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1. Introduction

Over the past decade a number of papers [5], [7], [8], [10] have approached the problem of Automated Exploit Generation
(AEG) for stack-based buffer overflows. These papers describe algorithms for automatically producing a control-flow
hijacking exploit, under the assumption that an input is provided, or discovered, which results in the corruption of an
instruction pointer stored on the stack. However, stack-based buffer overflows are just one type of vulnerability found in
software written in C and C++. Out-of-bounds (OOB) memory access from heap buffers is a common flaw in such software
and, up to now, has received little attention in terms of automation. Heap-based memory corruption differs significantly
from stack-based memory corruption in that with the latter the data which the attacker may corrupt is limited to whatever
is on the stack, and thus can be varied by changing the execution path used to trigger the vulnerability. In contrast, for
heap-based corruption it is the physical layout of dynamically allocated buffers in memory which determines what gets
corrupted. Thus, the attacker must reason about heap layout in order to automatically construct an exploit; it is this problem
which we address.

To leverage OOB memory access as part of an exploit, an attacker will usually want to position some dynamically
allocated buffer D, the OOB access destination, relative to some other dynamically allocated buffer S, the OOB access
source.1 The desired positioning will depend on whether the flaw to be leveraged is an overflow or an underflow, and the
control the attacker has over the offset from S that will be accessed. The key point is that the attacker wants to position S
and D so that, when the vulnerability is triggered, D is corrupted with the least collateral corruption of other heap-allocated
data, and without triggering a page fault. We say a heap layout is optimal if it minimises the distance between the source
and destination.

For example, suppose S is a buffer of size x and the flaw is an overflow that writes an attacker-controlled sequence of
bytes starting at S and finishing at S + x+ 128. Furthermore, suppose D is a buffer that contains a function pointer p at
offset 0. In order to corrupt p, an attacker must find a way to transition the heap layout into a state such that D is allocated
at an address for which D − S + x ≤ 128.

Allocators do not typically expose an API to allow a user to control relative positioning of allocated memory regions.
In fact, the ANSI C specification [2] explicitly states

The order and contiguity of storage allocated by successive calls to the calloc, malloc, and realloc functions is
unspecified.

The second major difficulty is that applications that use dynamic memory allocation typically do not expose an API
allowing an attacker to directly interact with the allocator in an arbitrary manner. An exploit developer must first discover
the allocator interactions that can be indirectly triggered via the application’s API, and then leverage these to solve the
positioning problem. In practice, both problems are usually solved manually or with minimal partial automation, and this
requires expert knowledge of the internals of both the heap allocator and the application’s use of it.

In this technical report2, we first focus on the positioning problem under the assumption that one knows the interactions
with the allocator that can be triggered. There is no existing analysis of the complexity of this problem, and no prior
empirical work indicating the difficulty of solving real instances automatically. To establish a baseline approach, therefore,
we present a pseudo-random black box algorithm that searches for an optimal layout. This has the merit of being practically
and theoretically straightforward, and provides a comparison point for future work on more sophisticated solutions. We run
this algorithm on a set of carefully-designed synthetic benchmarks, in order to provide an analysis of the factors that are
most significant in determining the difficulty of individual instances.

We then present a proof-of-concept system for fully automatic heap layout optimisation (HLO) on the PHP language
interpreter. This system first maps the application’s interface to allocator-interaction sequences. It then uses the above
search algorithm using the API exposed by the application. We evaluate the system on three vulnerabilities in PHP, showing
that—despite its simplicity—the search algorithm can solve real-world instances3 .

1. Henceforth, when we refer to the ‘source’ and ‘destination’ we mean the source or destination buffer of the overflow or underflow.
2. This document is a technical report where we have aimed to present the core techniques and evaluation in a relatively succinct manner. The associated

research paper is under review and will be available at https://sean.heelan.io/research/ under ‘Heap Layout Optimisation for Exploitation’.
3. For the source code to the evaluation systems see ‘Heap Layout Optimisation for Exploitation’ at https://sean.heelan.io/research/.

https://sean.heelan.io/research/
https://sean.heelan.io/research/


Figure 1. Splitting a block of size 128 on a request for an allocation of size 32 followed by an allocation of size 16. Allocations can be carved from
the beginning or the end of free blocks, resulting in two different heap layouts, labelled as ‘A’ and ‘B’. In outcome ‘A’ the allocation of size 16 ends up
after the allocation of size 32 as allocations are carved from the start of the free area, while in the outcome labelled ‘B’ the allocation of size 16 ends up
before the allocation of size 32 as allocations are carved from the end of the free area.

Figure 2. Hole creation via free. The outcome labelled ‘A’ results from an allocator with immediate coalescing, where a hole of size 256 is produced from
two frees of size 128. The outcome labelled ‘B’ results from an allocator with delayed coalescing, where two holes of size 128 are produced from two
frees of size 128.

2. Heap Allocation

Heap allocators are libraries responsible for servicing dynamic requests for memory allocation and typically expose
an interface that complies with the ANSI C [2] specification for the functions malloc, free, realloc and calloc.
As mentioned in section 1, the specification imposes no restrictions on ‘the order and contiguity of storage allocated by
successive calls’ to these functions. Thus, the developers of an allocator can effectively choose any combination of data
structures and algorithms in their implementation to achieve the best results across whatever measure of success they choose,
be it minimising fragmentation, maximising speed, increasing security, or some other metric entirely. In the following, we
elaborate on those design choices which have the most impact when it comes to manipulating the heap into a desired state,
or which are otherwise significant in differentiating allocators.

2.1. Relevant Allocator Policies and Mechanisms

2.1.1. Splitting. Allocators may or may not split blocks of memory to fulfil a request for a smaller block. When blocks
are split, the area to use for the allocation may be carved from either the beginning or the end of the existing block.

For example, both dlmalloc and avrlibc will split blocks, but the former carves from the front, while the latter
carves from the end. If carving takes place from the front then there is space to place another block after the returned block,
while if carving takes place from the end then there is space to place another block before the returned block. In contrast
with both of these, tcmalloc only splits blocks above 32KB in size.

Figure 1 shows two possible state transitions for the heap state, depending on what form of splitting is used. In the
first outcome, labelled ‘A’, the block of size 32 ends up before the block of size 16, while in the second outcome, labelled
‘B’, outcome the order is reversed. This is significant if one requires a particular ordering for the blocks resulting from two
allocations.

2.1.2. Coalescing. When blocks are freed, and have other free blocks which are immediately adjacent, they may be coalesced
into a single, larger, free block. Allocators may or may not do this, or they may utilise an intermediate approach where
coalescing is delayed, but will eventually happen if some event occurs, such as the number of uncoalesced blocks exceeding
a threshold. If immediate coalescing is used, such as in modern dlmalloc and avrlibc, then it is not possible to have
two free blocks next to each other. Should this occur, they will be immediately coalesced into a larger free block. However,
if delayed coalescing is used, such as in early versions of dlmalloc and some versions of the Windows userland [18]
and kernel heaps [16], then it is possible to have multiple free chunks adjacent to each other.

Figure 2 shows two possible state transitions for the heap state, depending on what form of coalescing is used. If the
aim is to create holes of size 128 then triggering the second free is either useful or counterproductive, depending on whether
or not delayed coalescing is in use.



Figure 3. Heap state evolution for dlmalloc. The x axis represent time, or more accurately ’ticks’ caused by new allocator interactions, while the y axis
represents memory addresses from lowest to highest. Green rectangles represent memory regions that are currently allocated. Grey rectangles represent
memory regions that were allocated previously but now are free. The height of a rectangle indicates how large the memory region is, while its width
represents how long it was allocated for. A light green background represents an area of memory being mapped, while a white background, as can be
seen in figure 4, represents an area of unmapped memory.

2.1.3. Fits. When scanning for a suitably sized free block to utilise for an allocation one has several options on where
to start the search and on what condition to end it. The most common approach is best fit in which the free block with
size closest to that of the requested allocation size is guaranteed to be found, split if necessary, and returned. Alternatives
include first fit and next fit. In first fit the first block encountered during the search that is large enough to fulfil the requested
allocation is selected, split if necessary, and returned. In next fit the next search for a free block continues in the free list
from the last index reached by the previous search. The fit policy in use is relevant to HLO in that it influences which
block is selected for a particular size.

2.1.4. Segregated Free Lists. Some allocators, such as avrlibc, utilise a single free-list in which all free chunks are
stored. While simple to implement, this approach has a significant downside in that if one wishes to utilise a best fit search
then the entire list may need to be scanned in order to determine which block to use for an allocation. An alternative
approach, as found in modern dlmalloc, is segregated free lists, in which multiple free lists are used and blocks of the
same, or similar, size are kept in the same list. With segregated free lists one can efficiently check to see if a free block
of a particular size exists. For the purposes of HLO, a single free list or multiple free lists do not significantly impact the
complexity of the problem, or the approach one takes.

2.1.5. Segregated Storage. Segregated storage is a mechanism whereby contiguous areas of memory are set aside for the
allocation of blocks of a single size. For example, on the first request for a block of size 32 the allocator might obtain one
or more pages from the operating system and subdivide those pages into blocks of size 32. The blocks will then not be
further split or coalesced.

Whether segregated storage is in use or not has a significant impact on how one approaches HLO. The impact this
single design decision can have on heap layout is highlighted in the contrast between figures 3 and 4. Both figures show
the heap state after an identical series of approximately 100 allocator interactions consisting of allocations of three different
sizes and a number of frees. Figure 3 shows dlmalloc, which does not use segregated storage, and thus we can see
that allocations of different sizes end up alternating in memory. Figure 4 shows tcmalloc, an allocator which does use
segregated storage, resulting in three distinct memory regions, each of which contains allocations of a single size.

2.1.6. Non-Determinism. While most allocators are internally deterministic in their operations, some allocators utilise non-
determinism in allocation as part of an effort to make exploitation more difficult. This differs from traditional Address Space
Layout Randomisation (ASLR) which randomises the base address of the heap, to prevent an attacker knowing where it
is located in memory. Non-determinism in the allocation process works alongside ASLR to add randomisation to the state
transitions of the allocator itself. This is problematic for HLO as it means that over multiple runs of a program from the
same starting state, the same sequence of interactions may produce a different layout each time. Although not common,
this behaviour can be found in at least two mainstream allocators, namely the Windows 10 the Low Fragmentation Heap
(LFH) [22] and jemalloc. In this paper we do not address the problem of non-deterministic allocator behaviour.

2.1.7. Treatment of Larger Allocations. Most allocators utilise different algorithms and data structures to handle allocations
of sizes that they consider to be small versus those they consider to be large. For example, an allocator might use segregated
free lists for allocations up to a certain size and simply use mmap and munmap to manage allocations above that size.
The threshold above which an allocator considers an allocation to be large varies by allocator, and also sometimes by the



Figure 4. Heap state evolution for tcmalloc. The axes are as in figure 3. As can be seen, the layout resulting from the same series of allocations is
drastically different between the two allocators. In figure 3 the allocations are grouped together with most successive allocations simply being placed at
the next highest free address. In contrast, tcmalloc results in these allocations being spread out over a much larger area of memory (resulting in the
’zoomed out’ viewpoint). 2 .

operating system and architecture on which that allocator is running. Depending on the algorithms used, the desired layout
and the starting heap state, this can either make HLO easier or more difficult.

2.2. Allocators

For experimentation and evaluation we selected a number of real world allocators, implementing a variety of different
strategies and policies. We will refer to dlmalloc and avrlibc as free list based and tcmalloc and PHP as segregated
storage based. An overview of the allocators selected can be found in the appendices, in Table 4, but their relevant nuances
are as follows:

avrlibc 2.0. An allocator aimed at embedded systems [6] which utilises best fit search over a single free list. The maximum
heap size and its location are fixed at compile time. If an existing free chunk of sufficient size does not exist then a new
chunk is carved from the remaining heap space.

dlmalloc 2.8.6. A general purpose allocator [15] utilising best fit search over segregated free lists to store blocks with size
less than 256KB. Free blocks less than 256 bytes in size are organised in linked lists, while those above 256 bytes, but
less than 256KB, are kept in tries. Allocation requests for sizes greater than 256KB use mmap. The GNU libc allocator,
ptmalloc, is based on dlmalloc.

tcmalloc 2.5.1. Intended as a more efficient replacement for dlmalloc and its derivatives, especially in multithreaded
environments [9]. Sizes above 32KB are allocated using best-fit search from a linked-list of free pages, and splitting and
coalescing may take place. Segregated storage is used for sizes below 32KB.

PHP 7. The allocator for version 7 of the PHP language interpreter. Sizes above 2MB in size are allocated via mmap.
Sizes below 2MB but above 3/4s of the page size are rounded to the nearest multiple of the page size and are allocated on
page boundaries using best-fit over a linked list of free pages. Sizes that are less than 3/4s of a page are rounded up to the
next largest predefined small size, of which there are 30 (e.g. 8, 16, 24, 32, ..., 3072), and are allocated from runs using
segregated storage.

3. The Heap Layout Optimisation Problem in Deterministic Settings

Allocators offer no guarantees on the positioning of allocations, nor any API to request a specific layout. Thus, given
a starting state for the heap, one must utilise calls to malloc, calloc, free and realloc to manipulate it into the
desired end state. Due to the vast array of data structures and algorithms which could be in use, it is not possible to predict
the effect on the heap layout of a sequence of interactions without a model of the allocator implementation. Furthermore,
any two allocators may produce drastically different heap states given the same series of allocation and free requests, as
demonstrated in the difference between figures 3 and 4.

The most common approach to solving the heap layout optimisation problem is manual. An analyst examines the
allocator’s implementation in order to gain an understanding of its internals; then, at run-time, they inspect the state of
its various data structures in order to determine what interactions are necessary in order to manipulate the heap into
the layout that they require. This process is extensively documented in the literature of the hacking and computer security
communities, with a variety of papers on the internals of individual allocators [1], [4], [14], [17], as well as the manipulation



and exploitation of those allocators when embedded in applications [3], [13], [19]. In section 4 we present an algorithm
aimed at addressing this problem in a black-box fashion.

Further complicating the process is the fact that when constructing an exploit one cannot usually directly interact with
the allocator, but instead must utilise the API exposed by the target program to indirectly interact with it. Manipulating the
heap state via the program’s API is often referred to as heap feng shui in the computer security literature [20]. Discovering
the relationship between program-level API calls is a prerequisite for real-world HLO but can be addressed separately, as
we demonstrate in section 5.2.

Finally, the deterministic setting for heap layout optimisation adds three restrictions to the general problem of heap
layout optimisation. They are as follows:

1) The allocator’s behaviour must be deterministic. As mentioned in section 2.2, most allocators are deterministic and
thus this restriction has limited impact in terms of the relevance of our work to real world implementations. This
restriction is necessary as our solution requires that executing a fixed set of allocator interactions from a fixed
starting state always results in the same final heap state.

2) The solution generated in order to achieve a particular layout is paramaterised by the starting state of the heap.
In other words, if the starting state of the heap changes then the solution generated to achieve a particular layout
may no longer be valid. In practice, this means that the attacker must be able to determine the starting state of the
heap, or have a means by which to force the heap into a known state.

3) There are no other actors interacting with the heap at the same time as us, or if there are then their interactions
are deterministic and known, in terms of what the interaction is and when it takes place.

If the above three properties hold then we consider the setting to be deterministic.

4. Automatic Heap Layout Optimisation

In this section we present a pseudo-random black box search algorithm for heap layout optimisation, and two evaluation
frameworks into which we have embedded it to perform heap layout optimisation on both synthetic benchmarks and real
vulnerabilities.

While theoretically and practically straightforward, there are two motivations for using this simple search algorithm.
First, as mentioned in the introduction, there is no existing proof of the complexity class of the heap layout optimisation
problem. Nor does there exist prior work on automated solutions that would provide experimental guidance on the challenges
that an automated search may face. Our initial solution provides a baseline that future, more sophisticated, implementations
can be compared against.

Second, despite the potential size of the problem if measured by the number of possible combinations of available
interactions, there is significant symmetry in the solution space for many problem instances. As our measure of optimality
of a layout is based on the relative positioning of two buffers, we do not care about their absolute location nor their relative
positioning to any other buffers. Similarly, when creating or filling holes to we also do not care about the absolute locations
or adjacency of the holes; we care only that they are created, or filled. In many situations we also do not care about the order
in which holes are filled or created, nor does it matter the means by which a hole is created or filled. It is often possible to
achieve the same layout using significantly different series of interactions with the allocator. Figure 5 illustrates this idea,
showing how two different interaction sequences, resulting in two different layouts, can place the source and destination in
an identical layout relative to each other. Therefore, due to solution space symmetries, we propose that a pseudo-random
black box search could be a feasible solution for large enough number of problem instances as to be worthwhile.

The search algorithm, listed as Algorithm 1, combines interaction sequences4 to produce candidate solutions. Candidates
are continuously created until a solution is discovered which results in an optimal layout, or the search is terminated.
Depending on which of our evaluation systems is in use, the representation of a candidate, as well as the Execute,
AppendAllocSequence, AppendFreeSequence, AppendSrcSequence and AppendDstSequence functions, differ in their
implementation. The differences are explained in sections 4.1 and 4.2.

The algorithm is pseudo-random in the sense that there are two parameters which influence the contents of each candidate:
the maximum number of interaction sequences in a candidate and the ratio of allocations to frees in each candidate. These
are the m and r parameters, respectively, to SEARCH. While one could potentially utilise a completely random search, it
makes sense to guide it away from candidates that are highly unlikely to be useful due to extreme values for m and r.

As the goal was to evaluate our search algorithm across multiple allocator designs and arbitrary starting states, we
avoided further guiding the search. One could envisage a search which constructs candidates with a form specifically aimed
at triggering likely patterns of hole filling and creation. However, as some allocators utilise multiple layout algorithms

4. An interaction sequence is an input to the target which, when processed by the target, results in one or more invocations of the malloc, free,
calloc or realloc functions by the target. For example, an interaction sequence for PHP would be imagecreatetruecolor(1, 1). How the
set of available interaction sequences is constructed for PHP is described in section 4.2.



Algorithm 1 Find Solution Resulting in Optimal Layout
1: function SEARCH(g,m, r)
2: while g 6= 0 do
3: tmpInst = ConstructCandidate(m, r)
4: tmpDist = Execute(tmpInst)
5: if tmpDist < minDist then
6: dist← tmpDist
7: inst← tmpInst
8: end if
9: g ← g − 1

10: end while
11: return inst
12: end function
13: function CONSTRUCTCANDIDATE(m, r)
14: result = NewCandidate()
15: i← random(0,m− 1)
16: while i 6= 0 do
17: if random(1, 100) < r then
18: AppendAllocSequence(result)
19: else
20: AppendFreeSequence(result)
21: end if
22: i← i− 1
23: end while
24: if random(0, 1) = 0 then
25: AppendSrcSequence(result)
26: AppendDstSequence(result)
27: else
28: AppendDstSequence(result)
29: AppendSrcSequence(result)
30: end if
31: return result
32: end function

Figure 5. Two different heap states, resulting from two different interaction sequences, which have the same value according to our measure of optimality.
Assume that the interaction sequence which allocates the overflow source and destination contains three allocations: the source, labelled ‘S’, an intervening
allocation labelled ‘N’, which must be captured, and the destination, labelled ‘D’, all of size 32. In the outcome labelled ‘A’ a hole of size 32 was was
first created to consume N via the allocation of the chunk labelled ‘X’. In the outcome labelled ‘B’, first the allocation labelled ‘Y’ is made to fill the
hole of size 64. After that a hole to capture ‘N’ is constructed via three allocations and a free, with the remaining two allocations labelled ‘Z’ and ‘W’.
Both sequences place ‘S’ and ‘D’ adjacent to each other and in the same order.

internally, and as the precise sequences required may vary with starting state, we felt this would likely end up being quite
a fragile solution.

We constructed two systems to investigate the problem and to evaluate solutions. The first, described in section 4.1 allows
for synthetic experiments to be run against any allocator exposing the standard interface. This allows one to construct a
diverse array of problem instances by varying the heap starting state, available allocation and deallocation sizes, and the
amount of noise per interaction sequence. We utilised this system to discover the factors which most significantly influence
the difficulty of automated heap layout optimisation, and to provide an indication as to how successful a given search
algorithm would likely be on real world instances. The second system, described in section 4.2, is a fully automated heap
layout optimisation engine designed to work with the PHP language interpreter. This system is not only an evaluation
framework for search algorithms but also solves the problems of mapping from the application level interface to interaction



sequences, and of automatically discovering potentially useful corruption targets.

4.1. Synthetic Evaluation Framework

To allow for the evaluation of search algorithms we constructed an experimental system which allows one to embed
any allocator exposing the ANSI C dynamic memory management interface in a test harness, have it initialised to a given
heap state, and then interact with it by sending a series of interaction sequences. The test harness converts the interaction
sequences into the corresponding malloc, free, calloc and realloc function calls and then invokes them on the
allocator. Once the interaction sequences have been relayed to the allocator, the client is sent back the distance from the
source allocation to the destination allocation.

In practice, in this use case the SEARCH function produces a list of commands with a form similar to alloc 128 1
to indicate an allocation of size 128 should take place and the resulting chunk has ID 1, and free 1 indicating that a
free should take place of the pointer associated with the chunk with ID 1. The Execute function then takes this list of
commands and feeds it to a driver which is linked with the desired allocator. The driver converts each command into the
corresponding allocator interaction.

Each experiment can be configured via the following parameters:

• The starting state of the heap. Usually, an attacker cannot interact with a heap immediately after it has been
created. Instead, there will typically be a number of allocations and frees that have taken place before the attacker
can begin manipulating the layout.

• The available interaction sequences. As previously mentioned, an attacker can rarely interact directly with the
heap allocator’s API, and instead will have to utilise the API, or input mechanism, of the target program as a proxy.
Restrictions may also exist on the order and frequency with which a particular API, and thus the related interaction
sequence, may be triggered. In our system, a Python class can be defined which exposes the GetAllocSequence
and GetFreeSequence functions referenced in SEARCH. The class can then programatically decide which
sequences are available on each call and select one.

• The allocator. As each allocator provides the same API, the driver program can easily be linked with the allocator
of choice with no modifications to the rest of the system.

Adding new starting states, interaction sequences or allocators requires only limited local modifications, such as a
specification describing a start state, a Python class to generate interactions, or a Makefile addition to produce a new driver
linked with a new allocator. This system allows for flexible and scalable evaluation of new search algorithms, or testing
existing algorithms on new allocators, interaction sequences or heap start states.

4.2. PHP-Based Evaluation Framework

Using the experimental system outlined in section 4.1 it is not only possible to perform synthetic experiments but also
to solve real problem instances. Given a real program, one could capture the all the required information to model the
problem, including the initial heap state and available interaction sequences. However, for complex targets this is likely to
be an error prone process potentially resulting in both false positives and false negatives.

In practice, it is likely to be less problematic to perform the search utilising the exposed API of a target application,
rather than explicitly extracting the heap starting state and available interaction sequences to perform the search. To evaluate
search algorithms in this situation we chose the PHP language interpreter as our target as it is a large, modern application
with a non-trivial interface for manipulating its internal state, and the state of its allocator; namely, programs written in the
PHP language.

In this setting, a candidate is an actual synthesised PHP program which is evaluated by passing it to the PHP interpreter.
The set of available allocator interaction sequences is the set of interactions which may be triggered by some fragment
of PHP code at a given point in a program. We implemented the system as three distinct phases: firstly, a component
that identifies fragments of PHP code which provide distinct allocator interactions; secondly, a component which identifies
dynamically allocated structures which may be useful to corrupt as part of an exploit, and a means by which to trigger their
allocation; thirdly, a search algorithm which pieces together the fragments triggering allocator interactions to produce PHP
programs as candidates. The third phase is effectively a search over PHP programs to find one which optimises the heap
layout for a given source and destination allocation. All three phases have nuances which we explain in the remainder of
this section.

4.2.1. Identifying Available Interaction Sequences. To etermine the available interaction sequences it is necessary to be
able to synthesise self-contained fragments of PHP code and determine what allocator interactions that fragment triggers.
The latter problem is straightforward: we inject instrumentation into the PHP interpreter to record the allocator interactions



that result from executing a given fragment. The former problem is more involved as it requires one to discover and combine
valid fragments of PHP, which ideally result in a diverse and expansive set of allocator interactions.

We resolve the synthesis problem by implementing a fuzzer for the PHP interpreter which leverages the regression tests
that come with PHP, in the form of PHP programs. This idea is based on previous work which utilised a similar approach
for the purposes of vulnerability detection [11], [12]. The tests provide examples of the functions that can be called as well
as the number and types of their arguments. The fuzzer then utilises mutation and combination to produce new fragments
with new behaviours.

To tune the fuzzer towards the discovery of fragments that are useful for heap layout optimisation, as opposed to
vulnerability discovery, we added some further constraints:

• We utilise mutations that are intended to produce an interaction sequence that we have not seen before, rather than
a crash. For example, fuzzers will often replace integers with values that may lead to edge cases, such as 0, 232−1,
231 − 1 and so on. We are interested in triggering unique allocator interactions however, and so we predominantly
mutate tests using integers and string lengths that relate to allocation sizes we have not previously seen.

• Our measure of fitness for a generated test is not based on code coverage, as is often the case with vulnerability
detection, but is instead based on whether or not a new allocator interaction sequence is produced, and the length
of that interaction sequence.

• We discard any fragments that result in the interpreter exiting with an error.
• We favour the shortest, least complex fragments with priority being given to fragments consisting of a single function

call.

The output of this stage is a mapping from fragments of PHP code to a summary of the allocator interaction sequences
which occur as a result of executing that code. The summary includes the number and size of any allocations, and whether
or not the sequence triggers any frees, which can be used by the search algorithm to prioritise sequences, as required.

4.2.2. Specifying Candidate Structure. Different vulnerabilities in PHP require different setup in order to trigger, in terms
of function calls, object creation and so on. To avoid hard-coding vulnerability-specific information in the candidate creation
process we allow for the creation of candidate templates which define the structure of a candidate. A sample template for
CVE-2016-7126, a heap-based buffer overflow in PHP, can be found in Listing 2 in the appendix. The markers in the
comments define various components of the candidate, such as the code for allocating the corruption source, the code which
triggers the bug etc. In the context of PHP, the NewCandidate function in SEARCH extracts the above structure from a
template and the various Append∗ functions utilise it when considering where in the template to place the various fragments
for manipulation, source allocation and destination allocation.

4.2.3. Automatic Identification of Corruption Targets. In most programs there is a diverse set of dynamically allocated
structures that one could corrupt to violate some security property of the program. These targets may be program specific,
such as values that guard a sensitive path, or they may be somewhat generic, such as a function pointer. Identifying these
targets, and how to dynamically allocate them, can be a difficult manual task in itself. To further automate the process
we implemented a component which, as with the fuzzer, splits the PHP tests into standalone fragments and then observes
the behaviour of these fragments when executed. If the fragment dynamically allocates a data structure and writes what
appears to be a pointer to that data structure we consider it to be a potentially interesting corruption target and store the
fragment. Before beginning the search the system will randomly select one of the discovered corruption targets and utilise
its corresponding code fragment when it decides to allocate the destination.

4.2.4. Search. The search for an optimal solution proceeds as shown in Algorithm 1, with some minor nuances. Candidates
are PHP programs constructed using a template and the Execute function provides these candidates to the PHP interpreter
to evaluate them. The AppendAllocSequence and AppendFreeSequence functions utilise the database of fragments
constructed as described in section 4.2.1. Fragments are pseudo-randomly selected from the database with fragments that
trigger allocations or frees of sizes that equal the source or destination receiving a higher probability of being selected. The
amount of noise in a sequence is used as a secondary metric in sequence selection, with sequences that have less noise
having a higher probability of being selected than more noisy sequences.

Finally, for some vulnerabilities we may not be able to control the order in which the source and destination are allocated,
e.g. the imagetruecolortopalette function which triggers CVE-2016-7126, as shown in listing 2 in the appendices,
both allocates the source and triggers the vulnerability. Therefore, the destination must be allocated before this occurs. In
such cases, we indicate this in the template provided to the system which then ensures that the destination allocation is
triggered before the source allocation and vulnerability are triggered, regardless of the order in which AppendSrcSequence
and AppendDstSequence are called.



TABLE 1. Optimisation results after 500,000 instances, averaged across all starting sequences. The full results can
be found in tables 5 and 6 in the appendices

Allocator Noise % Und.
< 4096

% Ovf.
< 4096

% Und.
Optimal

% Ovf.
Optimal

Avg. Und.
Err.

Avg. Ovf.
Err

avrlibc-r2537 0 100 100 100 100 0.00 0.00
dlmalloc-2.8.6 0 100 100 97 100 0.00 0.00
tcmalloc-2.6.1 0 94 94 83 81 1.01 1.24
avrlibc-r2537 1 83 83 44 50 0.43 0.58
dlmalloc-2.8.6 1 81 83 22 58 0.37 0.68
tcmalloc-2.6.1 1 83 89 44 58 1.07 1.52
avrlibc-r2537 4 75 78 33 42 1.55 1.65
dlmalloc-2.8.6 4 75 78 14 44 1.25 1.95
tcmalloc-2.6.1 4 72 83 22 53 1.40 2.47

5. Experiments

To investigate automated heap layout optimisation we chose the allocators mentioned in section 2.2: tcmalloc,
dlmalloc, avrlibc and the allocator for PHP 7. These allocators offer various combinations of the features discussed
in section 2 and are used in a number of real world applications and operating systems.

We conducted two sets of experiments. First, in order to investigate the fundamentals of the problem we utilised the
system discussed in section 4.1 to conduct a set of synthetic experiments utilising differing combinations of heap starting
states, interaction sequences, source and destination sizes, and allocators. Secondly, in order to evaluate the viability of our
search algorithm on real world applications we utilised the system discussed in section 4.2 to automatically construct heap
layout manipulating inputs for three security-relevant vulnerabilities in PHP. These inputs manipulate the heap into a state
such that when the vulnerability is triggered a buffer selected by the user, or automatically by the system, is accessed5.
All experiments were carried out on a server with 80 Intel Xeon E7-4870 2.40GHz cores and 1TB of RAM, utilising 40
concurrent analysis processes.

5.1. Synthetic Experiments

The goal of the synthetic experiments is to discover the factors which influence the difficulty of problem instances and to
experimentally discover the capabilities and limitations of our search algorithm in an environment that we precisely control.
It is important to note however that these experiments are not exhaustive, and thus the data does not, and is not intended
to, support general claims of applicability. Our experiments were configured as follows:

• As it is not feasible to evaluate layout optimisation for all possible combinations of source and destination sizes we
selected 6 sizes which we deemed to be both likely to occur in real world problems and to exercise different allocator
behaviour. The sizes we selected are 06, 64, 512, 4096, 16384 and 65536. We then utilised the cross product of this
set of six to give 36 different source and destination combinations.

• We simulate situations in which the allocation of the source or destination takes place in both noise-free and noisy
interaction sequences. In noise-free interaction sequences the overflow source or destination is the only interaction
that takes place. In noisy interaction sequences other allocations also take place, and those extra allocations may
require more holes to be created in order to capture them, thus increasing the difficulty of the problem. We evaluated
the effect of prefixing and suffixing both the source and destination with varying amounts of noise.

• For each source and destination combination, we made available to the analyser an interaction sequence which
triggers an allocation of the source size, an interaction sequence which triggers an allocation of the destination size,
and two separate interaction sequences for freeing each of the allocations.

• We initialise the heap state prior to executing the interactions from a candidate by prefixing each candidate with a set
of interactions. Previous work [21] has outlined the drawbacks that may arise when using randomly generated heap
states to evaluate allocator performance. In order to avoid these drawbacks we captured the initialisation sequences
of PHP, Python and Ruby and utilised them for our experiments. A summary of the relevant properties of these
initialisation sequences can be found in the appendices in table 3.

5. The access may be a read or a write, depending on the type of vulnerability.
6. Allocating a size of 0 will trigger the smallest allocation possible for the allocator in question.



TABLE 2. Results of heap layout optimisation for vulnerabilities in PHP. Experiments were run for a maximum of 12 hours.

CVE ID Vulnerability
Type Component Src.

Size
Dst.
Size Noise Initial

Dist.
Final
Dist.

Time to
Best

Candidates to
Best

2015-8865 OOB Write File Parsing 480 264 42 119360 0 3780s 3753540
2016-5093 OOB Read String Manip. 544 264 1 39680 0 9s 8937
2016-7126 OOB Write Image Manip. 1 264 48 384088 16 1838s 2157812

The results of the synthetic experiments can be found in table 1. As mentioned, for each combination of allocator,
starting state and noisy allocation count, a total of 36 experiments were run. In the column titles, ’Und’ and ’Ovf ’ stand for
underflow and overflow, breaking down the results into those where the objective was to place the destination before or after
the source, respectively. The ‘% Und. < 4096’ and ‘% Ovf. < 4096’ columns indicate the percentage of results where the
source and destination were within a page (4096 bytes) of each other. The ‘% Und. Optimal’ and ‘% Ovf. Optimal’ columns
indicate the percentage of results where the source and destination were in an optimal layout. The final two columns, ‘Avg.
Und. Err.’ and ‘Avg. Ovf. Err’ provide the average normalised error across all runs for that row, broken down by overflow
and underflow. The normalised error as the ratio of the best score achieved for a particular problem to the larger of the
source and destination sizes. We use this measure instead of the absolute number of bytes between the source and destination
as we discovered empirically that the absolute error is usually a factor of the sizes used in the allocation and deallocation
sequences. For example, the error is usually due to Algorithm 1 making bad allocation or deallocation decisions, which
creates allocated chunks between the source and destination. If the used sizes are large then the absolute error value will
also be large, while if the sizes are small then the absolute error will be small, but in both cases the errors made during the
algorithm’s decision making process are the same. To avoid this issue we normalise the absolute error value by dividing it
by the larger of the two allocation sizes available.

5.2. PHP-Based Experiments

In order to determine if heap layout optimisation is feasible in real world scenarios we selected three vulnerabilities in
PHP to evaluate the system described in section 4.2. A successful outcome means the system can, with no human assistance,
discover how to interact with the underlying allocator via PHP scripts, identify how to allocate potentially sensitive data
structures on the heap, and then construct a PHP script which places such a data structure adjacent to the source of an
out-of-bounds memory access. Such an construct, where an input is crafted to allow reading/writing/execution of specific
memory within a process, is often called an exploit primitive. Primitives form the building blocks of exploits, and thus
successfully generating such inputs represents a step towards automation of exploitation of heap based vulnerabilities.

We utilised the following vulnerabilities in our evaluation:

• CVE-2015-8865. An out-of-bounds write vulnerability in libmagic that is triggerable via PHP up to version 7.0.4.
• CVE-2016-5094. An out-of-bounds read vulnerability in PHP up to version 7.0.7.
• CVE-2016-7126. An out-of-bounds write vulnerability in PHP up to version 7.0.10.

A summary of the results can be found in table 2. The ‘Initial Distance’ is the distance from the source to destination
buffers as allocated via the vulnerability trigger without heap layout manipulation. The ‘Final Distance’ is the distance from
the source to destination buffers utilising the solution discovered by our HLO system. The ‘Noise’ is a count of the number
of allocator interactions which take place in the sequences related to allocating the source and destination, excluding the
interactions to allocate the source and destination.

5.3. Experimental Conclusions

5.3.1. Black-box random search can be an effective mechanism for automatic HLO. Our tests against three real world
vulnerabilities in PHP indicate that heap layout optimisation can be performed automatically for real world programs, and
that pseudo-random black box search can find optimal, or near-optimal, layouts in the cases that we utilised for evaluation.
As shown in the solution for CVE-2016-7126 and CVE-2015-8865, it is possible to achieve near-optimal and optimal results
even when there is a large amount of noise.

Our system also demonstrates that it is possible to automate the process in an end-to-end manner, with automatic discovery
of a mapping from the target program’s API to allocator interaction sequences, discovery of potentially interesting corruption
targets, and search for an optimal layout. A sample output can be seen in listing 3 in the appendices. Using a template for



this particular vulnerability, and the learned API for interacting with PHP’s allocator via its API, the system has synthesised
a new PHP script which places the overflow source within 16 bytes of the overflow destination.

As mentioned previously, our synthetic experiments are not exhaustive and we cannot draw general conclusions regarding
effectiveness. However, by evaluating the data we have we can still make inferences about the capabilities and limitations
of the approach. We will consider three different measures of success: the number of optimal results achieved, the average
error for sub-optimal results, and the number of results achieved with an error of less than a page.

In the case of free-list based allocators, when there is no noise then an optimal layout was achieved in all but one
experiment, with most experiments taking 15 seconds or less. Overall, for dlmalloc and avrlibc, 59% of experiments
resulted in an optimal layout, the average error is .7 and in 86% of cases the source is placed within a page of the destination.
This indicates that even in noisy situations pseudo-random black-box search is effective at placing the source an destination
relatively close to each other, if not in an optimal layout.

The extra constraints imposed on layout by segregated storage presents more of a challenge. However, on noise-free
runs optimal results are still achieved in 82% of the experiments with an average error of 1.13 and with 95% of experiments
ending with the source and destination within a page of each other. Overall, for tcmalloc, 54% of experiments result in
an optimal layout, the average error is 1.52 and in 86% of cases the source is placed within a page of the destination. The
low average error again indicates that, even in cases where a sub-optimal result is found, the search is still able to find a
candidate which places the source and destination relatively close together.

5.3.2. Segregated storage is the allocator policy which most impacted problem difficulty. The most significant policy
which impacts difficulty is the physical grouping by size of objects in segregated storage based allocators. As expected,
the extra constraints imposed in this situation increase the difficulty of the problem for our search approach. However,
as demonstrated in our synthetic experiments and versus PHP, many problem instances are still solvable when segregated
storage is in use. There are even cases in which the grouping of objects imposed by segregated storage may actually be
helpful. For example, it predominantly isolates the impact of allocations and frees to future allocations and frees of the
same size. Thus if a hole of size 256 is created one need not worry that a future allocation of size 128 will utilise that
space, as is possible when segregated storage is not in use.

The other differentiating mechanisms and policies between the allocators did not appear to have a significant impact on
the difficulty of the problem.

5.3.3. As the noise in interaction sequences increases, so does the problem difficulty. Our experiments clearly show
that as noise in the interaction sequences increases so does the the difficulty of the problem instances. This makes intuitive
sense as, typically, as more noise is added more holes typically have to be created. In the worst case (dlmalloc) we see
a drop off from a full set of optimal results to 29% of the results being optimal when four noisy allocations are included.

It is also worth noting that the increase in error as a result of adding noise does not seem to be as significant for segregated
storage based allocators as it is for free list based allocators. For free list based allocators the average error increases by a
factor of 3x-4x as the noise increases, while for segregated storage based allocators the increase is predominantly less than
2x. One explanation for this is that, as explained in section 5.3.2 in some situations segregated storage actually makes it
easier to create holes of a particular size and to ensure they are not accidentally utilised by a smaller allocation.

In the evaluation on vulnerabilities in PHP, the amount of noise impacts the number of candidates required to find the
best result, but the algorithm still finds an optimal result for two of the three experiments, and a near-optimal result for the
third. For CVE-2016-5093, which has a single noisy allocation, an optimal result is achieved in 9s while for CVE-2015-8865,
which has 42 noisy allocations, it takes 3780s to achieve the same.

6. Conclusion

In this technical report we have outlined a simple, but effective, algorithm for heap layout optimisation and shown that
it can produce optimal layouts in a significant number of synthetic experiments, as well as for real world vulnerabilities in
the PHP language interpreter. The results are encouraging and there are a number of extensions and directions for future
work. The most obvious include improving the search algorithm to handle the unsolved synthetic instances and to improve
performance on difficult cases, investigating the extension of the solution to targets other than PHP and researching the
possibility for integrating this approach with traditional symbolic execution based automatic exploit generation frameworks.
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Appendix

<?php
$img = imagecreatetruecolor(10, 10);
imagetruecolortopalette($img, false, PHP_INT_MAX / 8);
?>

Listing 1. The original bug report for CVE-2016-7126, from which the template in listing 2 was produced.

<?php
# BEGIN-PRELUDE
$img = imagecreatetruecolor(10, 10);
# END-PRELUDE

# BEGIN-DST-CREATE
shrike_record_destination(1);
$dst = imagecreatetruecolor(1, 1);
# END-DST-CREATE

# BEGIN-SRC-CREATE-AND-TRIGGER
shrike_record_source(48);
imagetruecolortopalette($img, false, PHP_INT_MAX / 8);
# END-SRC-CREATE-AND-TRIGGER
?>

Listing 2. A sample template for a PHP vulnerability (CVE-2016-7126). The system is free to insert heap manipulating actions at any location outside
the BEGIN-X/END-X regions. The arguments to shrike_record_source and shrike_record_destination tell the system which allocation
made by the following API call is considered the source and destination respectively. Listing 1 shows the original vulnerability report from which this
template was produced.

<?php
# BEGIN-PRELUDE
$img = imagecreatetruecolor(10, 10);
# END-PRELUDE

# <...>
$var_vtx_24 = imagecreatetruecolor(1, 1);
# <...>
$var_vtx_24 = 0;
$var_vtx_102 = imagecreatetruecolor(1, 1);
$var_vtx_103 = imagecreatetruecolor(2, 256);
$var_vtx_104 = str_repeat(’A’, 225);
$var_vtx_105 = str_repeat(’A’, 225);

# BEGIN-DST-CREATE
shrike_record_destination(1);
$vtx_dst = array_fill(0, 1, ’..’);
# END-DST-CREATE

# BEGIN-SRC-CREATE-AND-TRIGGER
shrike_record_source(48);
imagetruecolortopalette($img, false, PHP_INT_MAX / 8);
# END-SRC-CREATE-AND-TRIGGER
?>

Listing 3. Part of the solution discovered for CVE-2016-7126. Just over 100 API calls are made, using functions which have been discovered to trigger
the desired allocator interactions. Frees are triggered by destroying previously created objects, as can be seen with var_24. The destination is the
second pointer allocated by array_fill, and has been automatically discovered as described in section 4.2. The overflow source is the 49th allocation
performed by imagetruecolortopalette.



TABLE 3. Summary of the heap initialisation sequences used
during the synthetic experiments. All sequences were captured

by hooking the malloc, free, realloc and calloc
functions of the system allocator, except for php-emalloc

which was captured by hooking the allocation functions of the
custom allocator that comes with PHP.

Title # Allocator
Interactions # Allocs # Frees

php-emalloc 571 366 205
php-malloc 15078 12714 2634
python-malloc 6160 3710 2450
ruby-malloc 70895 51827 19068

TABLE 4. Allocator Features. Entries marked with an asterisk indicate that the behaviour may or may
not occur, depending on the size of chunk of memory allocated or freed. See section 2.2 for details.

Allocator Version Splits
Blocks

Carves
From

Coalesces
Blocks

Segregated
Storage Deterministic

avrlibc 2.0 Yes Tail Yes No Yes
dlmalloc 2.8.6 Yes Head Yes No Yes
tcmalloc 2.6.1 * Head * Yes Yes
PHP 7 * Head * Yes Yes



TABLE 5. Optimisation results after 500,000 candidates per configuration.

Allocator Start State Noise # Und.
< 4096

# Ovf.
< 4096

# Und.
Optimal

# Ovf.
Optimal

Avg. Und.
Err.

Avg. Ovf.
Err

avrlibc-r2537 php-emalloc 0 36 36 36 36 0.00 0.00
avrlibc-r2537 php-malloc 0 36 36 36 36 0.00 0.00
avrlibc-r2537 python-malloc 0 36 36 36 36 0.00 0.00
avrlibc-r2537 ruby-malloc 0 36 36 36 36 0.00 0.00

Average 36 36 36 36 0.00 0.00

dlmalloc-2.8.6 php-emalloc 0 36 36 35 36 0.00 0.00
dlmalloc-2.8.6 php-malloc 0 36 36 36 36 0.00 0.00
dlmalloc-2.8.6 python-malloc 0 36 36 35 36 0.02 0.00
dlmalloc-2.8.6 ruby-malloc 0 36 36 36 36 0.00 0.00

Average 36 36 36 36 0.00 0.00

avrlibc-r2537 php-emalloc 1 31 30 17 19 0.41 0.49
avrlibc-r2537 php-malloc 1 32 30 21 19 0.49 0.67
avrlibc-r2537 python-malloc 1 29 29 16 19 0.48 0.55
avrlibc-r2537 ruby-malloc 1 29 29 11 16 0.36 0.61

Average 30 30 16 18 0.43 0.58

dlmalloc-2.8.6 php-emalloc 1 27 30 7 24 0.38 0.77
dlmalloc-2.8.6 php-malloc 1 32 30 15 22 0.32 0.78
dlmalloc-2.8.6 python-malloc 1 29 30 7 20 0.37 0.67
dlmalloc-2.8.6 ruby-malloc 1 27 31 4 19 0.39 0.51

Average 29 30 8 21 0.37 0.68

avrlibc-r2537 php-emalloc 4 28 28 13 15 1.62 1.72
avrlibc-r2537 php-malloc 4 28 28 11 14 1.28 1.60
avrlibc-r2537 python-malloc 4 27 27 12 17 1.58 1.71
avrlibc-r2537 ruby-malloc 4 26 28 10 15 1.71 1.55

Average 27 28 12 15 1.55 1.65

dlmalloc-2.8.6 php-emalloc 4 28 27 6 13 1.21 1.82
dlmalloc-2.8.6 php-malloc 4 26 27 4 16 1.37 2.08
dlmalloc-2.8.6 python-malloc 4 27 31 4 15 1.00 1.95
dlmalloc-2.8.6 ruby-malloc 4 27 28 4 20 1.41 1.93

Average 27 28 5 16 1.25 1.95



TABLE 6. Optimisation results after 500,000 candidates per configuration.

Allocator Start State Noise # Und.
< 4096

# Ovf.
< 4096

# Und.
Optimal

# Ovf.
Optimal

Avg. Und.
Err.

Avg. Ovf.
Err

tcmalloc-2.6.1 php-emalloc 0 36 36 29 30 0.32 0.34
tcmalloc-2.6.1 php-malloc 0 36 36 30 32 0.18 0.35
tcmalloc-2.6.1 python-malloc 0 28 28 28 24 3.46 4.07
tcmalloc-2.6.1 ruby-malloc 0 36 36 31 30 0.11 0.20

Average 34 34 30 29 1.01 1.24

tcmalloc-2.6.1 php-emalloc 1 33 33 16 22 0.66 1.01
tcmalloc-2.6.1 php-malloc 1 31 34 15 22 0.40 0.78
tcmalloc-2.6.1 python-malloc 1 25 25 18 19 2.77 3.58
tcmalloc-2.6.1 ruby-malloc 1 30 34 15 22 0.44 0.71

Average 30 32 16 21 1.07 1.52

tcmalloc-2.6.1 php-emalloc 4 28 32 8 19 1.18 2.03
tcmalloc-2.6.1 php-malloc 4 28 31 7 19 0.96 1.90
tcmalloc-2.6.1 python-malloc 4 19 24 7 16 2.52 3.78
tcmalloc-2.6.1 ruby-malloc 4 28 31 8 21 0.94 2.16

Average 26 30 8 19 1.4 2.47
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