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Abstract— Network protocol normalization and reassembly is
the  basis  of  traffic  inspection  performed  by  NGFW and  IPS
devices.  Even  common  network  protocols  are  complex  with
multiple  possible  interpretations  for the same traffic  sequence.
We present a novel method for automated discovery of errors in
traffic  normalization by targeted protocol  stack fuzzing.  These
errors can be used by attackers to evade detection and bypass
security devices. 
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I. INTRODUCTION

Network  security  devices  perform  real-time  analysis  on
network  traffic  to  detect  malicious  or  unwanted  traffic.
Intrusion  prevention  systems  (IPS)  and  next  generation
firewalls  (NGFW)  are  common  examples  of  middlebox
systems that can alert and possibly terminate offending traffic.

Successful  traffic  analysis  requires  that  the  middlebox
interprets the traffic in the same way as the actual endpoint.
Differences  in  traffic  interpretation  cause  problems.
Interpreting  normal  actions  as  malicious  will  cause  the
middlebox  to  cause  false  positive  alerts  on  normal  traffic.
Interpreting  malicious  actions  as  normal  allows  attackers  to
evade detection and bypass the security device. 

Network evasion techniques have been researched actively,
and there exist a large amount of different evasion techniques.
These techniques can be combined to cause a different error in
the traffic  analysis  or sidestep attempts to detect  an evasion
technique.  Our  work  focuses  on  rapidly  finding  evasion
combinations that work against any given network middlebox.

II. PROTOCOL FUZZING

In  Wikipedia,  fuzz  testing  is  defined  as  “an  automated
software  testing  technique  that  involves  providing  invalid,
unexpected, or random data as inputs to a computer program”
[1]. Fuzzing is a common method for finding implementation
errors in software in an automated way, and is well suited for
testing black box implementations [2].

Our  goal  is  to  find  protocol  reassembly  problems  in
middlebox  traffic  inspection.  Most  middlebox  security
products  are  proprietary  solutions with no visibility into the
actual  inspection  process.  The  inspection  behaviour  also
changes with signature updates, inspection policy changes and
software upgrades. The inspection process is therefore a black
box for testing purposes.

The  search  space  for  different  ways  to  send  a  network
exploit is large. The traffic for a relatively simple HTTP GET
request  is  composed  following  at  least  the  following
specifications:

•RFC 2616 – Hypertext Transfer Protocol HTTP/1.1 [3].

•RFC 793 -  Transmission Control Protocol [4].

•RFC 791 – Internet Protocol [5].

Many  protocols  also  have  commonly  implemented
extensions  increasing  the  complexity.  Each  of  the  RFCs  is
written along the robustness principle stated by Jon Postel, “be
conservative in what you do, be liberal in what you accept from
others”  [4],  which  makes  implementation  interoperability
easier but increases the amount of abnormal behaviour that is
accepted by receiving implementations. Implementations of the
protocols  also  do  not  necessarily  exactly  follow  the
specifications.

Fuzzing the network protocol stack by randomly mutating
individual packets has a low chance to produce traffic that is
interpreted correctly by the intended service. Sending a short
HTTP GET request  involves  3  IP packets  and  around  600
bytes. Performing completely random mutations has a space of
4800 bits to flip, 2^4800 combinations, most of which lead to
unintelligible traffic.

Instead  of  random  mutations  we  use  a  set  of  atomic
evasions  that  perform  mostly  valid  transformations  to  the
traffic.  These  atomic  network  evasion  techniques  have  been
actively  researched  by  both  the  scientific  and  security
communities  [6][7][8][9][10][11][12][13].  Applying
combinations  of  such  evasions  have  a  higher  chance  of
producing valid traffic and interesting traffic patterns. 

Gorton  and  Chambers  [14] combined  three  different
network layer  evasions to bypass traffic  inspection. The test



space  of  our  evasion  combinations  is  large  enough that  we
cannot execute them all. Instead we perform random evasion
combinations  with  random parameters  to  test  the  inspection
performance. 

Testing  protocol  normalization  and  inspection  by
controlling both endpoints is interesting when validating that
the middlebox implements a given specification and performs
as  intended.  For  finding  differences  in  traffic  interpretation
between a real operating system and a security device, we need
the real operating system as the other endpoint.

Since  protocol  stacks  are  layered,  finding  a  working
evasion  combination  on  a  low  level  often  means  that
everything above that  layer  is  vulnerable.  This is  significant
since a low level normalization flaw can render a middlebox
blind to every attack on the upper levels. Sometimes evasion
test results are represented as a percentage, obfuscating the fact
that low level evasions are significantly more damaging than
application specific evasions. 

III. TEST METHODOLOGY

We use a combination of two testing tools, Mongbat and
Evader. Evader performs a single exploit attempt using given
evasions.  Mongbat  runs  a  large  amount  of  parallel  Evader
instances and selects the addressing and evasions they use. The
test setup consists of the following:

•Mongbat controlling the attack execution

•Evader running actual attacks 

•Victim host vulnerable to the attack performed

•Device  under  test  (DUT)  inspecting  the  traffic  and
terminating all suspected attacks

 

The  goal  is  to  find  evasion  combinations  that  produce
traffic  that  is  understood by the victim host  but not seen as
malicious by the DUT. We use working exploit  payloads to
validate  that  the  exploit  has  been  received  and  executed
correctly  by  the  victim  host,  and  the  DUT  to  terminate
everything it sees as malicious.

A test  case  is  successful  if  the  victim host  executes  the
exploit  payload.  This  test  method  rejects  any  evasion
combinations that break the traffic so that the target operating
system or application no longer understand it. Also all traffic
that is identified by the DUT as malicious will be terminated.

Intrusion  detection  systems  (IDS)  that  only  alert  on
malicious traffic but cannot terminate it cannot be tested with
this  method.  These  devices  can  not  normalize  traffic  by
dropping ambiguous network packets, which leaves them with
the  even  more  difficult  task  of  determining  which  traffic
interpretation is chosen by the intended target. We consider  the
inspection capabilities of an IDS to be an inferior subset of an
IPS.

No special care is taken to avoid sending broken traffic as
the result of combining unsuitable evasions. It is our view that

it is better to test with large amounts of slightly broken traffic
than to try to guess how the middlebox and victim protocol
stacks  interact.  While  blacklisting  attacker  IP addresses  can
impede the test, it is not a valid mitigation against botnets or
prepared attackers who have done their proverbial homework
in advance.

A. Evader

Evader  is  a  command  line  tool  that  executes  a  single
network exploit attempt and reports the result. If the attack fails
the protocol state where the failure happened is reported.

The tool contains a userspace TCP/IP stack and application
layer  clients  capable  of  performing  different  evasion
techniques.  The exploits  implemented  (Table  1)  are  old and
should be detected  by all  intrusion prevention devices.  TCP
timeouts and other delays have been optimized to maximize
test speed.

Exploit execution has been separated into stages, allowing
different evasions to be used for different protocol stages. For
example, TCP segmentation might only be applied to the first
SMB  handshake  message.  Many  evasions  also  contain  a
probability of application that causes the evasion to be applied
to different places in the attack.

B. Mongbat

Mongbat  coordinates  test  execution  and  runs  a  set  of
Evader instances in parallel. The outline of a test run using a
bind shell payload is the following:

1. Execute  a  clean  payload  run  to  see  that  the  victim
service is running and accessible.

2. Check that the bind shell port assigned to this worker
thread is not open.

3. Execute the attack with a random set of evasions.

4. Check  if  the  bind  shell  port  opened.  If  it  did,  the
attack was successful.

This ensures that we report that an attack was successful
only when the target host executed the exploit code. 

TABLE I. EVADER TEST CASES

CVE Protocols used Description

CVE-2004-1315 IPv4, TCP, <TLS>,HTTP HTTP phpBB highlight

CVE-2008-4250 IPv4, TCP, SMB, MSRPC MSRPC Server Service
Vulnerability

CVE-2012-0002 IPv4, TCP, RDP Windows  RDP  Denial
of Service

CVE-2014-0160 IPV4, TCP, TLS OpenSSL ‘Heartbleed’ 



IV. RESULTS

We ran tests against six commercial NGFW / IPS products.
The test set includes devices from Gartner “Intrusion Detection
and  Prevention”  and  “Enterprise  Firewall”  2017  magic
quadrant  leaders.  Each  device  was  updated  to  the  latest
software version and used the latest signature set available. An
attempt was made to tune the configuration on each device for
the  maximum amount  of  inspection  while  still  allowing the
Evader clean test to go through on all used attacks. Each device
was able to stop the attack without evasions, except for one
device lacking TLS inspection capabilities.

The attacks used and their labels in the result tables are:

•HTTP:  PhpBB  highlight  vulnerability  exploited  over
HTTP with a TCP bind shell payload.

•HTTPS:  PhpBB  highlight  vulnerability  exploited  over
HTTPS with a TCP bind shell payload. 

•Conficker:  MSRPC  Server  Service  Vulnerability
exploited with a TCP bind shell payload. 

•Heartbleed:  OpenSSL  ‘Heartbleed’  vulnerability
exploited. Success criteria is that the TLS server returns extra
data in a heartbeat response to the attacker, i.e. the information
disclosure flaw is triggered.

A 10 minute run of Mongbat for each of the four attacks
was  performed  against  all  devices  using  16  parallel  worker
threads. 

Overall  results  in  Table  2  show that  multiple  successful
evasions can be found with our automated method during the
relatively short test period. The most common working single
evasions after removing the randomized evasion parameters are
described in Table 2. Table 3 displays which device and attack
the  evasion  worked  against.  The  mapping  is  based  on  the
results  of  the  10  minute  test  runs,  more  working  evasions
would likely be found after a  longer testing period. 

TABLE II. SUCCESS / ATTEMPT COUNT

Vendor HTTP HTTPS Conficker Heartbleed

Vendor I 72  / 12364 crasha 21 / 858 0 / 557

Vendor II 133 / 8481 97 / 4119 16 / 2368 25 / 899

Vendor III 126 / 8788 277 / 4059 15 / 1204 40 / 1092

Vendor IV 746 / 1833 N/Ab 2 / 1077 N/Ab

Vendor V 3366 / 8975 2550 / 5970 8 / 3561 50 / 891

Vendor VI 0 / 7366 0 / 6337 0 / 7778 0 / 994

a.Device repeatedly crashed during test run, invalidating results.

b.Could not be configured for TLS inspection, did not terminate the attack.

TABLE III. MOST COMMON WORKING SINGLE EVASIONS

Evasion name Protocol Symbol Description

tcp_paws TCP P TCP PAWS elimination

tcp_chaff TCP C TCP chaff packets

tls_seg TLS T TLS record layer
segmentation

http_request_method HTTP H Nonstandard HTTP request
method

The evasions are performed on different protocol layers. It
can be seen that an evasion vulnerability on a lower protocol
layer like TCP will prevent traffic inspection on higher protocol
layers.  For example,  the TCP PAWS evasion can be used to
evade inspection of both HTTP and MSRPC based attacks.

Some of the tested devices implement TLS inspection as a
Man-In-The-Middle (MITM) where the device acts as a TLS
server for the connection client and a TLS client for the server.
We speculate that this is the reason why Vendor II is vulnerable
to the TCP PAWS evasion on HTTP and Conficker attacks, but
not on HTTPS and Heartbleed. In the latter attacks a MITM
device  is  the  TCP connection  endpoint,  so  there  can  be  no
ambiguity  between  the  inspected  traffic  and  the  endpoints
interpretation of it. 

V. CONCLUSIONS

We  demonstrate  that  our  automated  method  of  finding
evasion  vulnerabilities  can  be  used  to  rapidly  find  working
evasions against modern up-to-date NGFW and IPS products.

The results also point out that low-level evasions are often
payload  independent.  The  fact  that  TCP level  evasions  are
working in 2017 despite being known since 1998 [6] is a cause
for concern. The authors speculate that the reason may be as
simple  as  performance  optimization  based  on  dedicated
networking hardware or memory consumption optimization.

Automated testing of traffic inspection should be used for
tuning traffic inspection policies. An inspection policy could be
tuned  so  that  required  normal  traffic  passes  but  automated
attacks are stopped. This would provide some validation that
network  traffic  is  inspected  as  intended,  with  no  required
signatures or configuration options missing.

TABLE IV. WORKING SINGLE EVASIONS

Vendor HTTP HTTPS Conficker Heartbleed

Vendor I H

Vendor II P, C T, H P T

Vendor III P, H P, C, T, H P P, C, T

Vendor IV P, C, H P, C, T, H C P, C, T

Vendor V P, C, T, H P, C, H T

Vendor VI
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