
Self-Verifying Authentication – A Framework for
Safer Integrations of Single-Sign-On Services

Shuo Chen, Shaz Qadeer, Matt McCutchen, Phuong Cao, Ravishankar Iyer
Microsoft Research, Massachusetts Institute of Technology, University of Illinois

Motivation

• SSO – the “front door” lock for tens of millions of websites

• E.g., Airbnb.com allows Facebook sign in.

• Many companies provide identity services

• Provide SDKs (i.e., lock products) for different web languages

• Step-by-step instructions to teach programmers

• E.g., OpenID Connect 1.0 spec, Azure AD dev guide for Node.JS

• But most website programmers are not experienced

“locksmiths”

• Imagine that you need to read an installation guide, drill holes, and

install a lock cylinder, knobs and steel plates on your front door

• Can every average homeowner do it securely?
2



2

https://www.airbnb.com/
http://openid.net/specs/openid-connect-core-1_0.html
https://azure.microsoft.com/en-us/documentation/articles/active-directory-v2-devquickstarts-node-web/

Security-Critical Logic Bugs are Pervasive

• Numerous studies have shown serious bugs
• Papers in leading academic security conferences

• Findings from the Black Hat community
• E.g., in Black Hat USA 2016 and Black Hat Europe 2016

• Consequences:
• An attacker can sign into a victim’s account

• An attacker can stealthily cause the victim to sign into the attacker’s account
(commonly known as login request forgery)

• Cloud-API integration bugs are the No.4 cloud security top threat
• SSO logic flaws are the primary example of this bug category

3

Attack demos

• Demo 1:

• Microsoft Azure AD library for Node.JS

• Attacker logs into any victim’s account

• Video

• Demo 2:

• https://web.skype.com

• Login request forgery: victim unknowingly login into the attacker’s account

• Video1 video2

• We have reported many SSO issues to various identity providers and websites.

• Companies, big or small, make these mistakes.

4

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-devquickstarts-node-web
file:///C:/Users/shuochen/Videos/BlackHatEuro17/AzureAD.MP4
https://web.skype.com/
file:///C:/Users/shuochen/Videos/BlackHatEuro17/CSRF_attack.MP4
file:///C:/Users/shuochen/Videos/BlackHatEuro17/CSRF_construction.MP4

Alice’s
browser

Example: an SSO bug due to insufficient
logic checks using Google ID

Google ID
service

Relying party
website

redirection1:
realm= the RP’s identity
required=(email,firstname,lastname)

redirection2:
signed=(email,firstname,lastname)
email=“alice@a.com”
firstname=“Alice”
lastname=“Smith”
signature=“HRU436ETQ95TR939”

A simplified illustration of the Google ID protocol
In 2012, it was based on Open ID 2.0

5

redirection2:
signed=(firstname,lastname)
signature=“HRU436ETQ95TR939”
firstname=“Bob”
lastname=“Johnson”
email=“alice@a.com”

Relying party
website

Google ID
service

Bob’s
browser

Vulnerability and attack

redirection1:
realm= the RP’s domain
required=(email,firstname,lastname)

redirection1:
realm= the RP’s domain
required=(email,firstname,lastname)

Google’s signature verified.
Welcome, user “alice@a.com”!

redirection2:
signed=(firstname,lastname)
signature=“HRU436ETQ95TR939”
firstname=“Bob”
lastname=“Johnson”

6

Example: unintended usage of
OAuth 2.0 access token

(2) token

(4) Alice’s basic info

LiveID OAuth
Identity Service

(1) WL.login (“wl.basic”)

(3) me(token)

FooApp on Alice’s
device

Foo.com service

token

FooApp on Alice’s
device

Welcome,
Alice

Welcome,
Alice

7

Confusion about authentication
and authorization

ID Office

The President
authorizes
everybody to view
his public photo

C
h

e
ck

 o
u

t
m

y
p

h
o

to

w
it

h
 t

h
is

 t
o

ke
n

.

OMG!
He () is

the President!

8

demo

../../../video/smaller/Soluto1.wmv

Program verification to prevent logic
bugs in SSO

Our verification technology: self-verifying execution (SVX)

9

Hurdles of traditional verification approaches

• Why can’t I feed my source code P and a property  into a program verifier, and expect bugs to be found

automatically?

• Because program verification is a very challenging task

• Need to model the runtime system R – hard to be precise

• Need to model the unknown attacker A – hard to be exhaustive

• Theorem to prove: if attacker A calls P for infinitely many times, and each time has multiple public APIs, can  ever be violated?

• Need to prove by induction (because of the infinite possibilities of executions) – hard to automate.

Hypothetical
Attacker A

Program P
of interest

underlying runtime
system R

Safety
property 
violated?

10

Basic idea of SVX

• Every actual execution is responsible for collecting its own
executed code, and proving that it satisfies .

• No need to model the attacker
• Because every execution is driven by a real user.

• No need to model the runtime platform
• Because execution happens on the actual platform

• No need for inductive proof
• Because it only proves “this execution satisfies ”, not “all possible

executions satisfy ”.

11

Example: comparing integer
constants among three websites

A
lic

e.
co

m

const int Value=10;
Message grab (Message m1)
{ Message m2;

m2 = <Value, “Alice”>
m2.SignBy(“Alice.com”);
return m2;

}

Charlie.com

const int Value=5;
Message finish (Message m1)
{ ValidateSignature(m1);

Message m2;
m2 = <Value, “Charlie”>;
m2 = max(m1,m2);
conclude(m2);
return m2;

}

B
o

b
.c

o
m

const int Value=40;
Message compare (Message m1)
{ ValidateSignature(m1);

Message m2;
m2 = <Value, “Bob”>;
m2 = max(m1,m2);
m2.SignBy(“Bob.com”);
return m2;

}

Untrusted client

Message

Safety property :
Whenever conclude(m2) is reached, m2 must
represent the website holding the biggest int.

12

The expected protocol flow

Alice.com
(10)

Bob.com
(40)

Charlie.com
(5)

<10, “Alice”>

client

<arbitrary, “nobody”>

<10, “Alice”>

<40, “Bob”>

grab

compare

finish

conclude

<40, “Bob”>

<40, “Bob”>

13

The system is vulnerable!

Alice.com
(10)

Bob.com
(40)

Charlie.com
(5)

<10, “Alice”>

client

<arbitrary, “nobody”>
grab

finish

conclude

<10, “Alice”>

<10, “Alice”>

14

How SVX works

• Attach a field, namely SymT (Symbolic Transaction) onto every message.

• #grab, #compare and #finish are a compact representation of the executed

code of these methods.

15

Verifying an execution

• Method conclude() calls a program verifier to prove:
The final SymT  

• Charlie.com:#finish(Bob.com::#compare(Alice.com::#grab()))   , the
execution is accepted.

• Charlie.com:#finish(Alice.com::#grab()) , the execution is rejected.

• Note that the program verification is symbolic (only about code).
The concrete values are ignored.
• A middle ground between offline symbolic verification and runtime

concrete checking.

• SVX’s performance overhead is near-zero
• Because the theorems can be cached.

• All normal executions should hit the cache.

16

Theorem cache and verification server

Theorem
cache

(SymT  ) ?

Charlie.com SVX verification server on the cloud

C# program verifier

Recover the code
of executed

methods

Synthesize
a straight-line
program using

SymT

cache
hit

( 0 ms)

17

Our open-source project: SVAuth

Safer SSO integration solutions based on SVX

18

The SVAuth framework: SVX with OO

• Defines “login safety” and “login intent” properties at the base class level.

• Every concrete implementations are guaranteed to satisfy the base class level properties!

Generic Auth

OpenID 2.0OAuth 2.0

OpenID Connect 1.0

Microsoft
Live ID

Yahoo LoginFacebook
Connect

a.com

Protocol level

SDK level

Website-specific
customizations

Protocol-independent level
(defining safety properties)

b.com e.org

Google Login

c.com d.com

19

A decades-old problem in verification

• Liskov Substitution Principle (LSP) tries to ensure that

• If a property is true for the base class, then it holds for all derived classes.

20

class Rectangle {

int height, width;

virtual int GetHeight() {return height;}

virtual int GetWidth() {return width;}

virtual void SetHeight(int x) {height=x;}

virtual void SetWidth(int x) {width=x;}

}

void foo(Rectangle r) {

int w=r.GetWidth();

r.SetHeight(3);

Assert(w==r.GetWidth());

}

class Square: Rectangle {

override void SetHeight(int x)

{ height=x;

width=x; }

override void SetWidth(int x)

{ height=x;

width=x; }

}

Rectangle r = new Rectangle();
Assert(foo(r));

Rectangle r = new Square();
Assert(foo(r));

For SVX, there is not confusion

20

Adopting SVAuth on your website -- extremely simple

• SVAuth consists of an agent and an adapter

• Agent: public agent, organizational agent or localhost agent

• Website developer picks an agent, and sets its endpoint in the SVAuth config file

• Copy the adapter folder onto the website

• Assuming website foo.com is in PHP, and wants to do Facebook SSO

• Simply redirect to

“http://foo.com/SVAuth/adaptors/php/start.php?provider=Facebook”

• Magically, the user’s identity information is available in these session variables

Session["SVAuth_UserID"]=108376550318508459185

Session["SVAuth_FullName"]=John Doe

Session["SVAuth_Email"]=johndoe@gmail.com

Session["SVAuth_Authority"]=Google.com

• Website programmers don’t need to know anything about SSO protocols.

21

Our experience

• Current status

• Support 7 SSO services and 3 languages (ASP.NET, PHP and Python)

• Will support more.

• Integration with real-world applications

• MediaWiki (8 lines of code changes)

• Used by a Microsoft Research internal website.

• HotCRP (21 lines of code changes)

• CMT (10 lines of code changes)

• Open source, available on GitHub

• Project repository: https://github.com/cs0317/SVAuth

22

http://authjs.westus.cloudapp.azure.com/SVAuth/adapters/php/AllInOne.php
http://authjs.westus.cloudapp.azure.com/
http://mswiki/
http://authjs.westus.cloudapp.azure.com:8000/
https://cmt3.research.microsoft.com/
https://github.com/cs0317/SVAuth

SVAuth demo

23

Demos

• Buggy code

• Remove cache entries

• Comment out the line stateGenerator.Verify in Facebook.cs

• Login Intent won’t pass.

• Correct code, first execution

• Program verification is triggered

• Both Login Safety and Login Intent pass the verification.

• Correct code, second execution

• Theorems hit the cache, near-zero runtime overhead

24

Black Hat Sound Bytes

• Most website programmers are not experienced “locksmiths”
• Installing an SSO lock securely on a website is not easy.

• SSO security bugs are pervasive. Even big companies make mistakes.

• The problem is well known in the security community.

• Self-verifying execution (SVX)
• It is a “locksmith” built into a lock product.

• The locksmith watches how the lock is opened, and asserts if it is logically sound.

• SVAuth – Open-source SSO framework based on SVX
• Please adopt SVAuth on your websites

• Or, join the project to improve the code.

• Let’s fundamentally address the SSO security bugs.

25

