOWEJ1cG43akxyTE4xbkJ6LzIJpOEPp3M2xzQTVyc2IwellhSW14c3NEVKNiSkFKUFpQcFpBa21EblVHbjhKek1kUG1YNERrallvaU9uTURzVONPcmlgaT
1EN1g1MkFTQ1ldnMjNgclc0a09WV3plomtvRWZ1INDNYclZKa0ZsZVeyViQwZnNnMTIBPT0iXX0 . ey Jub2572SI61FYSINLUDIGWXAxRk 1abkVaWUk5R1IEIPSIs InRpbWVzdGFtcELzI§oxNDQ2NzYwMzgyMiQ3LCThcGtQYWNr YWA1TmEFtZ2SI6
ImNvbS51eGFtcGx1LnNhZmV0eW51dHR1c3Quc2FmZXR5bmV0dGVzdCIsImFwaORpZ2VzdFNOYTIINiI6Imh6TGIPSW1YYURSLZVRM014MV1jNTQyV290T21nc3VIMEhwWFIJFYTRqUOk9IiwiY3RzUHJvZmlsZUlhdGNoIjpOcnV1LCJI1leHR1bn
Npb24i0iJDUjM3cjhlQVoyaOciLCJIhcGtDZXJ0aWZpY2F0ZURpZ2VzdFNoYTIINiI6WyJmM2ZrbHp5Q1BPMXo5LzB6bytoR29haE8rcEInWGR6UW5adnk5b1FDQ2FvPSJIAEQ.

Check crypto!

Extract JWS cert chain

o (there should only be one chain)
Validate chain
Pin anchor (google)
OSCP/CRL check certs

Valid leaf hostname
o attest.google.com,

validate JWS signature

Attestation Result

e JWS object - signed by Google
e Contains nonce, package name, certificate details etc

"nonce”: "R2ZRraz4fvmsxazMg",

"timestampMs": 9868437986543,

"apkPackageName": "com.package.name.of.requesting.app”,

"apkCertificateDigestSha256": ["basef4 encoded, SHA-256 hash of the certificate used to sign requesting app”
"apkDigestSha256": "basef4 encoded, SHA-256 hash of the app's APK",

"ctsProfileMatch™: true,

"basicIntegrity": true,

ctsProfileMatch & basiclntegrity

Device Status Value of Value of
"ctsProfileMatch" "basiclntegrity"

Certified, genuine device that passes CTS true true

Certified device with unlocked bootloader (false) true

Genuine but uncertified device, such as when the manufacturer doesn't apply for false true

certification

Device with custom ROM (not rooted) false true
—/

Emulator false false

No device (protocol emulator script) false false

Signs of system integrity compromise, such as rooting false false

Signs of other active attacks, such as API hooking false false

SafetyNet and the Nonce

Nonce » number used once

e Prevent replay and reuse of attestation result
o Also sharing between users/devices...

e Nonce needs to be unique (used once!)
e Derive from account information or transaction information

e Nonce needs to be verified correctly

o Time diff {(nonce gen / “timestamp” field in attest resp | packet timestamp}
o Nonce value check

Handle errors!

Error cases

The JWS message can also show several types of error conditions:
» A null result indicates that the call to the service didn't complete successfully.

» An "error" field indicates that an issue occurred, such as a network error or an error that an attacker feigned. Most errors are transient and should
be absent if you retry the call to the service. You may want to retry a few more times with increasing delays between each retry. Keep in mind,

however, that if you trigger more than 5 calls per minute, you could exceed the rate limit, which causes the remaining requests during that minute to
return an error automatically.

I Note: If an error occurs, the result cannot represent a passed test, as an attacker might intentionally trigger such an error.

Errors!

{"extension":"CaOavo6U9gRO1",
"ctsProfileMatch'":false,

"nonce" :"Ehg+1HB3KyRWAT8zv\ /vDmw=="",
"apkCertificateDigestSha256":[],
"timestampMs":1471950172731,

"basicIntegrity'":false}
The package name and APK digests are missing!

Again this is a side note in their documentation.

No actual example in their docs!

{"extension" : "CYOUMWN1YUXN",
"Error":"internal error",

"apkCertificateDigestSha256":[]}"

This means the APl works but the
attestation failed to run!

Attestation: just an API Call away!?

e All API calls can and WILL fail in the wild!

o Solution: report failure codes to your backend (only you can decide what to do)

e Connection to GoogleApiClient fails
o General connection error = retry
o Error code 2 » Google PlayServices doesn’t support SafetyNet = UPDATE PlayServices

e SafetyNet attest() call fails

o Nonce too short (SHOULD NOT HAPPEN TO YOU)
o Rate limited (add API_KEY + request bigger quota)
o Generic error = this will happen to you

PlayServices too old

Android 4.4 no SecureBoot!
> M

SelfAware

O SecureBoot (ro.bootmode)
O SafetyNet Available
O Device is Google Complient

O Google thinks Device is Not Rooted

O App Integrity
PatchLevel: unknown

UPDATE PLAY SERVICES

TEST

\

error update Google Play Services

API Failures...

e Start with retrying everything (generic errors and network errors!)
o Be a good citizen and use exponential backoff!

e attest|)

o Inspect attestation result on the client to determine if JSON error field is present
=+ base64 decode = parse json = error field present?
m YES =retry

e If everything fails report to your backend ... app specific behavior :-(
o Have a plan for handling this otherwise I'll just “report an error and bypass your check”

Howto: App/APK Integrity

apkDigestSha256 and apkCertificateDigestSha256
e hash of the APK binary and the hash of APK signing Certificate
Easy mode:

e APK Certificate Digest is always the same (if always signed with same cert)
o Can hard code into your backend (you only have one data point)

If you have this you have a form of application binary integrity via SafetyNet

Howto: App/APK Integrity

apkDigestSha256

Advanced mode:

e Collect all APK Digests and compare against database

Features:

e Your devs can sign apps but don’t control APK digest database = you control
what versions are allowed to speak to your backend
e Revoke APK versions by digest

WARNING: Need to have total control over your release process!

Implementation & Deployment Summary

Client
e Check error conditions and retry, report failure codes to backend
Backend

e Validate signature and attestation data
e Check all fields including timestamp and nonce
e Tie your APIs to valid attestation responses

Make decision for failures that prevent attestation to happen (important!!!)

e Ask user to update PlayServices, have whitelisting mechanism for customers

Attacks

Can we Trust SafetyNet Attestation?

| wanted to know how far we can trust this system

e Limitations (e.g. Android versions)
e Attacks & Bypasses

You really want to know how well your security system works!

SafetyNet vs. Android Versions

e Android 4 - Android 5

o Can’t detect boot state (secure vs insecure)
o roots/attacks that require an unlocked bootloader work
m With limitations...

e Android 6 and up

o Detect boot state and fail CTS on in-secure boot!

Android 4

e No dm-Verity = root can remount and write files in /system

e SafetyNet Attestation inspects filesystem not running processes

o Temp. move files such as “su” is enough to bypass it
m Move /system/xbin/su to /data/local/tmp, run app (pass attest), restore su

Boot Loader Unlocked

Nexus 5x with Android 6

Note the advice field:

LOCK_BOOTLOADER

L] ®

SelfAware

O SecureBoot (ro.bootmode)
@ SafetyNet Available
O Device is Google Complient

@ Google thinks Device is Not Rooted

@ App Integrity
PatchLevel: 2016-02-01

UPDATE PLAY SERVICES

TEST

{"nonce":"bq2qZQ/gVIXCvWr4gG23FA==","timestampMs":
1505397820703,"apkPackageName":"org.m
ulliner.labs.selfaware","apkDigestSha256":"
nGO7TJ70uRSY6s1YK35SpwitcndxP251nAi7Y/
BTsgl=",'ctsProfileMatch":false,"apkCertificateDigestSha256":
["I1EnSeMsWxudPCTfjbRoSh9EbM]S6iSAVfF8vdxMYFw="],"b

asiclntegrity":true,"advice":"LOCK_BOOTLOADER"}

N\

Client-side response validation?

e Very easy to directly bypass
e variety of dynamic methods, xposed, frida etc
e Example: http://repo.xposed.info/module/com.pyler.nodevicecheck

¥posedHelpers. findAndHookMethod (JSOMObject. class, "getBoolean”,
String.class, new XC_MethodHook{) {
@0verride
protected void beforeHookedMethod(MethodHookParam param)
throws Throwable {
String name = (String) param.args[@];

// Modify server response to pass CTS check
if [("ctsProfileMatch".equals(name)
|| "isWalidSignature".equals{name)) {
param. setResult{true);

return:

B

http://repo.xposed.info/module/com.pyler.nodevicecheck

SuHide and Magisk

e SuHide was the first attempt to hide root from SafetyNet

o Reference: https://koz.io/hiding-root-with-suhide/

e Magisk is the modern root that will bypass SafetyNet
Based on “systemless root” (namespace hacks)

Cleans up filesystem namespace for specific processes like Play
Unlocked bootloader, selinux policy patch = all this is hidden
https://github.com/topjohnwu/Magisk

o O O O

e Need custom detections for those!
o Google plays Cat'n Mouse
o End-game (?): trusted hardware attestation

Installed Magisk v12.0

Latest version of Magisk installed

Properly rooted

8:MAGISKSU (topjohnwu)

SafetyNet Passed

https://github.com/topjohnwu/Magisk

SafetyNet’s Application Integrity Checks

apkDigestSha256 and apkCertificateDigestSha256
e Calculated on the APK file on disk
Android doesn’t execute the APK

e APK contains DEX files
e Until Android 4 DEX files are converted into ODEX (optimized byte code)
e Android 4.4/5 and later DEX files are compiled into native code

This can be attacked!

(Hiding behind ART by Paul Sabanal 2014 - rootkit via odex modification)

Running Code on Android

Android 4.4 and 5

e APK: /data/app/sa.apk

e Data: /data/data/org.mulliner.labs.selfaware/

e Code: /data/dalvik-cache/data@app@org.mulliner.labs.selfaware-l.apk@classes.dex
o Owned by system

Android 6 and later

e APK: /data/app/org.mulliner.labs.selfaware-1/base.apk

e Data: /data/app/org.mulliner.labs.selfaware-1/

e Code: /data/app/org.mulliner.labs.selfaware-1/oat/ARM/base.odex « native code
o Owned by system and writable by installd

Running Code on Android

Android 4.4 and 5

e APK: /data/app/sa.apk
e Data: /data/data/org.mulliner.labs.selfaware/

* Codet/diApp can’t read its own code on the disk.>s¢s9

o Ownhed vy sy:

y: g =
Zygote loads it into memory.
Android 6 and later

e APK: /data/app/org.mulliner.labs.selfaware-1/base.apk

e Data: /data/app/org.mulliner.labs.selfaware-1/

e Code: /data/app/org.mulliner.labs.selfaware-1/oat/ARM/base.odex « native code
o Owned by system and writable by installd

ODEX Code Modification Attack: Overview (Generic)

e Actual code modification
o Use apktool to unpack; MODIFY SMALI CODE; apktool to build APK; jarsigner to sign
m Modified APK with wrong signature (but signature is not part of the ODEX file)

e Compile DEX code to ART code

o Dex2oat --dex-file=sa.apk --oat-file=sa.odex
m ODEX file based on modified APK

e Prevent the Android VM from re-compiling (aka patching the CRC32)
o ODEX file contains CRC32 of DEX files it was generated from
o Patch CRC32 in ODEX file to match the DEX code from the original DEX files in original APK
m Made a tool for this!!!

Attacking ODEX files: all Android Versions

e Need to write ODEX files

o Root device... any way to write those files will enable this attack!

e Overwrite ODEX files in dalvik cache

o Android 4.4 /data/dalivk-cache
o Android 6+ /data/app/APPNAME/oat/ARCH/base.odex

e Stop and start app = WIN

o Tested on bunch of 4.4 and 6 devices

e Modification persists across reboots
o Remove root (unroot)

Attacking ODEX files: all Android Versions

e Need to write ODEX files

o Root device... any way to write those files will enable this attack!

e Overwrite ODEX files in dalvik cache

o AndeSafetyNet Applintegrity is bypassed as

o Androia o+ /qate

checks are run on the APK!
e Stop and start app = WIN

o Tested on bunch of 4.4 and 6 devices

e Modification persists across reboots
o Remove root (unroot)

Attacking ODEX files without Root (Android 6)

Goal: overwrite /data/app/org.mulliner.labs.selfaware/oat/arm/base.odex
Who can write?

e Users: system and installd (basically: installd and zygote)

Attacking ODEX files without Root (Android 6)

Goal: overwrite /data/app/org.mulliner.labs.selfaware/oat/arm/base.odex

Who else can write?

e Kernel » dirtycow (CVE-2016-5195)

o Linux kernel bug that ultimately allowed writing ANY file that you can read

ODEX file Attack via Dirtycow

Same exact procedure as before!
File size is the only issue (dirtycow can’t write past file boundary, not append!)

e Patching the APK might add code

o Remove code? = No!

Dex20at optimizes native code for the specific CPU
“—-instruction-set=arm --instruction-set-variant=cortex-a53”

e Trick: just don’t optimize the OAT file to make it small!
o |just run: dex2oat --dex-file=bad.apk --oat-file=patched.odex

ODEX file Attack using Dirtycow

BLU device with Android 6 (also tested on Nexus 5x with Android 6)

e Works on every Android device with a kernel that is vulnerable to dirtycow
o Should be plenty of Android devices

Overwrite the odex file via:

dirtycow base.odex /data/app/org.mulliner.labs.selfaware/oat/arm/base.odex

Remember: no root required!

Attack Impact

Limited to Android devices that are still vulnerable to dirtycow

e Likely many (I don’t have numbers)

Attack obviously goes beyond SafetyNet Attestation

e Android 7 devices will not be vulnerable since dirtycow patch is required!
Notified Google over a year ago (about the generic attack), was told this is known!

CopperheadQOS - hardened Android clone (www.copperhead.com)

e Mitigates by re-compiling apps before each start (can be slow)

Fun time

e SafetyNet includes DalvikCacheMonitor
® monitors cache modifications
e Iterates over dalvik cache dirs

e Finds cache files, stores hashes and timestamps, in sglite on device
o gms_data /snet/dcache.info sqglite

e Part of “idle” mode SafetyNet checkers
o Runs at intervals, compares results

e Doesn’tinfluence attestation results

e Doesn’t check /data/app/package.name/oat/

Summary

SafetyNet Attestation improves over time

basiclntegrity (added mid-2016)

(@)

O

Collin Mulliner @
@collinrm

Discovered new element "basiclntegrity:
true/false" in Android's SafetyNet

Presence of su binaries in well known locations Attestation. Need to investigate what this

Unexpected SELinux states

advice (added ca. mid-2017)

(@)

O

LOCK_BOOTLOADER
RESTORE_TO_FACTORY_ROM

indicates. #android

3:03 PM - 6 Jul 2016

{"nonce":"bq2qZQ/gVIXCvWr4gG23FA==""timestampMs":
1505397820703,"apkPackageName":"org.m
ulliner.labs.selfaware",'"apkDigestSha256":"
nGO7TJ70uRSY6s1YK35SpwtcndxP251nAi7Y/
BTsgl=","ctsProfileMatch":false,"apkCertificateDigestSha256":
['lTEnSeMsWxudPCTfjbRoSh9EbM]S6iSAvfF8vdxMYFw="]"b

asiclntegrity":true,"advice":"LOCK_BOOTLOADER"}

SafetyNet Attestation “Outage”

e Attestation is based on CTS data
o CTS s run by manufacturers (including Google) for each OS release and patch

e Missing or false data =+ Attestation believes device is modified

e Google broke Attestation briefly for Nexus devices
o | found Attestation was broken for YotaPhone with a specific security update (V1 year ago)

[Update: It's back] Google pulls March &l
security update for Nexus 6, after it o
breaks SafetyNet and Android Pay

G+102 f133 w118

. . .
Corbin Davenport
= [Mar 10,2017 Total Shares 353

Proposed Improvements

Include key & ID hardware TEE attestation

Disassociate attest request with data collection / data send
Increased privileges could help Snet

Collect info via more elaborate methods

Some more obfuscation wouldn’t be a bad idea, or using native code
o Droidguard is much more difficult to RE
o No reason to include original class names in debug info of renamed classes

.class Lcom/google/android/snet/h;
.super Ljava/lang/Object;
.source "AutoValue_SdCardAnalyzer_SdCardAnalysisInfo.java"

.implements Lcom/google/android/snet/bb;

Conclusion

e SafetyNetis a good and “free” way to perform device integrity detection
O Developers who used to rely on home-rolled or library provided root detection should use it

e As is the case with all client-side security systems, it can be bypassed
o Current bypasses are not always practical in attack scenarios

e Using it for application binary integrity isn’t ideal

O There are better frameworks (commercial) for anti-debug & binary protection
e [t’s only good if implemented securely

O Verify result at backend, not on-device,

O Verify crypto, nonces, check all fields

O Don’tjust run one attestation on app start, tie result to APl response

Thank you - Questions?

References

Google documentation Google SafetyNet sample app

e app & server source - github (28 Oct 2016)

e SafetyNet training article

e SafetyNet API SDK docs Cigital SafetyNet Playground app (09 Oct 2015)
John’s blog posts e Play Store

e Client-side source - github
e Server-side source — qithub

Inside SafetyNet part 1 — koz.io (17 Sept 2015)
Inside SafetyNet part 2 — koz.io (20 Mar 2016)
Inside SafetyNet part 3 — koz.io (13 Nov 2016)
Using SafetyNet securely — cigital (09 Oct 2015)
Using SafetyNet securely — koz.io (12 Oct 2015)

Collin’s presentation / tools
e Inside Android's SafetyNet Attestation: Attack
and Defense
e htips://www.mulliner.org/android/

https://developer.android.com/training/safetynet/index.html
https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNet
https://koz.io/inside-safetynet/
https://koz.io/inside-safetynet-2/
https://koz.io/inside-safetynet-3/
https://www.cigital.com/blog/using-safetynet-api/
https://koz.io/using-safetynet-securely-in-your-android-app/
http://mulliner.org/collin/publications/inside_safetynet_attestation_attacks_and_defense_mulliner2017_ekoparty.pdf
http://mulliner.org/collin/publications/inside_safetynet_attestation_attacks_and_defense_mulliner2017_ekoparty.pdf
https://www.mulliner.org/android/
https://github.com/googlesamples/android-play-safetynet/
https://play.google.com/store/apps/details?id=com.cigital.safetynetplayground
https://github.com/cigital/safetynet-app
https://github.com/cigital/safetynet-web-php

