
Fuzzing Kernel Drivers
with Interface Awareness

By Jake Corina and Chris Salls

Linux Kernel

- Generally:

- Kernel takes care of many things (process management,
memory management, filesystems, device control, etc).

- Device handling is done in the kernel.

Kernel SpaceUser Space
System Calls

Device Drivers

- Generally implemented as kernel modules
- There must be an interface exported to userland
- Same as standard interface
- How is this done?
- “Everything is a file”
- Special device files on disk

Operations on Files

- Let’s look at how it’s done for a “normal” file.
- Common syscalls: open, read, write, lseek, etc.
- file_operations structure -- “fops”, “f_ops”

Device Files

- As we said, device drivers generally create special files on disk
to represent the physical device (for which they drive).

- How is this done?
- What’s the process, from device registration, to having a file to

talk to?

Request a region of char device numbers.
Place the allocated region into IspDevNo.
Associate the range with ISP_DEV_NAME

Request a region of char device numbers.
Place the allocated region into IspDevNo.
Associate the range with ISP_DEV_NAME

Associate the allocated device with
IspFileOper, a file_operations structure.

Add the device to the system. At this point,
the device is “live”.

Ioctl(s)

- Input Output Control.
- System call to allow device operations that can’t be well

modeled as a “normal” syscall.

Things to Note

- Modular: Allows vendors to add support for hardware!
- Security implications?
- Where is this especially prevalent?

Android

- Based on Linux.
- Dominates the smartphone OS market. 86.8% of the market in

2016 Q3 (Source: IDC, Nov 2016)
- LOTS of hardware to support → Lots of drivers
- So what, are drivers really an issue?

(Jeffrey Vander Stoep of Android Security. 2016.
Android: protecting the kernel. In Linux Security Summit.
Linux Foundation.)

Why?

- Well defined interface
- Which syscall is the problem?

(Jeffrey Vander Stoep of Android Security. 2016.
Android: protecting the kernel. In Linux Security Summit.
Linux Foundation.)

Ioctl

ioctl(int fd,
unsigned long command,
unsigned long param);

copy_from_user(void * to,
 void __user * from,
 unsigned long n)

Solutions

- Static Analysis
- Tons of false positives, huge amount of work to manually check every

warning.
- Dynamic Analysis

- Fuzzing

Fuzzing

- General idea: send random input to a program in hopes of
triggering a bug

- Guaranteed real bugs, and we have a POC to go with it! :)

Kernel Fuzzing

- Model each syscall so we know how to call it and what to pass
as arguments

- This is very hard for ioctls
- Recovering this interface requires LOTS of manual effort, and

as such, ioctls are often neglected when fuzzing.
- Even with a recovered interface, it can be very hard to generate

the correct arguments (super complex structs with embedded
substructs, pointers, etc).

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Cmd: 43256
Param: 65443

Cmd: 1337
Param: 123654

Cmd: 1337
Param: → 4

Cmd: 1337
Param: → 500

Inputs:

Fuzzing Drivers

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

Fuzzing Drivers

Cmd: 1337
Param: → [564645, 0...]

Cmd: 1337
Param: → [77, 321...]

Inputs:

DIFUZE

- Our system that attempts to solve this problem automatically.

DIFUZE

- Our system that attempts to solve this problem automatically.

DIFUZE

- Our system that attempts to solve this problem automatically.

Build Process Instrumentation

- For the majority of our analyses we use LLVM
- Want LLVM bitcode
- Linux Kernel uses GCC
- Build the kernel normally with the provided makefile
- Capture output (build commands)
- Transform GCC commands to Clang commands
- Link bitcode files

DIFUZE

- Our system that attempts to solve this problem automatically.

“Operations” Structure Recovery

- List of “operation” structures
- Grep for definitions in includes
- Use c2xml on relevant header files
- Recover .unlocked_ioctl offset

Ioctl Handler Recovery

- Run analyses on the linked driver bitcode files and search for
uses of the “operations” structures.

- Look for assignments at the offsets recovered
- If found, we’ve found the ioctl handler for that driver, and we

store the name.

DIFUZE

- Our system that attempts to solve this problem automatically.

Device Name Recovery

- Where is this device file and what is it called?
- Recall our journey through the registration of a device.
- If there’s a device file created, it must be associated with the

operations structure we’ve found!
- We use analysis to recover static names

Dynamic Names

- Unfortunately the names aren’t always static.
- We miss dynamic names and must fallback to manual analysis.

DIFUZE

- Our system that attempts to solve this problem automatically.

Command Value + Type Recovery

- Found the ioctl handler function, we run LLVM analyses on the
function.

- Know the arguments of interest.
- We search for equality comparisons on “command”, and keep

track of the constraints on a given path.
- Search for copy_from_user using “param”
- If found, we find the type associated with the first argument.
- Follow functions that are passed “param” and/or “command”

Command Value: ISP_BUFFER_CTRL

Command Value: ISP_BUFFER_CTRL

Command Value: ISP_BUFFER_CTRL

Command Value: ISP_BUFFER_CTRL

Command Value: ISP_BUFFER_CTRL

Command Value: ISP_BUFFER_CTRL

Command Value: ISP_BUFFER_CTRL

Command Value: ISP_BUFFER_CTRL

Command Value: ISP_BUFFER_CTRL
Type: ISP_BUFFER_CTRL_STRUCT

DIFUZE

- Our system that attempts to solve this problem automatically.

Structure Definition Recovery

- Have the GCC build commands
- Know the file we’re looking at
- Use GCC command with -E
- Get a HUGE (40k+ line) file which somewhere will include the

structure definition.
- Run our good friend c2xml on the file and get an equally

massive xml file.
- Python passes to extract the struct + struct dependencies,

account for padding, recover enum values, etc.

Summary

Source Bitcode Ioctl Handler

Device
Names

Argument
Types

Type
Definitions

XML SpecCommands

Awesome!

- Now we’re entirely interface aware.
- We know where the device file is, we know what commands we

can pass it, and we know what arguments those commands
take.

- Need instances of those structures so that we can actually
exercise the behaviour of the device.

DIFUZE

- Our system that attempts to solve this problem automatically.

DIFUZE

- Our system that attempts to solve this problem automatically.

Structure Generation

- Harder than it seems
- Embedded structures and pointers

0

1

2

3

4

DIFUZE

- Our system that attempts to solve this problem automatically.

Type Specific Value Generation

- Generate value(s) for each field in the structure
- Note that since we now have the type information, we can be intelligent about this!

DIFUZE

- Our system that attempts to solve this problem automatically.

MangoFuzz

- Written in Python
- Consumes XML spec file(s)
- XML spec files detail the interface information (device path,

ioctl command ID, target argument, and argument definition)
- Outputs binary blobs, an array of mappings (if needed), and

interface info

XML Spec (jpit)

DIFUZE

- Our system that attempts to solve this problem automatically.

On Device Execution

- When it comes time to actually call ioctl(), it needs to be done
on the device itself.

- Must be an actual execution component running on the device.
- We connect the analysis host and the device via ADB (Android

Debug Bridge).

On Device Execution

- The executor runs on the device and listens for data that will be
sent by the fuzzer component

- At this point, it will map the binary data into memory, and do the
necessary pointer fixups.

- It will then open the device file specified, and call ioctl() with the
command value sent, and the now memory mapped
argument/structure

How do we detect a bug?

- Device reboots
- the kernel backtrace/oops is saved in

/sys/fs/pstore/console-ramoops
- We use this to triage crashes

Time To Test!
Manufacturer Device Chipset

Google Pixel Qualcomm

HTC E9 Plus Mediatek

HTC One M9 Qualcomm

Huawei P9 Lite Huawei

Huawei Honor 8 Huawei

Samsung Galaxy S6 Samsung

Sony Xperia XA Mediatek

Device Name Recovery

Ioctl Handlers Device Names Automatically Identified

789 469

- We automatically identify device names for roughly 60% of the
ioctl handlers.

- Most of these misses come from mainline drivers, which have
a tendency to use dynamic names.

Type + Command ID Recovery

- For 47% of the commands, the user argument is used either as
C Long, or is used as an address for copy_to_user, in these
cases, no type recovery is needed.

- For the rest (53%), the user argument should be a pointer.
- Command ID recovery. Random sample verification of 5 ioctls

for each phone (35 total handlers). 90% accuracy.

Command ID’s Recovered

3565

Long/CTU Scalar Struct Struct w/ Pointers

1688 526 961 390

User Argument Types

Fuzzing Evaluation

- 4 variants
- Syzkaller with:

- Extracted Device Path (PATH)
- Extracted Device Path and Ioctl Numbers (PATH+NUM)
- Extracted Device Path, Ioctl Numbers, and Structures (DIFUZES)

- MangoFuzz
- Extracted Device Path, Ioctl Numbers, and Structures (DIFUZEM)

Fuzzing Results
PATH PATH+NUM DIFUZEs DIFUZEm Total Unique

E9 Plus 0 4 6 6 6

Galaxy S6 - - - 0 0

Honor 8 0 1 2 2 2

One M9 0 3 3 2 3

P9 Lite 0 2 5 5 6

Pixel 1 2 5 3 5

Xperia XA 2 10 13 12 14

Total 3 22 34 30 36

Some Fun Bugs

M4U Out Of Bounds Write

free_id set to -1

Incorrect else and free_id is still -1

Out of Bounds write to index -1

BUG() - CVE-2017-0636

Saw the following in the last kmsg:

“Unable to handle kernel paging request at virtual
address 0000dead”

BUG() - CVE-2017-0636

BUG() - CVE-2017-0636

mmap(0xd000, ...) = 0xd000

Bypass assert and trigger memory corruption

CVE-2017-15307

- Suddenly, fuzzer could no longer find device
- Serial Number had changed to “^Rï£¡DO>l”

Conclusion

- Driver fuzzing can yield a lot of bugs
- Modelling the interface correctly is important
- DIFUZE automatically extracts this info to make fuzzing easy

Questions?

