
Automatic Discovery of Evasion Vulnerabilities
Using Targeted Protocol Fuzzing

Antti Levomäki
Forcepoint

Helsinki, Finland
antti.levomaki@forcepoint.com

Olli-Pekka Niemi
Forcepoint

Helsinki, Finland
opi@forcepoint.com

Christian Jalio
Forcepoint

Helsinki, Finland
christian.jalio@forcepoint.com

Abstract— Network protocol normalization and reassembly is
the basis of traffic inspection performed by NGFW and IPS
devices. Even common network protocols are complex with
multiple possible interpretations for the same traffic sequence.
We present a novel method for automated discovery of errors in
traffic normalization by targeted protocol stack fuzzing. These
errors can be used by attackers to evade detection and bypass
security devices.

Keywords—network; intrusion prevention; evasion; fuzzing;
IDS; IPS; NGFW

I. INTRODUCTION

Network security devices perform real-time analysis on
network traffic to detect malicious or unwanted traffic.
Intrusion prevention systems (IPS) and next generation
firewalls (NGFW) are common examples of middlebox
systems that can alert and possibly terminate offending traffic.

Successful traffic analysis requires that the middlebox
interprets the traffic in the same way as the actual endpoint.
Differences in traffic interpretation cause problems.
Interpreting normal actions as malicious will cause the
middlebox to cause false positive alerts on normal traffic.
Interpreting malicious actions as normal allows attackers to
evade detection and bypass the security device.

Network evasion techniques have been researched actively,
and there exist a large amount of different evasion techniques.
These techniques can be combined to cause a different error in
the traffic analysis or sidestep attempts to detect an evasion
technique. Our work focuses on rapidly finding evasion
combinations that work against any given network middlebox.

II. PROTOCOL FUZZING

In Wikipedia, fuzz testing is defined as “an automated
software testing technique that involves providing invalid,
unexpected, or random data as inputs to a computer program”
[1]. Fuzzing is a common method for finding implementation
errors in software in an automated way, and is well suited for
testing black box implementations [2].

Our goal is to find protocol reassembly problems in
middlebox traffic inspection. Most middlebox security
products are proprietary solutions with no visibility into the
actual inspection process. The inspection behaviour also
changes with signature updates, inspection policy changes and
software upgrades. The inspection process is therefore a black
box for testing purposes.

The search space for different ways to send a network
exploit is large. The traffic for a relatively simple HTTP GET
request is composed following at least the following
specifications:

•RFC 2616 – Hypertext Transfer Protocol HTTP/1.1 [3].

•RFC 793 - Transmission Control Protocol [4].

•RFC 791 – Internet Protocol [5].

Many protocols also have commonly implemented
extensions increasing the complexity. Each of the RFCs is
written along the robustness principle stated by Jon Postel, “be
conservative in what you do, be liberal in what you accept from
others” [4], which makes implementation interoperability
easier but increases the amount of abnormal behaviour that is
accepted by receiving implementations. Implementations of the
protocols also do not necessarily exactly follow the
specifications.

Fuzzing the network protocol stack by randomly mutating
individual packets has a low chance to produce traffic that is
interpreted correctly by the intended service. Sending a short
HTTP GET request involves 3 IP packets and around 600
bytes. Performing completely random mutations has a space of
4800 bits to flip, 2^4800 combinations, most of which lead to
unintelligible traffic.

Instead of random mutations we use a set of atomic
evasions that perform mostly valid transformations to the
traffic. These atomic network evasion techniques have been
actively researched by both the scientific and security
communities [6][7][8][9][10][11][12][13]. Applying
combinations of such evasions have a higher chance of
producing valid traffic and interesting traffic patterns.

Gorton and Chambers [14] combined three different
network layer evasions to bypass traffic inspection. The test

space of our evasion combinations is large enough that we
cannot execute them all. Instead we perform random evasion
combinations with random parameters to test the inspection
performance.

Testing protocol normalization and inspection by
controlling both endpoints is interesting when validating that
the middlebox implements a given specification and performs
as intended. For finding differences in traffic interpretation
between a real operating system and a security device, we need
the real operating system as the other endpoint.

Since protocol stacks are layered, finding a working
evasion combination on a low level often means that
everything above that layer is vulnerable. This is significant
since a low level normalization flaw can render a middlebox
blind to every attack on the upper levels. Sometimes evasion
test results are represented as a percentage, obfuscating the fact
that low level evasions are significantly more damaging than
application specific evasions.

III. TEST METHODOLOGY

We use a combination of two testing tools, Mongbat and
Evader. Evader performs a single exploit attempt using given
evasions. Mongbat runs a large amount of parallel Evader
instances and selects the addressing and evasions they use. The
test setup consists of the following:

•Mongbat controlling the attack execution

•Evader running actual attacks

•Victim host vulnerable to the attack performed

•Device under test (DUT) inspecting the traffic and
terminating all suspected attacks

The goal is to find evasion combinations that produce
traffic that is understood by the victim host but not seen as
malicious by the DUT. We use working exploit payloads to
validate that the exploit has been received and executed
correctly by the victim host, and the DUT to terminate
everything it sees as malicious.

A test case is successful if the victim host executes the
exploit payload. This test method rejects any evasion
combinations that break the traffic so that the target operating
system or application no longer understand it. Also all traffic
that is identified by the DUT as malicious will be terminated.

Intrusion detection systems (IDS) that only alert on
malicious traffic but cannot terminate it cannot be tested with
this method. These devices can not normalize traffic by
dropping ambiguous network packets, which leaves them with
the even more difficult task of determining which traffic
interpretation is chosen by the intended target. We consider the
inspection capabilities of an IDS to be an inferior subset of an
IPS.

No special care is taken to avoid sending broken traffic as
the result of combining unsuitable evasions. It is our view that

it is better to test with large amounts of slightly broken traffic
than to try to guess how the middlebox and victim protocol
stacks interact. While blacklisting attacker IP addresses can
impede the test, it is not a valid mitigation against botnets or
prepared attackers who have done their proverbial homework
in advance.

A. Evader

Evader is a command line tool that executes a single
network exploit attempt and reports the result. If the attack fails
the protocol state where the failure happened is reported.

The tool contains a userspace TCP/IP stack and application
layer clients capable of performing different evasion
techniques. The exploits implemented (Table 1) are old and
should be detected by all intrusion prevention devices. TCP
timeouts and other delays have been optimized to maximize
test speed.

Exploit execution has been separated into stages, allowing
different evasions to be used for different protocol stages. For
example, TCP segmentation might only be applied to the first
SMB handshake message. Many evasions also contain a
probability of application that causes the evasion to be applied
to different places in the attack.

B. Mongbat

Mongbat coordinates test execution and runs a set of
Evader instances in parallel. The outline of a test run using a
bind shell payload is the following:

1. Execute a clean payload run to see that the victim
service is running and accessible.

2. Check that the bind shell port assigned to this worker
thread is not open.

3. Execute the attack with a random set of evasions.

4. Check if the bind shell port opened. If it did, the
attack was successful.

This ensures that we report that an attack was successful
only when the target host executed the exploit code.

TABLE I. EVADER TEST CASES

CVE Protocols used Description

CVE-2004-1315 IPv4, TCP, <TLS>,HTTP HTTP phpBB highlight

CVE-2008-4250 IPv4, TCP, SMB, MSRPC MSRPC Server Service
Vulnerability

CVE-2012-0002 IPv4, TCP, RDP Windows RDP Denial
of Service

CVE-2014-0160 IPV4, TCP, TLS OpenSSL ‘Heartbleed’

IV. RESULTS

We ran tests against six commercial NGFW / IPS products.
The test set includes devices from Gartner “Intrusion Detection
and Prevention” and “Enterprise Firewall” 2017 magic
quadrant leaders. Each device was updated to the latest
software version and used the latest signature set available. An
attempt was made to tune the configuration on each device for
the maximum amount of inspection while still allowing the
Evader clean test to go through on all used attacks. Each device
was able to stop the attack without evasions, except for one
device lacking TLS inspection capabilities.

The attacks used and their labels in the result tables are:

•HTTP: PhpBB highlight vulnerability exploited over
HTTP with a TCP bind shell payload.

•HTTPS: PhpBB highlight vulnerability exploited over
HTTPS with a TCP bind shell payload.

•Conficker: MSRPC Server Service Vulnerability
exploited with a TCP bind shell payload.

•Heartbleed: OpenSSL ‘Heartbleed’ vulnerability
exploited. Success criteria is that the TLS server returns extra
data in a heartbeat response to the attacker, i.e. the information
disclosure flaw is triggered.

A 10 minute run of Mongbat for each of the four attacks
was performed against all devices using 16 parallel worker
threads.

Overall results in Table 2 show that multiple successful
evasions can be found with our automated method during the
relatively short test period. The most common working single
evasions after removing the randomized evasion parameters are
described in Table 2. Table 3 displays which device and attack
the evasion worked against. The mapping is based on the
results of the 10 minute test runs, more working evasions
would likely be found after a longer testing period.

TABLE II. SUCCESS / ATTEMPT COUNT

Vendor HTTP HTTPS Conficker Heartbleed

Vendor I 72 / 12364 crasha 21 / 858 0 / 557

Vendor II 133 / 8481 97 / 4119 16 / 2368 25 / 899

Vendor III 126 / 8788 277 / 4059 15 / 1204 40 / 1092

Vendor IV 746 / 1833 N/Ab 2 / 1077 N/Ab

Vendor V 3366 / 8975 2550 / 5970 8 / 3561 50 / 891

Vendor VI 0 / 7366 0 / 6337 0 / 7778 0 / 994

a.Device repeatedly crashed during test run, invalidating results.

b.Could not be configured for TLS inspection, did not terminate the attack.

TABLE III. MOST COMMON WORKING SINGLE EVASIONS

Evasion name Protocol Symbol Description

tcp_paws TCP P TCP PAWS elimination

tcp_chaff TCP C TCP chaff packets

tls_seg TLS T TLS record layer
segmentation

http_request_method HTTP H Nonstandard HTTP request
method

The evasions are performed on different protocol layers. It
can be seen that an evasion vulnerability on a lower protocol
layer like TCP will prevent traffic inspection on higher protocol
layers. For example, the TCP PAWS evasion can be used to
evade inspection of both HTTP and MSRPC based attacks.

Some of the tested devices implement TLS inspection as a
Man-In-The-Middle (MITM) where the device acts as a TLS
server for the connection client and a TLS client for the server.
We speculate that this is the reason why Vendor II is vulnerable
to the TCP PAWS evasion on HTTP and Conficker attacks, but
not on HTTPS and Heartbleed. In the latter attacks a MITM
device is the TCP connection endpoint, so there can be no
ambiguity between the inspected traffic and the endpoints
interpretation of it.

V. CONCLUSIONS

We demonstrate that our automated method of finding
evasion vulnerabilities can be used to rapidly find working
evasions against modern up-to-date NGFW and IPS products.

The results also point out that low-level evasions are often
payload independent. The fact that TCP level evasions are
working in 2017 despite being known since 1998 [6] is a cause
for concern. The authors speculate that the reason may be as
simple as performance optimization based on dedicated
networking hardware or memory consumption optimization.

Automated testing of traffic inspection should be used for
tuning traffic inspection policies. An inspection policy could be
tuned so that required normal traffic passes but automated
attacks are stopped. This would provide some validation that
network traffic is inspected as intended, with no required
signatures or configuration options missing.

TABLE IV. WORKING SINGLE EVASIONS

Vendor HTTP HTTPS Conficker Heartbleed

Vendor I H

Vendor II P, C T, H P T

Vendor III P, H P, C, T, H P P, C, T

Vendor IV P, C, H P, C, T, H C P, C, T

Vendor V P, C, T, H P, C, H T

Vendor VI

REFERENCES

[1] Wikipedia contributors, "Fuzzing," Wikipedia, The Free Encyclopedia.
[Online]. Available: https://en.wikipedia.org/w/index.php?
title=Fuzzing&oldid=806227686 [Accessed November 20, 2017].

[2] R. McNally, K. Yiu, D. Grove and D. Garhardy, “Fuzzing: The state of the
art”.

[3] IETF, “Hypertext Transfer Protocol – HTTP/1.1”, IETF, RFC2616, 1999.

[4] IETF, “Transmission Control Protocol,” IETF, RFC793,1981.

[5] IETF, “Internet Protocol,” RFC791, 1981.

[6] T. Ptacek and T. Newsham, “Insertion, Evasion and Denial of Service;
Eluding Network Intrusion Detection,” Secure Networks Inc., 1998.

[7] Horizon, “Defeating Sniffers and Intrusion Detection Systems,” Phrack
Magazine, vol. 8, no. 54, 1998.

[8] “NIDS Evasion Method named "SeolMa",” Phrack, vol. 0x0b, no. 0x39,
2001.

[9] R. F. Puppy, “A look at whisker's anti-IDS tactics,” 1999. [Online].
Available: http://www.ussrback.com/docs/papers/IDS/whiskerids.html.
[Accessed: November 20, 2017].

[10] D. J. Roelker, “HTTP IDS Evasions Revisited,” 2004. [Online].
Available: https://www.defcon.org/images/defcon-11/dc-11-presentations/dc-
11-Roelker/dc-11-roelker-paper.pdf [Accessed: November 20, 2017].

[11] B. Caswell and H. D. Moore, “Thermoptic Camouflage: Total IDS
Evasion,” in Blackhat, 2006.

[12] O. Niemi and A. Levomäki, “Evading Deep Inspection for Fun and
Shell,” in Blackhat, 2013.

[13] Steffen Ullrich, “HTTP Evader”, 2015. [Online]. Available:
https://noxxi.de/research/http-evader.html. [Accessed: November 20, 2017].

[14] A. Gorton and T. Champion, “Combining Evasion Techniques to Avoid
Network Intrusion Detection Systems,” Skaion, 2004.

http://www.ussrback.com/docs/papers/IDS/whiskerids.html
https://noxxi.de/research/http-evader.html
https://www.defcon.org/images/defcon-11/dc-11-presentations/dc-11-Roelker/dc-11-roelker-paper.pdf
https://www.defcon.org/images/defcon-11/dc-11-presentations/dc-11-Roelker/dc-11-roelker-paper.pdf

	I. Introduction
	II. Protocol fuzzing
	III. Test methodology
	A. Evader
	B. Mongbat

	IV. Results
	V. Conclusions
	References

