By-design Backdooring of Encryption System
Can We Trust Foreign Encryption Algorithms?

Arnaud Bannier & Eric Filiol (speaker)
filiol@esiea.fr

ESIEA
Operational Cryptology and Virology Lab (C + V)°
Agenda

1. Introduction: what is the issue?

2. History of known (and less known) backdoored algorithms

3. Description of BEA-1
 - Theoretical Background
 - BEA-1 Presentation and Details

4. BEA-1 Cryptanalysis

5. Conclusion and Future Work

(ESIEA - (C + V) lab)
Summary of the talk

1. Introduction: what is the issue?
2. History of known (and less known) backdoored algorithms
3. Description of BEA-1
4. BEA-1 Cryptanalysis
5. Conclusion and Future Work
Just imagine that if unconditionally secure systems (computer, information security) would be possible (theoretically AND practically), would it be desirable to export them?

- The answer is NO due to
 - National Security Issues (Intelligence, Defense, Police, Justice. . .)
 - Strategic dominance, information assurance. . .
 - Economic warfare & dominance (since 1989)
UK Demands Encryption Backdoor As London Terrorist Used WhatsApp Before the Attack

Monday, March 27, 2017 Mohit Kumar

The government has once again started asking for backdoor in encrypted services, arguing that it can not give enough security to its citizens because the terrorists are using encrypted apps to communicate and plot an attack.

Following last week's terrorist attack in London, the UK government is accusing technology firms to give terrorists "a place to hide," saying intelligence agencies must have access to encrypted messaging applications such as WhatsApp to prevent such attacks.
French, German ministers demand new encryption backdoor law

But is it just a matter of looking tough with elections around the corner?

By Kieren McCarthy in San Francisco 24 Aug 2016 at 20:12

A meeting this week between the interior ministers of France and Germany has focused on the issue of encryption and its potential impact on security.

In the lead-up to the meeting and in subsequent public comments from the ministers, they both made repeated mention of the issue of data encryption, even calling out the app Telegram as an example of a
EU plan could mean a backdoor into encrypted messaging apps like WhatsApp

by MAR MASSON MAACK — 8 months ago in EUROPE
German Government Official Wants Backdoors In Every Device Connected To The Internet
from the bring-back-the-old-germany-we-know-and-hate! Dept

The US Department of Justice is reviving its anti-encryption arguments despite not being given any signals from the administration or Congress that undermining encryption is something either entity desires. The same thing is happening in Germany, with Interior Secretary Thomas de Maizière continuing an anti-encryption crusade very few German government officials seem interested in joining.

The key difference in de Maizière’s push is that he isn’t limiting potential backdoors to cell phones. He appears to believe anything connected to the Internet should be backdoored—possibly even the cars German citizens drive. (via Rians Pfefferkorn)

The RedaktionsNetzwerk Deutschland (RND) reported that Thomas de Maizière had written up a draft proposal for the interior minister conference, taking place next week in Leipzig, which he has called “the legal duty for third parties to allow for secret surveillance.”

According to the RND, the proposal would “dramatically extend” the state’s powers to spy on its citizens.

And it’s not just backdoors being suggested. De Maizière wants all electronics to be law enforcement-compliant. All things — especially those connected to the Internet — should be constructed with government access in mind.

For example, the modern locking systems on cars are so intelligent that they even warn a driver if their car is shaken a little bit. De Maizière wants the new law to ensure that these alerts would not be sent out to a car owner if the police determined it to be justified by their investigation.

De Maizière wants the government to be able to intercept and block notifications sent from cars to the people that own them. But it’s far more than smarter cars being compromised on behalf of the government. If de Maizière gets his way, it will be every connected device everywhere.

De Maizière also wants the security services to have the ability to spy on any device connected to the Internet. Tech companies would have to give the state “back door” access to private tablets and computers, and even to smart TVs and
Since the end of WWII, cryptology is under control. This control has never weakened.

- UKUSA (5 eyes)/9 eyes/14 eyes SIGINT Seniors Europe...
- International Traffic in Arms regulations (ITAR, part 121) and subsequent regulations (Wassenaar...)
 - If cryptology is allowed/free of use, then it is under control
 - 1997 is a key year (withdrawn from ITAR) and early 2000s in Europe: the rise of connected world. The control will be far easier (computer, OS, network...)

- Cryptology is the most critical part in security: who is controlling cryptology, is controlling everything
The Wassenaar Agreement

- Almost all G-20 countries have a national regulation regarding cryptology (use/import/export) or at least have signed an international regulation

- http://rechten.uvt.nl/koops/cryptolaw/

- http://www.wassenaar.org/ - 42 members

- Cryptology is listed in part 5b ⇒ exporting encryption algorithms with key size greater than 56 bits (symmetric cryptology) is subject to export control!

- As a consequence, the world diffusion of encryption algorithms whose key size ≥ 128 bits is a clear violation of the Wassenaar agreement . . . unless some sort of control has been organized/enforced.
What does “Operational cryptanalysis” Means?

- **Intelligence/operational point of view:** really breaking an encryption system means
 - Accessing the plaintext in a time shorter than the life of the information (regarding its operational value)
 - Practically speaking: a matter of hours (supercomputing time is horribly expensive)
 - With a reduced amount of encrypted data (a few Kb to a few Mb)
 - Must be played a large number of times (a clever enemy changes the key very often, encrypted traffic explodes)

- Academic attacks have just...an academic interest!
Control Techniques

- The control techniques depend on the target context/environment

<table>
<thead>
<tr>
<th>Type</th>
<th>Data</th>
<th>NSA Programs</th>
<th>Techniques</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td>Plaintext</td>
<td>PRISM, Xkeyscore...</td>
<td>Data collection, wiretapping, eavesdropping, agreements with industry/providers,...</td>
<td>Google, Facebook, Apple, Microsoft (including Skype)...</td>
</tr>
<tr>
<td></td>
<td>Ciphertext</td>
<td>Bullrun/Edgehill...</td>
<td>Malware, 0-day exploitation, random generator control, security standards control, controlling CAs, bugging software, applied cryptanalysis...</td>
<td>Heartbleed, RSA, Google/ANSSI, Mail.ru, Alibaba...</td>
</tr>
<tr>
<td>Connected by private network</td>
<td>Ciphertext</td>
<td>Cottonmouth, Godsurge, TOR attack, Quantum, Foxacid, Firework, Bulldozer...</td>
<td>Malware, 0-day exploitation, random generator control, controlling CAs, security standards control, bugging software, hardware bugs, mathematical trapdoors...</td>
<td>TOR network, Gasprom, Petrobras, French MFA, Aeroflot, Total. Airbus, SWIFT...</td>
</tr>
<tr>
<td>Non-connected (offline)</td>
<td>Ciphertext</td>
<td>TAO, still unknown projects???</td>
<td>Tempest techniques, mathematical backdoors, hardware bugging, Humint</td>
<td>Hans Buehler Case (1995), Gov, MIL, Sensitive companies</td>
</tr>
</tbody>
</table>
Trapdoor vs Backdoors

- Trapdoors are an intended and necessary feature in asymmetric cryptology
- Backdoors are an undesirable feature
- Implementation backdoors
 - Key escrowing, key management and key distribution protocols weaknesses (refer to recent CIA leak)
 - So called OS/software (recurrent) vulnerabilities (invoking developers incompetence is much clever)
 - Hackers are likely to find and use them as well
Mathematical Backdoors

- **Key Principle**
 - Put a secret flaw at the design level while the algorithm remains public
 - Finding the backdoor must be an intractable problem while exploiting it must be “easy”

- **Two kinds of backdoors**
 - “Natural weakness” known by the tester/certifier (e.g. NSA case with differential cryptanalysis)
 - Intended weakness put by the encryption algorithm designer

- Extremely few open and public research in this area
- Known existence of NSA and GCHQ research programs
- Sovereignty issue: can we trust foreign encryption algorithms?
Aim of our Research

- Try to answer to the key question
 - "How easy and feasible is it to design and to insert backdoors (at the mathematical level) in encryption algorithms?"
Aim of our Research

- Try to answer to the key question
 - “How easy and feasible is it to design and to insert backdoors (at the mathematical level) in encryption algorithms?”
- Explore the different possible approaches
 - The present work is a first step
 - We consider a particular case of backdoors here (linear partition of the data spaces)
Aim of our Research

- Try to answer to the key question
 - “How easy and feasible is it to design and to insert backdoors (at the mathematical level) in encryption algorithms?”
- Explore the different possible approaches
 - The present work is a first step
 - We consider a particular case of backdoors here (linear partition of the data spaces)
- For more details on technical aspects, please refer to our free book
 - Available on https://www.intechopen.com/books/partition-based-trapdoor-ciphers
Summary of the talk

1. Introduction: what is the issue?

2. History of known (and less known) backdoored algorithms

3. Description of BEA-1

4. BEA-1 Cryptanalysis

5. Conclusion and Future Work
In Switzerland, Crypto AG/Gretag hold more than 90% of the world market (since 1945).

Almost all countries/organizations (120 in 1995) were buying cryptomachines for gvt, mil, diplomatic, economic needs except a very few (USA, France, UK...).

1995 The Hans Buehler case changed the cryptologic face of the (cryptographic) world.
The Hans Buelher Case

[Image of a man]

[Image of a book cover: Verschlüsselt - Der Fall Hans Bühler]

[Image of an event logo: Black Hat Europe 2017]
The Hans Buelher Case

-Leaks in the Press (Berlin Club bombing, Chapur Bakhtiar assassination in Paris) by Gov. officials gave hints to Iranian govt that cryptography was probably backdoored.
-9 months in Iranian jails
-Reveals the scandal: NSA, BND and others have infiltrated Crypto AG, Gretag and other companies to put trapdoors in export versions of crypto machines systematically
-The UKUSA/ANZUS countries were able to read openly most of the world encrypted traffic during nearly 50 years
-Exploited the fact that encryption algorithms were not public!
Greatest Intel Coup Of The Century? The NSA's Crypto AG

By Wayne Madsen
Covert Action Quarterly 63, 30 Jan 1999,
From Stig Agermose (stig.agermose@get2net.dk)
2-7-99

Crypto AG: The NSA's Trojan Whore?

FOR AT LEAST HALF A CENTURY, THE US HAS BEEN
INTERCEPTING AND DECRYPTING THE TOP SECRET
DOCUMENTS OF MOST OF THE WORLD'S GOVERNMENTS

"...allows the US to play high-stakes diplomatic poker with a mirror
behind everyone else's back."

It may be the greatest intelligence scam of the century: For decades,
the US has routinely intercepted and deciphered top secret encrypted
messages of 120 countries. These nations had bought the world's
most sophisticated and supposedly secure commercial encryption
technology from Crypto AG, a Swiss company that staked its
reputation and the security concerns of its clients on its neutrality.
Once the cipher machines were rigged to include the secret decryption key, the BND and NSA codebreakers could use the transmitted key to read any message sent by Crypto AG's 120 country customers. One previous Crypto AG employee contends that all developmental Crypto AG equipment had to be sent for approval to the NSA and to the German Central Cipher Bureau (Zentralstelle für Chiffrierung [ZfCh]), now the Federal Information Security Agency (Bundesamt für Sicherheit in der Informationstechnik [BSI]), which is also Department 62 of the BND) in Bad Godesberg, near Bonn.

In other cases, Crypto AG was apparently forced to market encryption equipment manufactured in the US, sent to Crypto, and passed off as Swiss equipment. In the 1970s, as Crypto was moving from electro-mechanical to computerized crypto units, a former Crypto AG engineer in Switzerland inspected one of the first prototype computerized machines sent from the US. He remarked that since the code could be easily broken, he found the machine useless. But when he told his superiors that he could improve the encryption process if he was given access to the mathematical functions, two US cryptographic "experts" refused to disclose the information.

According to a confidential Crypto AG memorandum, one of the NSA "experts" may have been Nora L. Mackabee, an NSA cryptographer who is now retired on a horse farm in Maryland along with her husband Lester, another retired NSA employee. Between August 19 and 20, 1975, three Crypto AG engineers huddled with Mackabee (identified as representing "IA" – most likely "intelligence agency") along with three Motorola engineers and one other American, Herb Frank. One Motorola engineer recalled that Frank was probably from another US intelligence agency based in northern Virginia but described him as a non-technical person who seemed to be making the administrative arrangements for Mackabee.

Crypto engineer Juerg Sporedli, who was responsible for designing the firm's encryption equipment, had heard from older engineers
Crypto engineer Juerg Spoerndli, who was responsible for designing the firm's encryption equipment, had heard from older engineers about the visits in earlier years by mysterious Americans. He concluded that NSA was ordering the design changes through German intermediaries. He confirmed the manipulation and admitted that in the late 1970s, he was "ordered to change algorithms under mysterious circumstances" to weaken his cipher units.
During the sensitive Anglo-Irish negotiations of 1985, the NSA's British counterpart, the GCHQ, was able to decipher the coded diplomatic traffic being sent between the Irish embassy in London and the Irish Foreign Ministry in Dublin. It was reported in the Irish press that Dublin had purchased a cryptographic system from Crypto AG worth more than a million Irish pounds. It was also reported that the NSA routinely monitored and deciphered the Irish diplomatic messages. Later, during the Falklands War, British GCHQ operators were able to decrypt classified Argentine message traffic because the Argentinians were using rigged Crypto AG cipher machines. Former British Foreign Office minister Ted Rowlands publicly stated that GCHQ had penetrated Argentine diplomatic codes.
The NSA program also likely extends to companies in NATO and pro-US countries which have close relationships with GCHQ, NSA, and the BND. Even neutral countries firms are not off-limits to NSA manipulations. A former Crypto AG employee confirmed that high-level US officials approached neutral European countries and argued that their cooperation was essential to the Cold War struggle against the Soviets. The NSA allegedly received support from cryptographic companies Crypto AG and Grettag AG in Switzerland, Transvertex in Sweden, Nokia in Finland, and even newly-privatized firms in post-Communist Hungary.

In 1970, according to a secret German BND intelligence paper, supplied to the author, the Germans planned to "fuse" the operations of three cryptographic firms-Crypto AG, Grattner AG (another Swiss cipher firm), and Ericsson of Sweden. Securocrats often turn to the boogeyman of "rogue" nations in order to justify the expense and ethical necessity of eavesdropping on all forms of international communication, but in reality many intercepts involve messages by neutral or allied nations.
Backdoor Example...Among Many Others

- Example drawn from a série of cryptomachines sold in early 90s and rigged by the NSA
- Base key K (changed every day, week...) and a message key K_m
- A Boolean function defined over \mathbb{F}_2^n which is not correlation-immune is used as a critical primitive
- How to trap the Boolean function:
 - Use a message key $K_m = (k_m^0, k_m^1, \ldots, k_m^i, \ldots, k_m^{2^n-1-1})$ of size 2^{n-1}
 - Xor it by half to the Boolean function truth table
 \[
 \forall x_i \in [0, 2^{n-1} - 1], \quad f(x_i) \leftarrow f(x_i) \oplus k_m^i
 \]
 and \[f(x_i + 2^{n-1}) \leftarrow f(x_i + 2^{n-1}) \oplus k_m^i \]
- The Boolean function remains highly correlated to a few of its input
- Many other tricky variants possible
The Bullrun Program

- **Goal:** bypass operationally any cryptology protection
 - Tampering with national standards (NIST is specifically mentioned) to promote weak, or otherwise vulnerable cryptography (e.g. Dual_EC_DRBG, see further)
 - Influencing standards committees to weaken protocols (or influencing to bar strong algorithms [Gost])
 - Working with hardware and software vendors to weaken encryption and random number generators
 - Identifying and cracking vulnerable keys
 - Establishing a Human Intelligence division to infiltrate the global telecommunications industry
 - ...

- **Annual budget:** 250 millions $ per year.
The Bullrun Program

Revealed: how US and UK spy agencies defeat internet privacy and security

- NSA and GCHQ unlock encryption used to protect emails, banking and medical records
- $250m-a-year US program works covertly with tech companies to insert weaknesses into products
- Security experts say programs 'undermine the fabric of the internet'

- Q&A: submit your questions for our privacy experts

James Ball, Julian Borger and Glenn Greenwald
Guardian Weekly, Friday 6 September 2013
Jump to comments (4142)
Dual Elliptic Curve Deterministic Random Bit Generator (Dual_EC_DRBG). Used to generate random keys. ISO and ANSI standards

Used in many environments (Blackberry, SSL/TLS)

Fixed choice of constants P and Q makes most of the backdoor (see http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualedcrbg.html)

Shumow-Ferguson Crypto 2007

Nobody knows where Dual_EC_RDBG parameters came from

In SSL/TLS, NSA can recover the pre-master secret (RSA handshake) easily
A.1 Constants for the Dual_EC_DRBG

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the elliptic curve. One of the following NIST approved curves with associated points shall be used in applications requiring certification under [FIPS 140]. More details about these curves may be found in [FIPS 186]. If alternative points are desired, they shall be generated as specified in Appendix A.2.

Each of following curves is given by the equation:

\[y^2 = x^3 - 3x + b \pmod{p} \]

Notation:
- p - Order of the field F_p, given in decimal
- n - Order of the Elliptic Curve Group, in decimal
- a - (-3) in the above equation
- b - Coefficient above

The x and y coordinates of the base point, i.e., generator G, are the same as for the point P.

A.1.1 Curve P-256

\[
\begin{align*}
 p &= 11579208921035624876269744694940757353008614 \backslash \\
 &\quad 3415290314195533631308867097853951 \\
 n &= 11579208921035624876269744694940757352999695 \backslash \\
 &\quad 52241357603422259061068512044369 \\
 b &= 5ac635d8\text{ aa3a93e7 b3ebbd55 7e9896bc 651d06b0 cc53b0f6 3bce3c3e} \\
 &\quad 27d2604b \\
 Px &= 6b17d1f2\text{ e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0} \\
 &\quad f4a13945\text{ d898c296} \\
 Py &= 4fe342e2\text{ f6a7f5b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece} \\
 &\quad cbb64068 37bf51f5 \\
 Qx &= c97445f4\text{ 5cdef89f0 d3e05e1e 585fc297 235b2b5 b6e8ff3ef} \\
 &\quad ca67c598 52018192 \\
 Qy &= b28ef557\text{ ba31dfcb dd21ac46 e2a91e3c 304f44cb 87058ada} \\
 &\quad 2cb81515 1e610046
\end{align*}
\]
Dual_EC_RDBG RSA B-Safe

State update

\[s_{i+1} \rightarrow s_i \rightarrow \varphi(r_i^*P) \]

\[\varphi(s_i^*P) \rightarrow r_i \]

Internal state update

Bit generation

\[\varphi(r_i^*Q) \rightarrow t_i \rightarrow \text{LSB}_{\text{bitlen-16}}(t_i) \]

Truncate 16 bits off x-coord

Generate output point
2004 - RSA makes Dual_EC_DRBG the default CSPRNG in BSAFE

2005 - ISO/IEC 18031:2005 and NIST SP 800-90A include Dual_EC_DRBG.

2006 2007 Works suggesting the existence of a NSA backdoor (K. Gjosteen, Berry Schoenmakers and Andrey Sidorenko, Shumow/Fergusson)

June 2006 - NIST SP 800-90A (final) is published, includes Dual_EC_DRBG (defects pointed out by Kristian Gjsteen and al. not fixed).

June/Sep. 2013 Snowden leak about Bullrun and Dual_EC_DRBG

19 Sep. 2013 - RSA Security advises its customers to stop using Dual_EC_DRBG

Dec. 2013 - Reuters reports this is a result of a secret $10 million deal with NSA

April 2014 - NIST removes Dual_EC_DRBG as a cryptographic algorithm, recommending “that current users of Dual_EC_DRBG transition to one of the three remaining approved algorithms as quickly as possible”
NIST standard meant that you could only get the FIPS 140-2 validation (Cryptographic Module Validation Program) only if you used the original compromised P and Q values.

FIPS 140-2 statistical test suite (now NIST STS) are THE de facto world standard for cryptography statistical evaluation/validation.

Passing successfully the tests does not mean your generator is secure.

Can we still trust FIPS 140-2 tests?

Issue of statistical test simulability (Filiol, 2006): “if your statistical tests are known, they can be simulated to bypass them”

Cryptography statistical validation should use a secret national process/set of tests.
June 2013: public release by the NSA of Speck and Simon, two NSA’s families of encryption algorithms (block ciphers)

Since 2014, efforts by the NSA to standardise the Simon and Speck ciphers at ISO

Sept. 2017, ISO rejects Simon and Speck standardisation under the pressure of experts from the academic community and from ISO
Distrustful U.S. allies force spy agency to back down in encryption fight

Joseph Menn

SAN FRANCISCO (Reuters) - An international group of cryptography experts has forced the U.S. National Security Agency to back down over two data encryption techniques it wanted set as global industry standards, reflecting deep mistrust among close U.S. allies.
NSA’s Simon & Speck

NSA Tried to Push Global Encryption Standards “Because It Knew How to Break Them”

By Rafa Shaikh
Sep 22, 2017

The cybersecurity world continues to mistrust the National Security Agency of the United States. According to a latest Reuters report, an international group of cryptography experts from the country’s closest allies has forced the NSA to back down over two encryption techniques that the agency wanted to turn into global industry standards.

US allies accuse NSA of manipulating global cryptography standards

The agency is back in the bad books again after it was discovered by the US allies that the intelligence agency was trying to manipulate international encryption standards. Citing interviews and emails, Reuters reported:
Summary of the talk

1. Introduction: what is the issue?

2. History of known (and less known) backdoored algorithms

3. Description of BEA-1
 - Theoretical Background
 - BEA-1 Presentation and Details

4. BEA-1 Cryptanalysis

5. Conclusion and Future Work
Design Transformation

- Start from an algorithm with backdoor E_{backdoor}
 - In BEA-1, the backdoor is essentially made of “secret” S-boxes
Design Transformation

- Start from an algorithm with backdoor $E_{backdoor}$
 - In BEA-1, the backdoor is essentially made of “secret” S-boxes

- Use a one-way transformation S
 - Computing $E = S(E_{backdoor})$ is computationally easy (here E is BEA-1)
 - Computing $E_{backdoor}$ from E is computationally intractable unless you know some secret information S' such that $S' \circ S = \text{Identity}$.
 - E exhibits all desirable cryptographic properties
Design Transformation

- Start from an algorithm with backdoor $E_{backdoor}$
 - In BEA-1, the backdoor is essentially made of "secret" S-boxes

- Use a one-way transformation S
 - Computing $E = S(E_{backdoor})$ is computationally easy (here E is BEA-1)
 - Computing $E_{backdoor}$ from E is computationally intractable unless you know some secret information S' such that $S' \circ S = \text{Identity}$.
 - E exhibits all desirable cryptographic properties

- BEA-1 secret S-Boxes \leftrightarrow BEA-1 public S-Boxes.
Partition-based Trapdoors

- Based on our theoretical work (Bannier, Bodin & Filiol, 2016; Bannier & Filiol, 2017)
 - Generalization of Paterson’s work (1999)
Partition-based Trapdoors

- Based on our theoretical work (Bannier, Bodin & Filiol, 2016; Bannier & Filiol, 2017)
 - Generalization of Paterson’s work (1999)

- BEA-1 is inspired from the *Advanced Encryption Standard* (AES)
 - BEA-1 is a Substitution-Permutation Network (SPN)
 - BEA-1 stands for *Backdoored Encryption Algorithm* version 1
A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be \textit{linear}.

Example of a linear partition over \mathbb{F}_3^2:

$V = \{000, 101\} = \{0, 5\}$,

$001 + V = \{001, 100\} = \{1, 4\}$,

$010 + V = \{010, 111\} = \{2, 7\}$,

$011 + V = \{011, 110\} = \{3, 6\}$.

$L(V) = \{\{0, 5\}, \{1, 4\}, \{2, 7\}, \{3, 6\}\}$.
Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be *linear*.

Example of a linear partition over \mathbb{F}_2^3:
Definition (Linear Partition)
A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be linear.

Example of a linear partition over \mathbb{F}_2^3:

- $V = \{000, 101\} = \{0, 5\},$
Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be \textit{linear}.

Example of a linear partition over \mathbb{F}_2^3:

- $V = \{000, 101\} = \{0, 5\}$,
- $001 + V = \{001, 100\} = \{1, 4\}$,
Linear Partitions

Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be *linear*.

Example of a linear partition over \mathbb{F}_2^3:

- $V = \{000, 101\} = \{0, 5\}$,
- $001 + V = \{001, 100\} = \{1, 4\}$,
- $010 + V = \{010, 111\} = \{2, 7\}$,
Definition (Linear Partition)

A partition of \mathbb{F}^n_2 made up of all the cosets of a linear subspace is said to be *linear*.

Example of a linear partition over \mathbb{F}_2^3:

- $V = \{000, 101\} = \{0, 5\}$,
- $001 + V = \{001, 100\} = \{1, 4\}$,
- $010 + V = \{010, 111\} = \{2, 7\}$,
- $011 + V = \{011, 110\} = \{3, 6\}$,
Linear Partitions

Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be *linear*.

Example of a linear partition over \mathbb{F}_3^2:

- $V = \{000, 101\} = \{0, 5\}$,
- $001 + V = \{001, 100\} = \{1, 4\}$,
- $010 + V = \{010, 111\} = \{2, 7\}$,
- $011 + V = \{011, 110\} = \{3, 6\}$,

$L(V) = \{\{0, 5\}, \{1, 4\}, \{2, 7\}, \{3, 6\}\}$.
Linear Partitions

The 16 linear partitions over \mathbb{F}_2^3:

![Linear Partitions Diagram](image-url)
Linear Partitions

The 16 linear partitions over \mathbb{F}_2^3:

There are 229,755,605 linear partitions over \mathbb{F}_2^{10}.
Assumption
The SPN maps A to B, no matter what the round keys are.
Partition-Based Backdoor SPN

Assumption
The SPN maps \mathcal{A} to \mathcal{B}, no matter what the round keys are.

Theoretical results:
- \mathcal{A} and \mathcal{B} are linear,
The SPN maps A to B, no matter what the round keys are.

Theoretical results:
- A and B are linear,
- A is transformed through each step of the SPN in a deterministic way,
Partition-Based Backdoor SPN

Assumption
The SPN maps \mathcal{A} to \mathcal{B}, no matter what the round keys are.

Theoretical results:
- \mathcal{A} and \mathcal{B} are linear,
- \mathcal{A} is transformed through each step of the SPN in a deterministic way,
- At least one S-box maps a linear partition to another one.
BEA-1 Key Features

Parameters

- BEA-1 operates on 80-bit data blocks
- 120-bit master key and twelve 80-bit round keys
- 11 rounds (the last round involves two round keys)

Primitives & base functions

- Key schedule & key addition (bitwise XOR)
- Substitution layer (involves four S-Boxes over F_{10}^2)
- Diffusion layer (ShiftRows and MixColumns operations)
- Linear map $M: (F_{10}^2)^4 \rightarrow (F_{10}^2)^4$

S-Boxes, linear map M and pseudo-codes for the different functions are given in our free book.

BEA-1 is statistically compliant with FIPS 140 (US NIST standard) and resists to linear/differential attacks.
BEA-1 Key Features

- **Parameters**
 - BEA-1 operates on 80-bit data blocks
 - 120-bit master key and twelve 80-bit round keys
 - 11 rounds (the last round involves two round keys)

- **Primitives & base functions**
 - Key schedule & key addition (bitwise XOR)
 - Substitution layer (involves four S-Boxes over \mathbb{F}_2^{10})
 - Diffusion layer (ShiftRows and MixColumns operations)
 - Linear map $M : (\mathbb{F}_2^{10})^4 \rightarrow (\mathbb{F}_2^{10})^4$
BEA-1 Key Features

- **Parameters**
 - BEA-1 operates on 80-bit data blocks
 - 120-bit master key and twelve 80-bit round keys
 - 11 rounds (the last round involves two round keys)

- **Primitives & base functions**
 - Key schedule & key addition (bitwise XOR)
 - Substitution layer (involves four S-Boxes over \mathbb{F}_2^{10})
 - Diffusion layer (ShiftRows and MixColumns operations)
 - Linear map $M : (\mathbb{F}_2^{10})^4 \to (\mathbb{F}_2^{10})^4$

- S-Boxes, linear map M and pseudo-codes for the different functions are given in our free book
BEA-1 Key Features

- **Parameters**
 - BEA-1 operates on 80-bit data blocks
 - 120-bit master key and twelve 80-bit round keys
 - 11 rounds (the last round involves two round keys)

- **Primitives & base functions**
 - Key schedule & key addition (bitwise XOR)
 - Substitution layer (involves four S-Boxes over \mathbb{F}_2^{10})
 - Diffusion layer (ShiftRows and MixColumns operations)
 - Linear map $M : (\mathbb{F}_2^{10})^4 \rightarrow (\mathbb{F}_2^{10})^4$

- S-Boxes, linear map M and pseudo-codes for the different functions are given in our free book

- BEA-1 is statistically compliant with FIPS 140 (US NIST standard) and resists to linear/differential attacks.
BEA-1 Round Function

(ESIEA - (C + V)\(^0\) lab)
Black Hat Europe 2017
BEA-1 Key Schedule
Summary of the talk

1. Introduction: what is the issue?
2. History of known (and less known) backdoored algorithms
3. Description of BEA-1
4. BEA-1 Cryptanalysis
5. Conclusion and Future Work
Linear Partitions and the Round Function

- Bundle
- Bit
- Bundle
- Bit

\[S_0 \oplus S_1 \oplus S_2 \oplus S_3 \oplus S_0 \oplus S_1 \oplus S_2 \oplus S_3 \]

\[M \oplus M \]

(Bit Bundle)

00–09
10–19
20–29
30–39
40–49
50–59
60–69
70–79

Black Hat Europe 2017
Linear Partitions and the Round Function

$S_0 \oplus S_1 \oplus S_2 \oplus S_3$

Bundle 0
Bit 00–09

Bundle 1
Bit 10–19

Bundle 2
Bit 20–29

Bundle 3
Bit 30–39

Bundle 4
Bit 40–49

Bundle 5
Bit 50–59

Bundle 6
Bit 60–69

Bundle 7
Bit 70–79

$A_1 \oplus B_1 \oplus C_1 \oplus D_1$
Linear Partitions and the Round Function

\[S_0 \oplus A_1 \]

\[S_1 \oplus B_1 \]

\[S_2 \oplus C_1 \]

\[S_3 \oplus D_1 \]

\[M \]

(ESIEA - \((C + V)^0\) lab)
Linear Partitions and the Round Function

\[S_0 \oplus A_1 \oplus B_1 \oplus C_1 \oplus D_1 \]

\[\text{Bundle} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \]

\[\text{Bit} \quad 00-09 \quad 10-19 \quad 20-29 \quad 30-39 \quad 40-49 \quad 50-59 \quad 60-69 \quad 70-79 \]

\[\text{(ESIEA - (C + V)}^0 \text{ lab)} \]
Linear Partitions and the Round Function

Bit Bundle
00–09 0
10–19 1
20–29 2
30–39 3
40–49 4
50–59 5
60–69 6
70–79 7
Linear Partitions and the Round Function

![Diagram showing linear partitions and the round function](image-url)
Principle of the Cryptanalysis

(ESIEA - \((C + V)^0\) lab)
Principle of the Cryptanalysis

\[F \]

Black Hat Europe 2017
Principle of the Cryptanalysis

\begin{align*}
F &\oplus k \\
&\rightarrow
\end{align*}

\text{(ESIEA - (C + V)^O lab) Black Hat Europe 2017 38 / 44}
Principle of the Cryptanalysis

Right Key

Wrong Key

\(\oplus k \)

\(F \)
Principle of the Cryptanalysis

\[F \oplus k \]

Right Key

Wrong Key

\[(ESIEA - (C + V)^0) \text{ lab} \]
Black Hat Europe 2017
Principle of the Cryptanalysis

\(F \oplus k \)

Right Key

\(F^{-1} \)

Wrong Key

\((E+S+I+E+A) \) lab

Black Hat Europe 2017
Principle of the Cryptanalysis

Right Key

Wrong Key

\[F \]

\[F^{-1} \]

\[\oplus k \]

\[\oplus k' \]
Principle of the Cryptanalysis

- **Right Key**: $F^{-1} \oplus k$
- **Wrong Key**: $F^{-1} \oplus k'$

(ESIEA - \((C + V)^O\) lab)

Black Hat Europe 2017
Overview of the Cryptanalysis

Find the output coset of
\((A_2 \times B_2 \times C_2 \times D_2)^2\).
Overview of the Cryptanalysis

Brute force:
\((k_{011}^{11}, k_{111}^{11}, k_{211}^{11}, k_{311}^{11}, k_{411}^{11}, k_{511}^{11}, k_{611}^{11}, k_{711}^{11})\)

Test the \(2^{15}\) saved keys:
\((k_{011}^{11}, k_{111}^{11}, k_{211}^{11}, k_{311}^{11}, k_{411}^{11}, k_{511}^{11}, k_{611}^{11}, k_{711}^{11})\)

Save the \(2^{15}\) best keys:
\((k_{011}^{11}, k_{111}^{11}, k_{211}^{11}, k_{311}^{11}, k_{411}^{11}, k_{511}^{11}, k_{611}^{11}, k_{711}^{11})\)
Overview of the Cryptanalysis

Brute force:

\[(k_{11}^0, k_{11}^1, k_{11}^2, k_{11}^3, k_{11}^4, k_{11}^5, k_{11}^6, k_{11}^7)\]

Test the 2^{15} saved keys:

\[(k_{11}^0, k_{11}^1, k_{11}^2, k_{11}^3, k_{11}^4, k_{11}^5, k_{11}^6, k_{11}^7)\]

Save the 2^{15} best keys:

\[(k_{11}^0, k_{11}^1, k_{11}^2, k_{11}^3, k_{11}^4, k_{11}^5, k_{11}^6, k_{11}^7)\]
Overview of the Cryptanalysis

Brute force:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)

Test the \(2^{15}\) saved keys:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)

Save the \(2^{15}\) best keys:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)
Overview of the Cryptanalysis

Brute force:

\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)

Test the \(2^{15}\) saved keys:

\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)

Save the \(2^{15}\) best keys:

\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)
Overview of the Cryptanalysis

Brute force:
\((k_1^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)

Test the \(2^{15}\) saved keys:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)

Save the \(2^{15}\) best keys:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)
Overview of the Cryptanalysis

Brute force:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)

Test the \(2^{15}\) saved keys:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)

Save the \(2^{15}\) best keys:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)
Overview of the Cryptanalysis

Brute force:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)

Test the 2^{15} saved keys:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)

Save the 2^{15} best keys:
\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)
Overview of the Cryptanalysis

According to the key schedule:

\[k_{10} = k_{11}^0 \oplus k_{4}^1 \]
\[k_{10} = k_{11}^1 \oplus k_{5}^1 \]
\[k_{10} = k_{11}^2 \oplus k_{6}^1 \]
\[k_{10} = k_{11}^3 \oplus k_{7}^1 \]
Overview of the Cryptanalysis

Test the 2^{15} saved keys:

$\left(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11} \right)$
Overview of the Cryptanalysis

Save the best key:

\((k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})\)
Overview of the Cryptanalysis

Observe that:

\[
(k_{10}^9, k_{10}^9, k_{10}^9, k_{10}^9) = M(k_{10}^9, k_{10}^9, k_{10}^9, k_{10}^9)
\]
Overview of the Cryptanalysis

\[(E(SIEA - (C + V)^0)_0}_{lab})\]
Overview of the Cryptanalysis

Brute force:

\((k_4^{10}, k_5^{10}, k_6^{10}, k_7^{10})\)

Test the \(2^{15}\) saved keys:

\((k_4^{10}, k_5^{10}, k_6^{10}, k_7^{10})\)

Save the \(2^{15}\) best keys:

\((k_4^{10}, k_5^{10}, k_6^{10}, k_7^{10})\)
Overview of the Cryptanalysis

Brute force:

\[(k_{4}^{10}, k_{5}^{10}, k_{6}^{10}, k_{7}^{10})\]

Test the \(2^{15}\) saved keys:

\[(k_{4}^{10}, k_{5}^{10}, k_{6}^{10}, k_{7}^{10})\]

Save the \(2^{15}\) best keys:

\[(k_{4}^{10}, k_{5}^{10}, k_{6}^{10}, k_{7}^{10})\]
Overview of the Cryptanalysis

Brute force:

\((k_{10}^{4}, k_{10}^{5}, k_{10}^{6}, k_{10}^{7})\)

Test the \(2^{15}\) saved keys:

\((k_{10}^{4}, k_{10}^{5}, k_{10}^{6}, k_{10}^{7})\)

Save the \(2^{15}\) best keys:

\((k_{10}^{4}, k_{10}^{5}, k_{10}^{6}, k_{10}^{7})\)
Overview of the Cryptanalysis

For each saved key, deduce the cipher key and test it.
Crytanalysis Summary

- Probabilities for the modified cipher
 - $S_0, S_1, S_2: \frac{944}{1024}, \quad S_3: \frac{925}{1024}$
Crytanalysis Summary

- Probabilities for the modified cipher
 - $S_0, S_1, S_2: 944/1024, \quad S_3: 925/1024$
 - Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$
Probabilities for the modified cipher

- $S_0, S_1, S_2: 944/1024$, $S_3: 925/1024$
- Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$
- Full cipher: $(2^{-1})^{11} = 2^{-11}$
Crytalysis Summary

- Probabilities for the modified cipher
 - $S_0, S_1, S_2: \frac{944}{1024}, \quad S_3: \frac{925}{1024}$
 - Round function: $(\frac{944}{1024})^6 \times (\frac{925}{1024})^2 \approx 2^{-1}$
 - Full cipher: $(2^{-1})^{11} = 2^{-11}$
 - If 30 000 plaintexts lie in the same coset, $30 000 \times 2^{-11} \approx 15$ ciphertexts lie in the same coset on average
- Probabilities for the modified cipher
 - S_0, S_1, S_2: $944/1024$, S_3: $925/1024$
 - Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$
 - Full cipher: $(2^{-1})^{11} = 2^{-11}$
 - If 30,000 plaintexts lie in the same coset, $30,000 \times 2^{-11} \approx 15$ ciphertexts lie in the same coset on average

- Complexity of the cryptanalysis
 - Data: 30,000 plaintext/ciphertext pairs (2×300 Kb)
Crytanalytic Summary

- **Probabilities for the modified cipher**
 - S_0, S_1, S_2: $944/1024$, S_3: $925/1024$
 - Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$
 - Full cipher: $(2^{-1})^{11} = 2^{-11}$
 - If 30,000 plaintexts lie in the same coset, $30,000 \times 2^{-11} \approx 15$ ciphertexts lie in the same coset on average

- **Complexity of the cryptanalysis**
 - Data: 30,000 plaintext/ciphertext pairs (2×300 Kb)
 - Time: ≈ 10 s on a laptop (Core i7, 4 cores, 2.50GHz)
Cryptanalysis Summary

- **Probabilities for the modified cipher**
 - S_0, S_1, S_2: $944/1024$, S_3: $925/1024$
 - Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$
 - Full cipher: $(2^{-1})^{11} = 2^{-11}$
 - If 30,000 plaintexts lie in the same coset, $30,000 \times 2^{-11} \approx 15$ ciphertexts lie in the same coset on average

- **Complexity of the cryptanalysis**
 - Data: 30,000 plaintext/ciphertext pairs (2×300 Kb)
 - Time: ≈ 10 s on a laptop (Core i7, 4 cores, 2.50GHz)
 - Probability of success $> 95\%$
Cryptanalysis demo
Summary of the talk

1. Introduction: what is the issue?
2. History of known (and less known) backdoored algorithms
3. Description of BEA-1
4. BEA-1 Cryptanalysis
5. Conclusion and Future Work
Proposition of an AES-like backdoored algorithm (80-bit block, 120-bit key, 11 rounds)

- The backdoor is at the design level
- Resistant to most known cryptanalyses
- But absolutely unsuitable for actual security
- Illustrates the issue of using foreign encryption algorithms which might be backdoored
Conclusion

- Proposition of an AES-like backdoored algorithm (80-bit block, 120-bit key, 11 rounds)
 - The backdoor is at the design level
 - Resistant to most known cryptanalyses
 - But absolutely unsuitable for actual security
 - Illustrates the issue of using foreign encryption algorithms which might be backdoored

- Future work
 - First step in a larger research work
 - Use of more sophisticated combinatorial structures
 - Considering key space partitioning
 - Other backdoored algorithms to be published.
Thank you for your attention
Questions & Answers