

HOW TO HACK A TURNED-OFF COMPUTER, OR RUNNING

UNSIGNED CODE IN INTEL ME

2

Contents

Contents .. 2

1. Introduction .. 3

1.1. Intel Management Engine 11 overview ... 4

1.2. Published vulnerabilities in Intel ME .. 5

1.2.1. Ring-3 rootkits.. 5

1.2.2. Zero-Touch Provisioning ... 5

1.2.3. Silent Bob is Silent .. 5

2. Potential attack vectors .. 6

2.1. HECI ... 6

2.2. Network (vPro only)... 6

2.3. Hardware attack on SPI interface ... 6

2.4. Internal file system .. 7

2.5. Selecting a module for analysis .. 7

2.6. Bypassing stack buffer overflow protection ... 8

2.7. Tread Local Storage ... 10

2.8. Using implementation of read function to get an arbitrary write primitive 11

2.9. Possible exploitation vectors ... 11

2.10. CVE-2017-5705,6,7 overview ... 12

2.11. Disclosure Timeline... 13

3. Conclusion ... 14

References... 15

Contacts .. 16

3

1. Introduction

Intel Management Engine (Intel ME) is a proprietary technology that consists

of a microcontroller integrated into the Platform Controller Hub (PCH) chip and a set

of built-in peripherals. The PCH carries almost all communication between the

processor and external devices. Therefore, Intel ME has access to almost all data on

the computer. The ability to execute third-party code on Intel ME would allow for a

complete compromise of the platform.

We see increasing interest in Intel ME internals from researchers all over the

world. One of the reasons is the transition of this subsystem to new hardware (x86)

and software (modified MINIX as an operating system [1]). The x86 platform allows

researchers to make use of the full power of binary code analysis tools. Previously,

firmware analysis was difficult because earlier versions of ME were based on an

ARCompact microcontroller with an unfamiliar set of instructions.

Analysis of Intel ME 11 was previously impossible because the executable

modules are compressed by Huffman codes with unknown tables. However, our

research team has succeeded in recovering these tables and created a utility for

unpacking images [2].

After unpacking the executable modules, we proceeded to examine the software

and hardware internals of Intel ME. Our efforts to understand the workings of ME

were rewarded: ME was ultimately not so unapproachable as it had seemed.

4

1.1. Intel Management Engine 11 overview

A detailed description of Intel ME internals and components can be found in

several papers: [1], [3], [4]. It should be noted that starting in 2015, the LMT processor

core with the x86 instruction set has been integrated into the PCH. Such a core is used

in the Quark SOC.

Figure 1. LMT2 IdCode of ME core

Many modern technologies by Intel are built around Intel Management Engine:

Intel Active Management Technology, Intel Platform Trust Technology (fTPM), Intel

Software Guard Extensions, and Intel Protected Audio Video Path. ME is also a root

of trust for Intel Boot Guard, which prevents attackers from injecting their code into

UEFI. The main purpose of ME is to initialize the platform and start the main

processor. ME also has virtually unlimited access to data processed on the computer.

ME can intercept and modify network packets as well as images on graphics cards; it

has full access to USB devices. Such capabilities mean that if an attacker finds an

opportunity to execute arbitrary code inside ME, this will spawn a new generation of

malware that cannot be detected using current protection tools. Fortunately, only three

(publicly known) vulnerabilities have been detected in the 17-year history of this

technology.

5

1.2. Published vulnerabilities in Intel ME

1.2.1. Ring-3 rootkits

The first publicly known vulnerability was discovered in Intel ME in 2009. At

Black Hat, Alexander Tereshkin and Rafal Wojtczuk gave a talk entitled "Introducing

Ring-3 Rootkits". The attack involved injecting code into a special region of UMA

memory into which ME unloads currently unused memory pages.

After the research was made public, Intel introduced UMA protection. Now this

region is encrypted with AES and ME stores the checksum for each page, which is

checked when the page is returned to the main memory of ME.

1.2.2. Zero-Touch Provisioning

In 2010, Vassilios Ververis presented an attack on the implementation of ME in

GM45[10]. By using "zero-touch" provisioning mode (ZTC), he was able to bypass

AMT authorization.

1.2.3. Silent Bob is Silent

In May 2017, a vulnerability in the AMT authorization system (CVE-2017-5689)

was published [11]. It allowed an unauthorized user to obtain full access to the main

system on motherboards supporting the vPro technology.

Thus, to date only one vulnerability (Ring-3 rootkits) allowing execution of

arbitrary code inside Intel ME has been found.

6

2. Potential attack vectors

Virtually all data used by ME is either explicitly or implicitly signed by Intel.

However, ME still allows some interaction with the user:

• Local communication interface (HECI)

• Network (vPro only)

• Host memory (UMA)

• Firmware SPI layout

• Internal file system

2.1. HECI

HECI is a separate PCI device serving as a circular buffer to exchange messages

between the main system and ME.

Applications located inside ME can register their HECI handlers. This increases

the number of potential security issues (CVE-2017-5711). On Apple computers, HECI

is disabled by default.

2.2. Network (vPro only)

AMT is a large module with a huge number of different network protocols of

various levels integrated into it. This module contains a great deal of legacy code but

can only be found in business systems.

2.3. Hardware attack on SPI interface

 While we were studying ME, it occurred to us to attempt bypassing signature

verification with the help of an SPI flash emulator. This specialized device would look

like regular SPI flash to the PCH, but can send different data each time it is accessed.

This means that if the data signature is checked in the beginning and then the data is

reread, one can conduct an attack and inject code into ME. We did not find such errors

in the firmware: first, data is read, and then the signature is verified. When accessed

7

again, data is checked to make sure it is identical to the data obtained during the first

read.

2.4. Internal file system

Intel ME uses SPI flash as primary file storage with its own file system. While

the file system has a rather complicated structure [6], many privileged processes store

their configuration files in it. Therefore the file system seemed a very promising place

for acting on ME.

The next step in searching for vulnerabilities was to choose a binary module.

2.5. Selecting a module for analysis

 The МЕ operating system implements a Unix-like access control model, the

difference being that controls are on a per-process basis. The user-id, group-id, list of

accessible hardware, and allowed system calls are set statically for each process.

Figure 2. Example of static rules for a process

 The result is that only some system processes are able to load and run modules.

A parent process is responsible for verifying integrity and setting privileges for its

Ext#5 Process:

 flags: permanent_process, single_instance

 main_thread_id: 0xC

 priv_code_base_address: 0x00040000

 uncompressed_priv_code_size: 0x29C6

 cm0_heap_size: 0x0

 bss_size: 0x7004

 default_heap_size: 0x1000

 main_thread_entry: 0x0004020A

 allowed_sys_calls: e000c783f804000000000000

 user_id: 0x005C

 group_ids[1]: [0x0121]

Ext#8 MmioRanges[41]:

 sel= 7, base:F5022000, size:00000C00, flags:00000003 :: SUSRAM_S

8

if (!(reg & 0x1000000) && !bup_get_si_features(si_features) &&
!bup_get_file_size("/home/bup/ct", &ct_file_size)) {

 if (ct_file_size) {
 LOBYTE(err) = bup_dfs_read_file("/home/bup/ct", 0, ct_file_data, ct_file_size,
 &read_size);

child process. One risk, of course, is that a process can set high privileges for its child

in order to bypass restrictions.

 One process with the ability to spawn child processes is BUP (BringUP). In the

process of reverse engineering the BUP module, we discovered a stack buffer overflow

vulnerability in the function for Trace Hub device initialization. The file /home/bup/ct

was unsigned, enabling us to slip a modified version into the ME firmware with the

help of Flash Image Tool. Now we were able to cause a buffer overflow inside the

BUP process with the help of a large BUP initialization file. But exploiting this

required bypassing the mechanism for protection against stack buffer overflows.

Figure 3. Stack buffer overflow vulnerability

2.6. Bypassing stack buffer overflow protection

ME implements a classic method for protection from a buffer overflow in the

stack—a stack cookie. The implementation is as follows:

1. When a process is created, a 32-bit value is copied from the hardware random

number generator to a special region (read-only for process).

2. In the function prologue, this value is copied above the return address in the

stack, thus protecting it.

3. In the function epilogue, the saved value is compared with the known good

value. If they do not match, a software interrupt (int 81h) terminates the

process.

So exploitation requires either predicting the cookie value or taking control before

cookie integrity is checked. Further research showed that any error in the random

number generator is regarded by ME as fatal, causing it to fail.

9

signed int __cdecl sys_write_shared_mem(...)

{

...

 sm_block_desc = sys_get_shared_mem_block(block_idx);

...

 memcpy_s((sm_block_desc->start_addr_linked_block_idx + offset),
sm_block_size - offset, src_data, write_size);

...

}

Looking at the functions that are called after an overflow and before the integrity

check, we found that the function we named bup_dfs_read_file indirectly calls memcpy.

It, in turn, gets the destination address from the structure we named Tread Local

Storage (TLS). Notably, BUP functions for file read/write use system library services

for accessing shared memory. In other words, read and write functions obtain and

record data via a shared memory mechanism. But this data is not used anywhere other

than BUP, so use of this mechanism may raise eyebrows. In our view, memory is

shared likely because the portion of BUP code responsible for MFS interaction was

copied from another module (file system driver), where use of shared memory is

justified.

Figure 4. Calling the memcpy function

Figure 5. Getting address from the TLS

As we discovered later, in case of a buffer overflow this region of the TLS can

be overwritten by a file read function, which could be used to bypass buffer

overflow protection.

int __cdecl sys_get_ctx_struct_addr(SYS_LIB_CTX_STRUCT_ID struct_id)

{

...

 sys_ctx_start_ptr = sys_get_tls_data_ptr(SYSLIB_GLB_SYS_CTX);
 switch (struct_id) {

 case SYS_CTX_SHARED_MEM:

 addr = *sys_ctx_start_ptr + 0x68;

 break;

...

 }

 return addr;

}

10

typedef struct

{
 uint32_t reservied;
 SYSLIB_CTX_PTR * syslib_ptr;
 int32_t last_error;
 uint32_t thread_id;
 void * self_pointer;
} T_TLS;

2.7. Tread Local Storage

Access to the TLS is mediated by the gs segment registry. The structure looks as

follows:

Figure 6. TLS structure

Figure 7. Getting TLS fields

The segment to which gs points is not write-accessible, but the TLS structure

itself is at the bottom of the stack (!!!), which allows modifying it in spite of the

restrictions. So in the case of a buffer overflow, we can overwrite the pointer to the

SYSLIB_CTX in the TLS and generate new such structure. Because of how the

bup_dfs_read_file function works, this trick gives us arbitrary write abilities.

sys_get_tls_data_ptr proc near

tls_idx = dword ptr 8

 push ebp

 mov ebp, esp

 mov eax, large gs:0

 mov ecx, [ebp+tls_idx]

 pop ebp

 lea edx, ds:0[ecx*4]

 sub eax, edx

 retn

sys_get_tls_data_ptr endp

11

2.8. Using implementation of read function to get an
arbitrary write primitive

The bup_dfs_read_file function reads from SPI-flash in 64-byte blocks, due to

which it is possible to overwrite the pointer to SYSLIB_CTX in a one iteration and during

the next iteration, the sys_write_shared_mem function extracts the address that we

created and passes it to memcpy as the destination address. With this done, we can get

an arbitrary write primitive.

Figure 8. Iterative reading of file inside bup_dfs_read_file

 The absence of ASLR enables us to overwrite a return address using the

arbitrary write primitive and hijack the program control flow. But here lies an

unpleasant surprise for the attacker—the stack is not executable. Remember, however,

that BUP can spawn new processes and is responsible for checking module signatures.

So with Return-Oriented Programming (ROP), we can create a new process with the

rights we need.

2.9. Possible exploitation vectors

To successfully exploit the vulnerability, we need write access to the MFS or

entire Intel ME region. Vendors are supposed to block access to the ME region, but

many fail to do so [8]. Such a configuration error makes the system vulnerable.

int __cdecl bup_read_mfs_file(BUP_MFS_DESC *mfs_desc, int file_number, unsigned int offset,
unsigned int *size, int sm_block_idx,
__int16 proc_thread_id)

{
...
 while (1) {
 if (cur_offset >= read_size) break;
...
 err = bup_mfs_read_data_chunks(mfs_desc, buffer,
 mfs_desc->data_chunks_offset + ((read_start_chunk_id -
mfs_desc->total_files) << 6),
 block_chunks_count);
...
 err = sys_write_shared_mem(proc_thread_id, sm_block_idx, cur_offset,
 &buffer[chunk_offset], copy_size, copy_size);
...
 }
 }
...
}

12

By design, Intel ME allows for write access to the ME region via special HMR-

FPO messages sent over HECI from the BIOS [9]. An attacker can send such a

message by exploiting a BIOS vulnerability, or directly from OS if ME is in

manufacture-mode, or via a DMA attack.

Attackers with physical access can always overwrite with their own image (via

SPI programmer or Security Descriptor Override jumper), resulting in a complete

compromise of the platform.

One of the most common questions regards the possibility of remote exploitation.

We think that remote exploitation is possible if the following conditions are true:

1. The target platform has AMT activated.

2. The attacker knows the AMT administrator password or can use a

vulnerability to bypass authorization.

3. The BIOS is not password-protected (or the attacker knows the password).

4. The BIOS can be configured to open up write access to the ME region.

If all these conditions are met, there is no reason why an attacker would not be

able to obtain access to the ME region remotely.

Also note that during startup, the ROM does not check the version of firmware,

leaving the possibility that an attacker targeting an up-to-date system could

maliciously downgrade ME to a vulnerable version.

2.10. CVE-2017-5705,6,7 overview

The vulnerability was assigned number INTEL-SA-00086 (CVE-2017-5705,

CVE-2017-5706, CVE-2017-5707). The description of the vulnerability includes the

following information:

13

CVSSv3 Vectors:

8.2 High AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

Affected products [12]:

• 6th, 7th & 8th Generation Intel® Core™ Processor Family

• Intel® Xeon® Processor E3-1200 v5 & v6 Product Family

• Intel® Xeon® Processor Scalable Family

• Intel® Xeon® Processor W Family

• Intel® Atom® C3000 Processor Family

• Apollo Lake Intel® Atom Processor E3900 series

• Apollo Lake Intel® Pentium™

• Celeron™ N and J series Processors

2.11. Disclosure Timeline

• June 27, 2017 - Bug reported to Intel PSIRT

• June 28, 2017 - Intel started initial investigation

• July 5, 2017 - Intel requested proof-of-concept

• July 6, 2017 - Additional information sent to Intel PSIRT

• July 17, 2017 - Intel acknowledged the vulnerability

• July 28, 2017 - Bounty payment received

• November 20, 2017 - Intel published SA-00086 security advisory

14

3. Conclusion

The most important finding of our research was a vulnerability that allows running

arbitrary code in Intel ME. Such a vulnerability has the potential to jeopardize a

number of technologies, including Intel Protected Audio Video Path (PAVP), Intel

Platform Trust Technology (PTT / fTPM), Intel Boot Guard, and Intel Software Guard

Extension (SGX).

By exploiting the vulnerability that we found in the bup module, we were able to

turn on a mechanism, PCH red unlock, that opens full access to all PCH devices for

their use via the DFx chain—in other words, using JTAG. One such device is the x86

ME processor itself, and so we obtained access to its internal JTAG interface. With

such access, we could debug code executed on ME, read memory of all processes and

the kernel, and manage all devices inside the PCH. We found a total of about 50

internal devices to which only ME has full access, while the main processor has access

only to a very limited subset of them.

Our research does not claim to be the final word on ME security or free of errors.

Nonetheless, we hope that this work will be of benefit to other researchers interested

in platform security and ME internals.

15

References

[1] Dmitry Sklyarov, Intel ME: The Way of the Static Analysis, Troopers, 2017.

[2] Intel ME 11.x Firmware Images Unpacker

(https://github.com/ptresearch/unME11).

[3] Xiaoyu Ruan, Platform Embedded Security Technology Revealed.

Safeguarding the Future of Computing with Intel Embedded Security and

Management Engine, Apress, ISBN 978-1-4302-6572-6, 2014

[4] Igor Skochinsky, Intel ME Secrets. Hidden code in your chipset and how to

discover what exactly it does, RECON 2014.

[5] Alexander Tereshkin, Rafal Wojtczuk, Introducing Ring-3 Rootkits, Black Hat

USA, 2009.

[6] Dmitry Sklyarov, Intel ME: flash file system explained, Black Hat Europe,

London, 2017.

[8] Alex Matrosov, Who Watch BIOS Watchers?

(https://medium.com/@matrosov/bypass-intel-boot-guard-cc05edfca3a9).

[9] Mark Ermolov, Maxim Goryachy, How to Become the Sole Owner of Your

PC, PHDays VI, 2016 (http://2016.phdays.com/program/51879/).

[10] Vassilios Ververis, Security Evaluation of Intel’s Active Management

Technology, Sweden, TRITA-ICT-EX-2010:37, 2010.

[11] Dmitriy Evdokimov, Alexander Ermolov, Maksim Malyutin, Intel AMT

Stealth Breakthrough, Black Hat USA, 2017 Las Vegas, NV.

[12] Intel Management Engine Critical Firmware Update (Intel-SA-00086)

(http://www.intel.com/sa-00086-support).

https://github.com/ptresearch/unME11
https://medium.com/@matrosov/bypass-intel-boot-guard-cc05edfca3a9
http://2016.phdays.com/program/51879/)

16

Contacts

Email: pr@ptsecurity.com Twitter: @PTsecurity_UK
Web: www.ptsecurity.com Blog: blog.ptsecurity.com

361 King Street,

London, W6 9NA

United Kingdom

+44 203 769 3606

mailto:pr@ptsecurity.com
https://twitter.com/PTsecurity_UK
http://www.ptsecurity.com/
http://blog.ptsecurity.com/

	Contents
	1.
	1.
	1. Introduction
	1.1. Intel Management Engine 11 overview
	1.2. Published vulnerabilities in Intel ME
	1.2.1. Ring-3 rootkits
	1.2.2. Zero-Touch Provisioning
	1.2.3. Silent Bob is Silent

	2. Potential attack vectors
	2.1. HECI
	2.2. Network (vPro only)
	2.3. Hardware attack on SPI interface
	2.4. Internal file system
	2.5. Selecting a module for analysis
	2.6. Bypassing stack buffer overflow protection
	2.7. Tread Local Storage
	2.8. Using implementation of read function to get an arbitrary write primitive
	2.9. Possible exploitation vectors
	2.10. CVE-2017-5705,6,7 overview
	2.11. Disclosure Timeline

	3. Conclusion
	References
	Contacts

