bisichat

DeCeMBeEeER 4-27 2017
EXCEL /~ LONDON, UK

Self-Verifying Authentication — A Framework for
Safer Integrations of Single-Sign-On Services

Shuo Chen, Shaz Qadeer, Matt McCutchen, Phuong Cao, Ravishankar lyer
Microsoft Research, Massachusetts Institute of Technology, University of lllinois

¥ #sBHEU / @BLACK HAT EVENTS

O ——)
black hat Motivation |

ELURURPE == e

e SSO —the “front door” lock for tens of milliol

e E.g., Airbnb.com allows Facebook sign in.

* Many companies provide identity services
* Provide SDKs (i.e., lock products) for different we

 Step-by-step instructions to teach programmers

* E.g., OpenlD Connect 1.0 spec, Azure AD dev guid

e But most website programmers are not expe
“locksmiths”

* Imagine that you need to read an installation guide, drill holes, and
install a lock cylinder, knobs and steel plates on your front door

 Can every average homeowner do it securely? pgthon
Java Java Server Pages

¥ #sBHEU / @BLACK HAT EVENTS

https://www.airbnb.com/
http://openid.net/specs/openid-connect-core-1_0.html
https://azure.microsoft.com/en-us/documentation/articles/active-directory-v2-devquickstarts-node-web/

b.;?;khat Security-Critical Logic Bugs are P

EUROPE 2017

* Numerous studies have shown serious bugs
e Papers in leading academic security conferences

* Findings from the Black Hat community
* E.g.,in Black Hat USA 2016 and Black Hat Europe 2016

* Consequences:
* An attacker can sign into a victim’s account

e An attacker can stealthily cause the victim to sign into the attacker’s account
(commonly known as login request forgery)

* Cloud-API integration bugs are the No.4 cloud security top threat
* SSO logic flaws are the primary example of this bug category

¥ #sBHEU / @BLACK HAT EVENTS

b.é?;k ot Attack demos

EUROPE 2017

 Demo 1:
Microsoft Azure AD library for Node.JS

Attacker logs into any victim’s account
Video

 Demo 2:
* https://web.skype.com

* Login request forgery: victim unknowingly login into the attacker’s account
* Videol video2

 We have reported many SSO issues to various identity providers and websites.
 Companies, big or small, make these mistakes.

¥ #sBHEU / @BLACK HAT EVENTS

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-devquickstarts-node-web
file:///C:/Users/shuochen/Videos/BlackHatEuro17/AzureAD.MP4
https://web.skype.com/
file:///C:/Users/shuochen/Videos/BlackHatEuro17/CSRF_attack.MP4
file:///C:/Users/shuochen/Videos/BlackHatEuro17/CSRF_construction.MP4

Example: an SSO bug due to insuffici
blaeichat E .

—Lmore =201~ logic checks using Google ID

@ Asimplified illustration of the Google ID protocol
@ In 2012, it was based on Open ID 2.0

redirectionl:
realm= the RP’s identity
required=(email,firstname,lastname)

__ redirection2: _>
Google ID sighed=(email,firstname,lastname) Relying party
service o email="alice@a.com” o website
firstname="Alice”
lastname=“Smith”
signature="HRU436ETQ95TR939”

¥ #sBHEU / @BLACK HAT EVENTS

.

black hat Vulnerability and attack

EURORPE 200

redirection2:

signed=(firstname,lastname)

signature=“HRU436ETQ95TR939”
redirectieRdame="Bob”

realmarhe ABisdemmein

reqained=(emai;firstname,lastname)

redirection2:
signed=(firstname,lastname)

Google’s signature verified.
Welcome, user “alice@a.com”!

Google ID Relying party
service website

¥ #sBHEU / @BLACK HAT EVENTS

O Example: unintended usage of
E!?ﬁtgg; OAuth 2.0 access token

FooApp on Alice’s

LivelD OAuth (1) WL.login (“wl.basic”) q%‘c’viﬁ?)p on Alice@}F
|dentity Service * ddvice ——

(2) token] _'—vZ—
D L

(3) me(token)

(4) Alice’s basic info

Foo.com service

¥ #sBHEU / @BLACK HAT EVENTS

O Confusion about authenticati

E_'lg_%fgfq'; and authorization

ID Office

The President
authorizes
everybody to view
his public photo

Check out my photo

with this token.

demo

@BLACK HAT EVENTS

../../../video/smaller/Soluto1.wmv

blgz:k hat

EUROPE 2017

Program verification to prevent logic
bugs in SSO

¥ #sBHEU / @BLACK HAT EVENTS

& - - .‘ C C C ' .‘. .. 'u

* Why can’t | feed my source code P and a property ¢ into a program verifier, and expect bugs to be found
automatically?

* Because program verification is a very challenging task
* Need to model the runtime system R — hard to be precise
* Need to model the unknown attacker A — hard to be exhaustive
* Theorem to prove: if attacker A calls P for infinitely many times, and each time has multiple public APIs, can ¢ ever be violated?

* Need to prove by induction (because of the infinite possibilities of executions) — hard to automate.

Hypothetical
10 Attacker A ¥ #BHEU / @BLACK HAT EVENTS

blgg:khat Basic idea of SVX

EUROPE 2017

* Every actual execution is responsible for collecting its own
executed code, and proving that it satisfies .

* No need to model the attacker
* Because every execution is driven by a real user.

* No need to model the runtime platform
* Because execution happens on the actual platform

* No need for inductive proof

* Because it only proves “this execution satisfies ¢”, not “all possible
executions satisfy ¢”.

¥ #sBHEU / @BLACK HAT EVENTS

.

Example: comparing integer
,:b_l,?_,%t 22; constants among three websites

const int Value=10; Message
N\ ~ o crals (NAA S oo _ A A AN

Safety property o:
Whenever is reached, must
represent the website holding the biggest int.

Alice.com

const int Value=40; const int Value=5;

Message compare (Message m1) Message finish (Message m1)

{ ValidateSignature(m1); { ValidateSignature(m1);
Message m2; Message m2;) - Charlie.com
m2 = <Value, “Bob”>; m2 = <Value, “Charlie”>;
m2 = max(m1,m2); m2 = max(m1,mz2);
m?2.SignBy(“Bob.com”); conclude(m2);
return m2; return m2;

¥ #sBHEU / @BLACK HAT EVENTS

blgt’:khat The expected protocol flow

LIFHOR&E 2071 .~

client Alice.com Bob.com Charlie.com

10
<arbitrary, “nobody”> (10 (40) (5)

<10, “Alice”> 94 grab
<10, “Alice”> compare

24()' “Bob”>
<40, “Bob”>

<

CKHAT EVENTS

.

blackhat The system is vulnerable!

EUHURPE =&

client

<arbitrary, “nobody”>

Alice.com
(10)

élO, “Alice”>

—

J grab

<10, “Alice”>

Bob.com Charlie.com
(40) (5)

<

<10, “Alice”> [lconclude

¥ #sBHEU / @BLACK HAT EVENTS

blgzzkhat How SVX works

EUROPE 2017

e Attach a field, namely SymT (Symbolic Transaction) onto every message.

 ##grab, #compare and #finish are a compact representation of the executed
code of these methods.

client Alice.com Bob.com Charlie.com

<arbitrary, “nobody”, &> (}0) (40) (5)
<10, “Alice”, Alice.com::#grab()> 4 grab |

<10, “Alice”, Alice.com::#grab()> 4 | compa re|
<40, “Bob”, Bob.com::#compare(Alice.com::#grab())>

\<40, “Bob”, Bob.com::#compare(Alice.com::#grab())>

—
-~

P
Ty,

[<40, “Bob”, Charlie.com:#finish(Bob.com::#compare(Alice.com::#grab()))>conclud

¥ #BHEU / @BLACK HAT EVENTS

bl.—g?:khat Veritying an execution

EUROPE 2017

* Method conclude() calls a program verifier to prove:
The final SymT =2 ¢

. Charlie.com:#finish(Bol-#compare(AIice.com::#grab())) - o, the
execution is accepted.

 Charlie.com:#finish(Alice.com::#grab()) ® ¢, the execution is rejected. x

* Note that the program verification is symbolic (only about code).
The concrete values are ignored.

* A middle ground between offline symbolic verification and runtime
concrete checking.

e SVX’s performance overhead is near-zero
* Because the theorems can be cached.
* All normal executions should hit the cache.

¥ #sBHEU / @BLACK HAT EVENTS

bl.-g?:khat Theorem cache and venﬂcat;ierver

LIFHOR&E 2071 .~

(SymT =>» o) ?
* Recover the code

Synthesize
a straight-line
program using
SymT

(=0 ms) /

Ct ifi
Theorem program verifier
cache

Charlie.com SVX verification server on the cloud

cache ’ of executed

hit methods

¥ #sBHEU / @BLACK HAT EVENTS

blgz:k hat

EUROPE 2017

Our open-source project: SVAuth

¥ #sBHEU / @BLACK HAT EVENTS

bl.'sl?:khat The SVAuth framework: SVX wi_t

EURORPE 200

* Defines “login safety” and “login intent” properties at the base class level.

* Every concrete implementations are guaranteed to satisfy the base class level properties!

Protocol-independent level
(defining safety properties)

Generic Auth

Protocol level

Facebook
Connect

SDK level

Website-specific
customizations

¥ #sBHEU / @BLACK HAT EVENTS

.

blackhat A decades-old problem in verifi

EURUFE =&

* Liskov Substitution Principle (LSP) tries to ensure that

* If a property is true for the base class, then it holds for all derived classes.

class Square: Rectangle {
class Rectangle { override void SetHeight(int x)
int height, width; { height=x;
virtual int GetHeight() {return height;} width=x: }
virtual int GetWidth() {return width;} sveitide veld STk
virtual void SetHeight(int x) {height=x;} { height=x:
virtual void SetWidth(int x) {width=x;} width=x: }

For SVX, there is not confusion

void foo(Rectangle r) { Rectangle r = new Recta
int w=r.GetWidth(); Assert(foo(r));

r.SetHeight(3);

A ==r.GetWidth());

ssert(w==r.GetWidth()); Rectangle r = new Square();
Assert(foo(r)); x

black hat Adopting SVAuth on your webS|te = mely simple

LIFHOR&E 2071 .~

e SVAuth consists of an and an

* Agent: public agent, organizational agent or localhost agent

* Website developer picks an agent, and sets its endpoint in the SVAuth config file
e Copy the adapter folder onto the website

* Assuming website foo.com is in PHP, and wants to do Facebook SSO

e Simply redirect to
“http://foo.com/SVAuth/adaptors/ 1 /start.php?provider= "
* Magically, the user’s identity information is available in these session variables

Session[" "1=108376550318508459185
Session[" "]=John Doe

Session[" "]=johndoe@gmail.com
Session[" "1=Google.com

* Website programmers don’t need to know anything about SSO protocols.

¥ #sBHEU / @BLACK HAT EVENTS

bl.-fl?:k hat Our experience

EUROPE 2017

* Current status
* Support 7 SSO services and 3 languages (ASP.NET, PHP and Python)
e Will support more.

* Integration with real-world applications
* MediaWiki (8 lines of code changes)

* Used by a Microsoft Research internal website.

HotCRP (21 lines of code changes)
CMT (10 lines of code changes)

* Open source, available on GitHub

* Project repository: https://github.com/cs0317/SVAuth

¥ #sBHEU / @BLACK HAT EVENTS

http://authjs.westus.cloudapp.azure.com/SVAuth/adapters/php/AllInOne.php
http://authjs.westus.cloudapp.azure.com/
http://mswiki/
http://authjs.westus.cloudapp.azure.com:8000/
https://cmt3.research.microsoft.com/
https://github.com/cs0317/SVAuth

blgt’:k hat

EURORPE 200

SVAuth demo

¥ #sBHEU / @BLACK HAT EVENTS

blgzzkhat Demos

EUROPE 2017

* Buggy code

* Remove cache entries
 Comment out the line stateGenerator.Verify in Facebook.cs

* Login Intent won’t pass.

e Correct code, first execution
* Program verification is triggered

* Both Login Safety and Login Intent pass the verification.

e Correct code, second execution

 Theorems hit the cache, near-zero runtime overhead

¥ #sBHEU / @BLACK HAT EVENTS

bl.—g?:khat Black Hat Sound Bytes

EUROPE 2017

* Most website programmers are not experienced “locksmiths”
* Installing an SSO lock securely on a website is not easy.
e SSO security bugs are pervasive. Even big companies make mistakes.
* The problem is well known in the security community.

* Self-verifying execution (SVX)
* Itis a “locksmith” built into a lock product.

* The locksmith watches how the lock is opened, and asserts if it is logically sound.

e SVAuth — Open-source SSO framework based on SVX

* Please adopt SVAuth on your websites
* Or, join the project to improve the code.
* Let’s fundamentally address the SSO security bugs.

¥ #sBHEU / @BLACK HAT EVENTS

