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About Me

• Former Senior Security Researcher @ Immunity Inc
• Vulnerability discovery and exploit development

• Program analysis research, mostly focused on symbolic execution 

• Former Founder + Director of Persistence Labs
• Tool development for reverse engineering and binary analysis

• Currently a PhD candidate @ University of Oxford 
• Automation of exploitation for heap-related vulnerabilities
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Introduction
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Exploit Development Process
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Exploit Development Process
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Exploitation is Programming

• Utilising the program’s ‘standard’ API as well as an API constructed 
from vulnerabilities in order to manipulate the program’s state

• API constructed from vulnerabilities often referred to as ‘primitives’
• Read, write or execute

• Utilise a vulnerability to provide the exploit developer with some controlled 
capability, e.g. write four arbitrary bytes at an arbitrary address

• Used as the building blocks of an exploit, along with the standard API

• Primitives are usually constructed by manipulating the system into a 
particular state, then triggering a vulnerability
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Constructing Primitives

typedef struct {

char *name;

…

} User;

void rename(User *u, char *n) 

{

…

strcpy(u->name, n);

}

void display(User *u) {

print(u->name);

…

}

• User objects are dynamically 
allocated and contain a pointer to a 
data buffer, which is also 
dynamically allocated (i.e. both are 
on the heap)

• rename has an overflow out of 
the u->name buffer

• display accesses the name field 
of the provided User object and 
prints whatever is there back to the 
user of the API

• How do we build a ‘read’ primitive 
from this?
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Constructing Primitives 

• What happens if we just trigger the vulnerability?
• Entirely depends on the heap state. 

• Whatever is after the User->name buffer will be accessed/corrupted

• Could be an unmapped paged, allocator metadata, any dynamically allocated 
application data
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Constructing Primitives
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Unmapped

Free

In use

Goal: Position the name buffer immediately prior to 
the User object, such that when the vulnerability is 
triggered the name pointer in the User object is 
corrupted



Constructing Primitives
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Constructing Primitives
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Constructing Primitives
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Constructing Primitives
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Constructing Primitives
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Constructing Primitives
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Constructing Primitives
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Constructing Primitives
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rename(…, ‘ABCDABCDABCDABCD\x41\x41\x41\x41’)

Results in User->name = 0x41414141

display(…)

Instead of printing the contents of the ‘name’ buffer, prints the data at 0x41414141



Constructing Primitives

• Final primitive might look as on 
the right

• Function which the exploit 
developer can call whenever 
they need to read data at a 
particular address from the 
target process

• Reusable and predictable

read_data(addr) {

manipulate_heap();    

allocate_user();

trigger_vuln(addr);

call_display();

}
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Constructing Primitives

• For heap-based overflows constructing a viable primitive requires one 
to perform heap layout manipulation to ensure the right thing is 
corrupted

• Usually a labour intensive, manual task
• Analyst needs to understand the allocator and the manner in which the 

application uses it

• Then, given a starting state, needs to utilise the application’s API to carefully 
craft a heap state

• Automating this is what we will focus on today
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Reality …
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Problem Overview
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Physical Heap Layout Optimisation (HLO)

• Source buffer, S
• The buffer from which the overflow or underflow originates once the 

vulnerability is triggered

• Destination buffer, D
• The buffer which we wish to corrupt once the vulnerability is triggered

• Heap Layout Optimisation
• Minimise the objective function abs(S – D)

• The search for a sequence of inputs to a program such that when a 
vulnerability is triggered the minimal amount of collateral data is corrupted 
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Problem Setting & Restrictions

• Deterministic setting
• The allocator’s behaviour must be deterministic

• The attacker must be able to determine the starting state of the heap, or 
(re)set it to a known state

• There are no other actors interacting with the allocator, or the processes 
address space, at the same time (or if there is then their actions are 
deterministic)

• Physical layout, not logical 
• We are solving for relative ordering over addresses in memory, not allocation 

order
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To Solve

• Automatically discover how to interact with the allocator via the 
application’s API
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To Solve

• Automatically discover how to interact with the allocator via the 
application’s API

• Automatically discover how to allocate ‘interesting’ data on the heap 
via the application’s API, i.e. figure out what to use as the destination 
buffer
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To Solve

• Automatically discover how to interact with the allocator via the 
application’s API

• Automatically discover how to allocate ‘interesting’ data on the heap 
via the application’s API, i.e. figure out what to use as the destination 
buffer

• Automatically discover how to place the source buffer adjacent to the 
destination buffer such that when the vulnerability is triggered the 
data of interest in the destination buffer is corrupted
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Challenges

• Allocators do not provide an API which allows one to specify relative 
positioning
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Challenges

• Allocators do not provide an API which allows one to specify relative 
positioning

• Allocators are designed to optimise different measures of success and 
thus utilise a diverse array of data structures and algorithms
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Challenges

• Allocators do not provide an API which allows one to specify relative 
positioning

• Allocators are designed to optimise different measures of success and 
thus utilise a diverse array of data structures and algorithms

• Applications do not typically expose a direct interface with the 
allocator they use
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Challenges

• Allocators do not provide an API which allows one to specify relative 
positioning

• Allocators are designed to optimise different measures of success and 
thus utilise a diverse array of data structures and algorithms

• Applications do not typically expose a direct interface with the 
allocator they use

• Interaction sequences which can be triggered via the application’s API 
are often limited in various ways and ‘noisy’
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Challenges

• Allocators do not provide an API which allows one to specify relative 
positioning

• Allocators are designed to optimise different measures of success and 
thus utilise a diverse array of data structures and algorithms

• Applications do not typically expose a direct interface with the 
allocator they use

• Interaction sequences which can be triggered via the application’s API 
are often limited in various ways and ‘noisy’

• The search space across all interaction sequences is usually 
astronomically large  
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Heap Allocation Policies and 
Mechanisms
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Heap Allocation Mechanisms & Policies

• “The order and contiguity of storage allocated by successive calls to 
the calloc, malloc, and realloc functions is unspecified” – ANSI C 
specification

• Location of a buffer used to service an allocation request is a product 
of the requested size, the current heap state and the data structures 
and algorithms used in the allocator
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Heap Allocation Mechanisms and Policies

• Significant in determining the complexity of solutions
• Splitting policy

• Coalescing policy

• Usage, or not, of segregated storage

• Usage, or not, of non-determinism

• Treatment of larger allocations

• Less significant
• Fits algorithm

• Usage, or not, of segregated free lists
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Segregated Storage

• Large contiguous areas of memory cut into chunks of the same size
• Never split

• Never internally coalesced

• Only externally coalesced as a whole

• Except for the first and last chunks, all other chunks of that size can 
only be adjacent to chunks of the same size
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Non-Segregated Storage
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Segregated Storage
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An Algorithm for Heap Layout 
Manipulation
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An Algorithmic Approach

• As mentioned, the following are usually performed manually
1. Figure out how to allocate something interesting on the heap to corrupt

2. Figure out how to interact with the heap via the allocator’s API

3. Given the starting state, utilise the program’s API to manipulate the heap to 
place the source and destination buffers adjacent to one another

• Working in reverse
• If we know how to interact with the heap, can we design a search algorithm 

which can minimise the objective function abs(S – D)
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Design Considerations

• Ideally should be black box
• Don’t want to have to customise for each allocator or allocator category

• Interaction at the ANSI C memory management API level (malloc, free, 
realloc, calloc)

• Outputs/observed behaviour in the form of return values from the above 
functions, and OS-generic things like mapped pages
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Design Considerations

• Random search may be feasible
• Despite the astronomical search space if we consider all permutations of API 

calls and arguments the solution space has a lot of symmetry

• We only care about relative positioning for the source and destination, not 
absolute positioning

• We don’t care about the positioning of holes at all, only their existence
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Black Box Random Search
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Black Box Random Search
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Automatic HLO on Synthetic 
Problems
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Experimental Setup

• “Given a source buffer with size X, and a destination buffer with size Y, 
can we generate a sequence of inputs which places the source and 
destination immediately adjacent”

• Source and destination sizes from the cross product of 0, 64, 512, 
4096, 16384, 65536

• Each source/destination combination run from 4 different starting 
heap configurations
• Captured the initial heap states of Python, Ruby, and both PHP’s own heap 

and the system heap after PHP’s startup
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Noise

• Often no way to trigger a single allocator interaction via the program’s 
API
• E.g. when a string is created the target might malloc a size we control but also 

allocate one or more other related objects

• These noisy interactions can impact the heap layout negatively and 
make it harder to achieve our desired layout

• To mimic this challenge we run three versions of each experiment 
with a varying number of noisy allocations taking place between the 
allocation of the source and the allocation of the destination
• No noise, one noisy allocation and four noisy allocations
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Experiments
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• ‘Und’ – Underflow, ‘Ovf’ – Overflow
• % < 4096 – Percentage of experiments ending with source and destination 

within a page of each other
• % Optimal – Percentage of experiments ending with source and destination 

direct adjacent
• Error – Normalized error. Ratio of # of bytes between source and 

destination to the larger of the source or destination
• Max 500,000 instances per experiment (avg. < 5 mins of run time with 40 

concurrent workers)



Experiments 
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• Each experiment consists of challenging the search to find a series of 
allocator interactions which place the source and destination adjacent

• There are 36 different source and destination size permutations and 4 
different heap starting states

• No segregated storage and no noise, almost 100% success in all cases 
(source and destination directly adjacent). 

• A single sub-optimal result (still ends with source within 32 bytes of 
destination however)



Experiments
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• Segregated storage clearly more difficult to deal with
• Percentage of optimal results drops, but is still above 80%
• Average error in sub-optimal cases is low – just over 1x, e.g. off by a single 

allocation with size equal to the source/destintation



Experiments
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• Adding a single noisy allocation reduces the number of optimal results 
significantly, for both segregated storage and otherwise
• Worst - dlmalloc, underflow – 97% to 22%
• Best – tcmalloc, overflow – 81% to 58%
• Overall, 44% optimal without segregated storage, 51% optimal with it

• Despite the drop in optimal results, the average error remains low
• .52 without segregated storage, 1.3 with it



Experiments
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• Further increasing the noise results in continued decrease in the number of 
optimal results and an increase in the average error

• Without segregated storage 33% optimal, avg. error 1.6
• With segregated storage 38% optimal, avg. error 1.94



Experimental Summary

• No noise and without segregated storage, near perfect results (one 
suboptimal result but with a very low error)

• No noise and segregated storage, optimal results in more than 80% of 
cases, average error around 1x

• Increasing the amount of noise does have a significant impact 
• With 4 noisy allocations then the number of optimal results drops into the 30-

40% region

• However, this is with < 5mins of analysis time per experiment on average

• Overall, black box random search seems promising for a significant 
number of problem instances!
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Automatic HLO for Real Programs
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Automatic HLO for Real Programs

• So the random search at least looks promising. What do we need to 
do it for a real target?
• Knowledge of how to trigger different allocator interaction sequences via the 

target’s API

• (Optionally) A means to discover how to allocate ‘interesting’ target data on 
the heap

• An implementation of the search
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Automatic HLO for Real Programs

• To evaluate this idea we choose the PHP language interpreter

• Large, modern application written in C with a non-trivial interface for 
manipulating its internal state (programs written in the PHP language)

• Our tool will therefore be writing PHP programs for us which perform 
heap layout manipulation
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Architecture
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Why a ‘Skeleton’?

• Output of the system is a PHP program which guarantees the relative 
positioning of the source and destination and triggers the 
vulnerability

• Does not guarantee that the vulnerability will corrupt the destination 
however
• E.g. if the system says the destination is 8 bytes after the source it is up to the 

user to ensure that the vulnerability is triggered in such a way that 8 + X bytes 
of data after the source are corrupted

• Does not discover how to use the corrupted data
• The system guarantees positioning, the vulnerability trigger provides the 

corruption, it is up to the user to figure out how to trigger the use of the 
corrupted data in order to complete the primitive
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Identifying Available Interaction Sequences

• We want to synthesise fragments of PHP code which trigger unique 
interaction sequences with its allocator

• Correlating PHP code with the interaction sequences which are 
triggered is straightforward

• Automatically synthesising valid PHP which triggers useful interaction 
sequences is a bit more involved
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Synthesising PHP Fragments

• Effectively performed by fuzzing, tuned towards discovering 
interaction sequences rather than bugs
• Leverages prior work “Ghosts of Christmas Past: Fuzzing Language 

Interpreters using Regression Tests” from Infiltrate ’14

• Basic idea is to deconstruct PHP’s regression tests into small, valid, 
chunks of PHP code. Then utilise mutation and recombination to 
produce new fragments with new behaviours.
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Fuzzing for Allocator Interactions

• Mutations are intended to produce new interaction sequences not crashes
• E.g. fuzzers will typically replace integers with values 0, 232 – 1, 231 – 1 intended to hit 

edge cases. Instead we use integer values and string lengths that have a relation to 
allocation sizes we have not previously seen.

• Our measure of fitness is not based on code coverage but instead based on 
whether or not a new allocator interaction sequence is produced

• We discard any fragments that result in the interpreter exiting with an 
error

• We favour the shortest, least complex fragments, with priority being given 
to fragments with a single function call
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Fragmentation

<?php

$image = imagecreatetruecolor(180, 30);

imagestring($image, 5, 10, 8, ‘Text', 0x00ff00);

$gaussian = array(

array(1.0, 2.0, 1.0),

array(2.0, 4.0, 2.0)

);

var_dump(imageconvolution(
$image, $gaussian, 16, 0));

?>
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Fragmentation

<?php

$image = imagecreatetruecolor(180, 30);

imagestring($image, 5, 10, 8, ‘Text', 0x00ff00);

$gaussian = array(

array(1.0, 2.0, 1.0),

array(2.0, 4.0, 2.0)

);

var_dump(imageconvolution(
$image, $gaussian, 16, 0));

?>
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imagecreatetruecolor(180, 30)
imagestring($image, 5, 10, 8, ‘Text’, 0x00ff00)
array(array(1.0, 2.0, 1.0), array(2.0, 4.0, 2.0))
array(1.0, 2.0, 1.0)
array(2.0, 4.0, 2.0)
var_dump(imageconvolution($image, $gaussian, 16, 0))



Fragmentation

<?php

$image = imagecreatetruecolor(180, 30);

imagestring($image, 5, 10, 8, ‘Text', 0x00ff00);

$gaussian = array(

array(1.0, 2.0, 1.0),

array(2.0, 4.0, 2.0)

);

var_dump(imageconvolution(
$image, $gaussian, 16, 0));

?>

@seanhn / sean@vertex.re 63

imagecreatetruecolor(180, 30)
imagestring($image, 5, 10, 8, ‘Text’, 0x00ff00)
array(array(1.0, 2.0, 1.0), array(2.0, 4.0, 2.0))
array(1.0, 2.0, 1.0)
array(2.0, 4.0, 2.0)
var_dump(imageconvolution($image, $gaussian, 16, 0))

imagecreatetruecolor(I, I)
imagestring(R, I, I, I, T, I)
array(F, F, F)
array(R, R)
var_dump(R)
imageconvolution(R, R, I, I)



Synthesis
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imagecreatetruecolor(I, I)
imagestring(R, I, I, I, T, I)
array(F, F, F)
array(R, R)
var_dump(R)
imageconvolution(R, R, I, I)



Synthesis
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imagecreatetruecolor(I, I)
imagestring(R, I, I, I, T, I)
array(F, F, F)
array(R, R)
var_dump(R)
imageconvolution(R, R, I, I)

imagecreatetruecolor(1, 1)
imagecreatetruecolor(1, 2)
imagecreatetruecolor(1, 3)
imagecreatetruecolor(1, 4)
…



Synthesis
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imagecreatetruecolor(I, I)
imagestring(R, I, I, I, T, I)
array(F, F, F)
array(R, R)
var_dump(R)
imageconvolution(R, R, I, I)

imagecreatetruecolor(1, 1)
imagecreatetruecolor(1, 2)
imagecreatetruecolor(1, 3)
imagecreatetruecolor(1, 4)
…

imageconvolution(array(1.0, 2.0, 1.0), imagecreatetruecolor(180, 30), 16, 0)
imageconvolution(array(2.0, 4.0, 2.0), imagecreatetruecolor(180, 30), 16, 0)
imageconvolution(imagecreatetruecolor(180, 30), imagecreatetruecolor(180, 30), 16, 0)
…



Synthesising PHP Fragments

• From PHP’s 12k or so tests we produce 300 standalone fragments 
containing a single function call

• 15 minutes or so of fuzzing (80 cores) produces over 10k fragments 
which trigger unique allocator interaction sequences

• Varying in length from a single allocator interaction to thousands of 
allocator interactions per fragment
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Black Box Random Search for PHP

• The CONSTRUCT function now pieces together fragments of PHP

• We augment PHP with functionality which allows us to query the 
distance between the source and destination pointers, so we can get 
a value for the objective function

• SEARCH is a search over the space of PHP programs for one which 
minimises the distance between the source and destination
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Finding Interesting Corruption Targets
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• Instead of expecting the user to tell us how to allocate the corruption 
target we can try to automate the process

• What counts as ‘interesting’?
• Program specific things might include permission bits, or flags indicating what 

features of the target are enabled in the current context

• We will focus on something more general however – pointers!

• Goal of the system is then to produce an input such that a specific 
pointer is corrupted by the vulnerability
• When used, offers the exploit developer a read/write/execute primitive



Finding Interesting Corruption Targets
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• As before, we take as input the fragments extracted from the PHP 
tests

• Execute each in isolation and record the addresses of all buffers 
allocated which survive beyond the end of the fragment

• For each allocated buffer scan over its contents and see if anything 
looks like it might be a pointer based on heuristics
• Alignment

• Value

• Final filter based on mapped addresses



Vulnerability Templates

• We now have a means to search over heap configurations as well as 
identify interest corruption targets
• Finally, we need a way for the user to provide a vulnerability trigger

• Each vulnerability is likely to require different setup in order to trigger, 
which we don’t want to hardcode

• Instead, we allow users to specify a vulnerability template which will 
be completed with the code required to perform the heap 
manipulation and allocate the target
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Vulnerability Templates
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Vulnerability Templates
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Architecture
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Architecture
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Vulnerability -> Targeted Corruption
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Evaluation

• User provides as input a vulnerability template 

• User receives as output a PHP program which places a destination 
object on the heap, containing a pointer to corrupt, manipulates the 
heap to get the corruption source as close as possible to it, and then 
triggers the vulnerability

• Parallel analysis on 40 cores
• Only shared info is the minimum value achieved for the objective function

• Approx. 12k instances evaluated per second 

• Max of 12 hours analysis time (approx. max of ½ billion instances evaluated) 
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Evaluation

• Vulnerabilities are the first three finite, linear OOB access bugs that were encountered in 
the PHP bug tracker
• Obviously not exhaustive proof of feasibility, but no ‘hard’ cases with worse results purposefully 

excluded =) 

• Noise – The number of allocations other than the allocation of the source buffer which 
are triggered by the call to the function which allocates the source

• Initial Dist. – Distance from source to destination when the original vulnerability trigger is 
run

• Final Dist. – Distance from source to destination after the heap layout is crafted 
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Evaluation

• 2/3 cases end with an optimal layout (source and destination immediately 
adjacent, no collateral damage when the vulnerability is triggered), despite PHP 7 
using segregated storage and one of those cases having significant noise

• Case with error of 16 is due to two noisy 8 byte allocations being placed between 
the source and destination which the search fails to discover how to place 
elsewhere

• Noise results in an increase in the amount of time taken to find the best result
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Conclusion
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Takeaways

• Black box random search is an effective mechanism for automatic 
heap layout manipulation

• Segregated storage was the most significant allocator policy in terms 
of the difficulty of problem instances

• As the noise in interaction sequences increases, so does the difficulty 
of the problem
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Future Work

• Improving the search algorithm
• Quite a few synthetic instances which are unsolved via random search 

• Many are solved when provided more time, but many are not

• Lifting the determinism restriction
• In particular, the ability to (re)set the heap to a known state, or discover its 

current state, is significant

• Most likely will necessitate associating a probability of success with solutions

• Porting the search to other real-world targets
• Is it generally easy to repurpose fuzzers as done for PHP? 

• Media players, JS engines, document viewers 
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Thanks / Questions?

Paper & Code: https://sean.heelan.io/research
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