
	

	
	

A	Process	is	No	One	
Hunting for Token Manipulation

Jared	Atkinson	

Robby	Winchester	
	

- 1 -

Abstract	
Hunting	has	become	a	very	popular	term	and	discipline	 in	 information	security,	but	there	are	
many	 different	 definitions	 and	 perspectives	 surrounding	 the	 practice.	 In	 this	 paper,	 we	 will	
outline	 how	 we	 view	 hunting	 through	 our	 five	 step	 approach	 to	 perform	 hypothesis	 driven	
hunting.	 In	addition,	we	will	walk	 through	a	case	study	detecting	Access	Token	Manipulation,	
highlighting	the	actions	performed	at	each	step	of	the	process.	At	the	conclusion	of	the	paper,	
the	 reader	 should	 better	 understand	 hunting,	 our	 five-step	 hypothesis	 process,	 and	 how	 to	
apply	it	to	real	world	scenarios.	

	 	

- 2 -

What	is	Hunting?	
We	define	hunting	as	“searching	 for	evidence	of	malicious	activity	which	has	evaded	 in-place	
defensive	 solutions.”	 This	 approach	 assumes	 that	 there	 is	 a	 baseline	 of	 network	 detection	
solutions	 in	 place	 (such	 as	 firewalls	 and	 antivirus)	 which	 are	 configured	 and	 blocking	 some	
initial	level	of	malicious	activity	in	the	environment.	The	purpose	of	hunting	is	to	search	in	areas	
that	 are	 not	 currently	 covered	 by	 defensive	 security	 solutions	 or	 where	 coverage	 is	 lacking.	
Hunting	 is	 not	 designed	 to	 replace	 traditional	 network	 defense	 tools	 or	 solutions,	 rather,	
hunting	is	a	means	to	ensure	that	existing	defensive	solutions	are	being	fully	utilized	and	that	
the	security	landscape	is	being	regularly	evaluated	for	new	threats.	
	
The	 end	 goal	 of	 the	 hunting	 effort	 should	 be	 to	 discover	 new	 threats	 to	 the	 environment,	
identify	high	fidelity	detections	specific	for	the	environment,	and	supply	those	detections	to	the	
network	defense	team	to	continually	advance	the	security	baseline.	

	
Hunting	Methodology	
There	 are	 several	 different	 approaches	 to	 hunting,	 all	 with	 the	 same	 end	 goal	 to	 detect	
malicious	 activity.	 The	 first	 approach	 that	 often	 occurs	 is	 to	 purchase	 a	 tool	which	 performs	
“hunting”	for	the	company	with	minimal	staff	involvement.	This	approach	will	often	leave	a	lot	
to	 be	 desired,	 as	 each	 environment	 is	 unique	 and	 has	 different	 operating	 requirements	 and	
configurations.	 A	 completely	 automated	 hunt	 solution	 requires	 a	 large	 amount	 of	 effort	 in	
baselining	 to	 ensure	 that	 there	 are	 not	more	 alerts	 than	 there	 is	 time	 to	 investigate.	 This	 is	
commonly	 known	as	 the	 “false	positive	problem.”	Additionally,	 automated	hunt	 solutions	do	
not	take	into	account	the	unique	concerns	or	configurations	of	the	specific	environment,	which	
may	 leave	gaps	 in	security	coverage.	Finally,	 this	solution	requires	 that	 the	purchased	toolset	
remain	the	best	choice	for	the	environment,	otherwise	it	will	be	necessary	to	migrate	to	a	new	
hunting	 solution.	 Investing	 in	 another	 security	 solution	 for	 hunting	 will	 likely	 increase	 the	
security	posture	of	the	environment,	but	is	not	a	complete	solution	to	hunting.	

- 3 -

The	next	common	approach	is	two	a	part	process;	gather	as	much	information	as	possible	from	
the	environment	and	have	analysts	hunt	for	malicious	activity	in	that	data	set.	This	process	will	
still	 require	some	type	of	 tools	 for	collection	of	 information	as	well	as	a	Security	 Information	
and	Event	Management	(SIEM)	solution	to	centralize	all	of	the	gathered	event	information	for	
analysis.	 This	 approach	 allows	 for	 the	 organization	 to	 ensure	 that	 all	 desired	 information	 is	
being	 gathered	 for	 analysis,	 however	 it	 often	 lacks	 the	 automated	 alerting	 and	 built	 in	
detections	of	a	commercial	hunt	tool.	It	also	requires	that	the	hunt	analysts	evaluating	the	data	
are	 competent	 and	 understand	what	 is	 “good”	 and	 “bad”	 in	 the	 environment.	When	 this	 is	
combined	 with	 the	 normally	 large	 amount	 of	 information	 being	 gathered,	 searching	 for	 a	
needle	 in	 an	 ever	 growing	 haystack	 seemingly	 becomes	 an	 impossible	 task	 for	 the	 analyst.	
Supplying	an	analyst	with	a	large	amount	of	information,	but	not	providing	sufficient	focus	can	
lead	to	gaps	in	what	is	being	hunted	for	in	the	environment	and	difficulty	selecting	what	types	
of	activity	to	hunt.	

The	final	approach	we	commonly	see,	and	our	recommended	approach,	is	a	“hypothesis”	based	
hunt	 process.	 In	 this	 approach	 the	 hunt	 team	 first	 makes	 a	 hypothesis	 related	 to	 malicious	
activity	in	the	environment,	then	gathers	data	specific	to	the	hypothesis,	and	performs	hunting	
actions	to	support	researching	the	hypothesis.	 In	this	approach,	there	is	a	focus	and	direction	
for	 hunting	 provided	 by	 the	 hypothesis,	 which	 ensures	 that	 the	 desired	malicious	 activity	 is	
being	 detected	 in	 the	 environment.	 Hypothesis-driven	 hunting	 is	 only	 as	 good	 as	 the	
hypotheses	which	 are	 used	 to	 run	 the	 program,	 however	 there	 is	 little	 guidance	 for	 how	 to	
create	and	track	hunt	hypothesis	over	time.	In	order	to	streamline	this	process	we	have	created	
a	5	step	process	for	creating	hunt	hypotheses	which	are	actionable	by	analysts	and	can	easily	
allow	for	tracking	of	the	hunt	effort	over	time.	 	

- 4 -

Hunt	Hypothesis	Process	
The	 overall	 goal	 of	 hypothesis-driven	 hunting	 on	 the	 surface	 seems	 fairly	 simple:	 create	 a	
hypothesis,	 gather	 data	 to	 research	 the	 hypothesis,	 and	 determine	 if	 the	 hypothesis	 was	
correct.	 However,	 the	 actual	 creation	 of	 good,	 meaningful	 hunt	 hypotheses	 can	 be	 very	
difficult.	If	the	hypothesis	is	too	specific	(such	as	searching	the	environment	for	network	traffic	
to	 “known	 bad”	 destinations	 from	 threat	 intelligence)	 then	 there	 is	 a	 high	 likelihood	 that	
attacker	 activity	 may	 continue	 to	 evade	 detection.	 If	 the	 hypothesis	 is	 too	 broad	 (such	 as	
searching	the	environment	for	the	presence	of	FIN7)	then	it	will	be	difficult	for	the	investigation	
to	be	completed	in	a	timely	manner	and	hard	for	the	analysts	to	find	a	place	to	start.	
	
With	this	in	mind,	we	created	our	Hunt	Hypothesis	Generation	Process,	which	breaks	down	the	
creation	of	 a	hunt	hypothesis	 into	5	phases.	 Following	 this	process	will	 ensure	 that	 the	hunt	
hypotheses	 will	 be	 achievable	 by	 the	 hunt	 team	 and	 lead	 to	 a	 better	 overall	 environment	
security	posture.	Prior	 to	beginning	the	hunt	hypothesis	generation	process,	 it	 is	advisable	 to	
learn	about	Tactics,	Techniques	and	Procedures	(TTPs)	as	well	as	a	 familiarity	with	the	MITRE	
ATT&CK	 Matrix1	 which	 will	 be	 heavily	 referenced	 in	 this	 whitepaper.	 For	 more	 information	
about	how	we	use	the	terminology	TTPs	can	be	found	please	refer	to	our	“What’s	in	a	Name?	
TTPs	in	InfoSec”	blog	post2.	

Phase	1:	Identify	the	Tactic	and	Technique(s)	
The	 first	 phase	 of	 the	 hypothesis	 generation	 process	 is	 designed	 to	 determine	 the	 general	
direction	for	the	hunt	hypothesis.	This	normally	will	begin	with	some	overall	stimulating	event,	
question,	concern,	or	attack	that	is	affecting	the	organization	or	other	companies	in	the	same	
sector.	The	first	task	is	to	break	down	that	general	concern,	say	for	example	use	of	Mimikatz	in	
the	environment,	 into	 the	different	 tactics	and	 then	techniques	 that	compose	 it.	For	 this,	we	
use	 the	 MITRE	 ATT&CK	 matrix,	 which	 we	 have	 found	 to	 be	 the	 best	 reference	 for	 a	
comprehensive	list	of	attacker	TTPs.	To	properly	understand	which	tactics	are	being	used	may	
require	some	upfront	 research	to	better	understand	at	a	high	 level	what	 is	 involved	with	 the	
originating	concern,	especially	if	the	topic	is	not	well	understood.	
	
Once	 sufficient	 research	 has	 been	 performed,	 there	 should	 be	 one	 or	more	 tactics	 that	 are	
involved	 in	 the	 attack.	 The	 first	 step	 is	 to	 choose	 one	 tactic	 to	 focus	 on	 for	 the	 hypothesis.	
There	are	many	different	approaches	to	selecting	the	targeted	tactic.	The	selected	tactic	may	
represent	the	highest	perceived	threat,	the	area	where	there	is	the	least	other	coverage,	or	a	
tactic	 that	 has	 not	 been	 otherwise	 covered	 over	 a	 period	 of	 time.	 Once	 a	 tactic	 is	 selected,	

1 https://attack.mitre.org/wiki/Main_Page
2 https://posts.specterops.io/whats-in-a-name-ttps-in-info-sec-14f24480ddcc

- 5 -

additional	 research	will	be	necessary	 to	understand	the	different	 techniques	which	 fall	under	
the	selected	tactic.		
	
Just	as	there	may	be	many	tactics	involved	with	any	given	attack,	there	will	also	likely	be	several	
different	 techniques.	After	 completing	 the	 research	 and	having	 an	understanding	of	what	 all	
techniques	are	included,	the	final	part	of	the	first	phase	is	to	select	a	single	technique	to	focus	
on,	similar	to	the	selection	of	a	single	tactic.	As	with	the	selection	of	the	tactic,	there	is	no	one	
method	for	selecting	which	technique	will	be	the	focus	of	the	hunt	hypothesis.	The	technique	
may	be	selected	based	on	the	perceived	frequency	of	occurrence/likelihood,	the	damage	to	the	
organization	 should	 that	 activity	 be	 present,	 or	 the	 lack	 of	 coverage	 for	 that	 type	 of	 activity	
currently	being	present	in	the	environment.	
	
If	there	is	no	specific	event	or	concern	that	is	stimulating	the	hypothesis	generation,	the	MITRE	
ATT&CK	Matrix	can	be	directly	consulted,	selecting	a	tactic	and	technique	from	the	matrix.	This	
may	be	done	either	based	on	an	area	where	current	coverage	is	lacking	or	historically	has	not	
been	investigated.	
	
Determining	the	targeted	attacker	tactic	and	technique	will	provide	the	necessary	direction	for	
having	an	actionable	hunt	hypothesis.	The	first	phase	ensures	that	what	may	have	started	out	
as	a	vague	concern	or	problem	will	be	solidified	into	the	specific	attacker	tactic	and	technique	
most	concerning	to	the	organization.	

Phase	2:	Identify	the	Procedures	
Phase	2	begins	with	a	selected	attacker	tactic	and	technique	for	investigation	from	Phase	1,	but	
that	is	still	not	enough	specificity	to	actually	perform	a	hunt	effort.	The	next	step	is	to	identify	
the	 specific	methods	 that	 are	 used	 to	 perform	 the	 attack,	 the	 procedures	 portion	 of	 TTP,	 in	
order	to	provide	a	targeted	focus	to	the	hunt	hypothesis.	
	
Further	 research	 is	 required	 during	 this	 phase	 to	 identify	 and	 understand	 the	 different	
procedures	 that	 are	 used	 by	 an	 attacker	 to	 accomplish	 the	 technique.	Much	 of	 this	 type	 of	
information	 is	 found	 in	 technical	 threat	 intelligence	 reports	 and	 technical	 attack	 write-ups	
found	online.	The	goal	 is	 to	determine	what	are	 the	actual	specific	 tools,	command	 lines,	etc	
that	the	attacker	uses	for	this	technique,	however,	not	just	obtain	hashes	to	add	to	a	blacklist.		
	
The	primary	 focus	 is	 to	determine	what	 is	 common	across	various	procedures.	 Is	 there	some	
system	requirement	for	the	attack	to	be	successful?	Is	there	a	single	tool	that	is	frequently	used	
by	multiple	different	actors	to	perform	similar	tasks?	Are	there	built	in	system	functions	being	

- 6 -

used	 that	 leave	evidence?	Evaluating	what	different	procedures	are	 in	use	and	how	 they	are	
related	with	help	with	selecting	which	procedures	will	be	the	focus	of	the	hunt	investigation.	
	
After	 performing	 the	 research	 to	 understand	 what	 different	 procedures	 there	 are	 for	
performing	the	targeted	technique,	it	is	necessary	to	select	the	targeted	procedures	which	will	
be	part	of	the	hunt	hypothesis.	This	represents	the	last	part	of	the	“what”	is	being	looked	for	in	
the	 hypothesis;	 the	 following	 steps	will	 flesh	 out	 “how”	 you	 are	 looking	 for	 evidence	 of	 the	
activity	and	the	“when	and	where”	you	are	looking.	

Phase	3:	Identify	Collection	Requirements	
Phase	3	 is	 the	most	 involved	phase,	 requiring	 the	 time	and	effort	 spent	performing	 research	
and	development	focused	by	the	first	two	phases.	The	objective	of	this	phase	is	to	determine	
what	 information	 is	 required	 to	be	 gathered	 and	how	 to	obtain	 that	 information	 in	order	 to	
detect	the	highlighted	activity.		
	
There	 are	 two	 primary	methods	 that	 can	 be	 used	 to	 determine	what	 evidence	 of	 activity	 is	
created	by	the	procedures:	referencing	existing	technical	write-ups	and	performing	testing	on	
your	own.	Existing	write-ups	provide	a	great	starting	point	and	can	highlight	known	evidence,	
however	it	is	best	to	personally	validate	as	much	of	the	findings	as	possible	to	determine	if	any	
additional	evidence	is	being	missed.	Replicating	the	malicious	activity	in	a	lab	environment	and	
monitoring	for	what	types	of	evidence	are	generated	will	validate	existing	findings	and	help	to	
identify	any	new	sets	of	information	which	may	be	used	for	detection.		
	
Once	 the	 information	necessary	 to	detect	 the	activity	has	been	 identified,	 the	next	step	 is	 to	
determine	how	to	collect	that	information	in	the	environment.	It	is	important	to	consider	that	
the	necessary	data	may	already	being	 gathered	 in	 the	environment,	 however	 the	 analysis	 to	
detect	this	activity	on	that	data	may	not	be	currently	occurring.	For	data	that	 is	not	currently	
being	collected,	it	may	be	necessary	to	develop	a	new	method	for	gathering	that	information.	
This	may	involve	purchasing	a	new	tool	purposefully	selected	for	gathering	this	information	or	
the	development	of	a	new	internal	capability	leveraging	existing	technology	currently	in	place.	
	
Once	a	basic	understanding	has	been	achieved	about	how	the	malicious	activity	functions	and	
what	 evidence	 of	 the	 activity	 is	 present,	 the	 next	 step	 is	 to	 test	 the	 identified	 collection	
requirements	against	a	sample	production	system	or	network.	Activity	that	may	have	stood	out	
on	a	test	host	or	network	may	end	up	being	very	similar	to	legitimate	activity	and	therefore	be	
difficult	to	detect.	Testing	against	a	replica	system	and/or	network	will	help	reduce	the	number	
of	false	positives	occurring	during	the	actual	implementation	of	the	hunt	hypothesis.	

- 7 -

Phase	4:	Identify	the	Scope	
The	focus	of	this	phase	is	to	determine	what	scope,	both	of	time	and	coverage	of	systems,	can	
be	accomplished.	Our	recommendation	 is	 limiting	the	timeframe	to	one	week	per	hypothesis	
and	scoping	the	number	of	systems	appropriately.	This	ensures	that	problems	are	broken	down	
into	 achievable	 pieces	 and	 that	 progress	 can	 be	made	 in	 the	 environment	week	 over	week.	
Assuming	a	one	week	timeframe,	the	complexity	of	the	collection	requirements	from	phase	3	
will	be	the	primary	driver	behind	the	number	of	systems	which	will	be	included	in	the	scope.	
	
There	are	many	approaches	 that	 can	be	 taken	 to	prioritize	 scoping	of	 systems.	Firstly,	 threat	
intelligence	information	may	be	used	to	determine	what	types	of	systems	are	most	targeted	or	
geographic	regions	facing	increased	malicious	activity.	Another	approach	could	be	focusing	first	
on	 the	 “crown	 jewel”	 systems	which	 are	most	 important	 to	 business	 operations.	 Finally,	 the	
most	 broad	 scope	would	 be	 all	 systems	 in	 the	 environment	which	 could	 be	 affected	 by	 the	
threat,	 though	 this	 may	 be	 difficult	 to	 complete	 in	 a	 one	 week	 execution	 for	 a	 large	
environment.	
	
At	the	conclusion	of	this	phase	all	the	necessary	parts	of	the	hunt	hypothesis	will	be	complete,	
allowing	 for	a	 focused	hunt	effort	with	a	very	 targeted	 focus	 that	will	address	a	very	specific	
question	about	activity	present	in	the	environment.	

Phase	5:	Document	Excluded	Factors	
The	 final,	and	arguably	most	 important,	phase	 is	 the	documentation	of	what	TTPs	and	scope	
were	not	 included	 in	 the	current	hypothesis.	For	each	of	 the	other	phases,	 the	effort	was	on	
whittling	down	focus	to	a	highly	focused	hunt	hypothesis	that	is	actionable	by	a	hunt	team.	For	
this	phase	the	focus	is	to	document	the	TTPs	and	scope	which	were	not	included	in	the	current	
hunt	hypothesis.	
	
Documenting	 this	 information	 serves	many	purposes,	 first	of	which	 is	 tracking	what	TTPs	are	
being	 hunted	 for	 in	 an	 environment	 and	which	 are	 not.	 The	 areas	 excluded	were	needed	 to	
focus	 the	 hypothesis	 and	make	 it	 actionable.	 Each	 of	 the	 excluded	 factors	may	 turn	 into	 it’s	
own	hunt	hypothesis	in	the	future	with	that	being	the	new	focus.	
	
Tracking	what	 is	being	hunted	for	 in	 the	environment	and	then	adjusting	the	 focus	to	ensure	
that	you	are	not	always	excluding	the	same	TTPs	or	scope	of	systems	will	maximize	 the	hunt	
capability.	

	

- 8 -

Case	Study	-	Detecting	Access	Token	Manipulation	

Situation	
This	 section	 of	 the	 white	 paper	 focuses	 on	 the	 practical	 application	 of	 the	 Hunt	 Hypothesis	
Generation	 Process.	 For	 the	 sake	 of	 this	 case	 study,	 we	 will	 use	 a	 notional	 business	 that	 is	
looking	 to	 incorporate	hunting	 into	 their	 security	program.	This	notional	business	 is	medium-
sized	 with	 a	 relatively	 small	 security	 budget,	 which	 means	 their	 network	 does	 not	 have	 an	
Endpoint	Detection	and	Response	(EDR)	solution,	no	lateral	network	visibility,	and	every	user	is	
a	local	administrator	on	their	own	machine.	Since	limited	resources	are	available,	it	is	extremely	
important	to	implement	a	well	organized	hunt	methodology.	

Phase	1:	Identify	the	Tactic	and	Technique(s)	
A	 great	 first	 step	 for	 a	 new	 hunt	 program	 is	 to	 start	 with	 building	 detections	 around	 open	
source	or	well	known	attack	tools.	The	idea	here	is	that	if	a	program	cannot	detect	well	known	
attack	tools	(from	a	behavioral	perspective)	then	it	 is	unlikely	that	 it	can/will	detect	unknown	
tools	 or	 capabilities.	 The	 company’s	 Hunt	 team	 has	 followed	 the	 use	 of	 PowerShell	 based	
malware	 over	 the	 past	 couple	 of	 years	 and	 is	 particularly	 interested	 in	 being	 able	 to	 detect	
PowerShell	 Empire	 within	 their	 domain.	 The	 first	 phase	 of	 the	 Hunt	 Hypothesis	 Generation	
Process	is	to	break	PowerShell	Empire	into	its	component	capabilities	(what	attack	techniques	
does	 it	 implement).	 The	biggest	mistake	organizations	make	with	 their	Hunt	operations	 is	 to	
build	 detections	 around	 individual	 malware	 instead	 of	 the	 techniques	 that	 malware	
implements.	There	are	only	a	 finite	number	of	attack	 techniques,	while	new	malware	can	be	
created	for	eternity.	
	
The	 goal	 of	 this	 phase	 is	 to	 select	 a	 particular	 Tactic	 and	 Technique	 to	 research	 and	 build	 a	
detection	 for.	 Since	we	 selected	 PowerShell	 Empire	 as	 our	 example,	we	 can	 now	 analyze	 its	
behavior	to	 identify	the	Tactics	and	Techniques	 it	provides	through	 its	capabilities.	Below	is	a	
bulleted	list	of	the	Tactics	found	within	PowerShell	Empire:	

• Persistence	
• Privilege	Escalation	
• Defense	Evasion	
• Credential	Access	
• Discovery	
• Lateral	Movement	
• Execution	
• Collection	
• Exfiltration	

- 9 -

• Command	and	Control	
	
We	identified	that	all	users	are	members	of	the	local	administrators	group	on	their	own	system	
and	we	know	that	we	do	not	have	any	auditing	over	privileged	accounts.	Privilege	Escalation	is	
a	known	limitation	for	our	current	collection	capabilities,	so	we	have	chosen	this	tactic	to	focus	
on	for	this	hypothesis.	The	next	step	is	to	determine	the	list	of	Privilege	Escalation	techniques	
implemented	by	PowerShell	Empire.	Our	list	is	below:	

• Privilege	Escalation	
o Access	Token	Manipulation	
o Accessibility	Features	
o Bypass	User	Account	Control	
o DLL	Injection	
o DLL	Search	Order	Hijacking	
o File	System	Permission	Weakness	
o New	Service	
o Scheduled	Task	
o Service	Registry	Permission	Weakness	
o Valid	Accounts	

	
To	make	this	hypothesis	digestible,	we	had	to	select	one	Technique	to	focus	our	efforts	around.	
Based	on	its	widespread	use	in	public	attack	toolsets	we	selected	Access	Token	Manipulation	as	
our	targeted	technique.	
	
Access	 Token	 Manipulation3	 is	 an	 attack	 technique	 by	 which	 the	 attacker	 can	 assume	 the	
identity	 of	 a	 different	 user	 account	 (user)	 than	 their	 own	 (their	 current	 user)	 through	 a	
Windows	feature	known	as	 impersonation.	This	technique	allows	an	attacker	to	execute	code	
on	behalf	of	a	higher	privileged	(or	otherwise	different)	user.

Phase	2:	Identify	the	Procedures	
Phase	2	focuses	on	breaking	down	the	selected	technique	into	its	procedural	components	and	
deciding	if	the	components	are	similar	enough	to	address	within	one	hypothesis.	This	phase	is	
where	we	begin	investigating	the	technical	 implementation	of	our	selected	Technique,	Access	
Token	Manipulation,	which	is	a	fancy	name	for	a	mechanism	in	Windows	called	Impersonation.	
Microsoft	 describes	 Impersonation	 as,	 “The	 ability	 of	 a	 thread	 to	 execute	 using	 different	
security	 information	 than	 the	 process	 that	 owns	 the	 thread.	 Typically,	 a	 thread	 in	 a	 server	
application	impersonates	a	client.	This	allows	the	server	thread	to	act	on	behalf	of	that	client	to	

3 https://attack.mitre.org/wiki/Technique/T1134

- 10 -

access	objects	on	the	server	or	validate	access	to	the	client's	own	objects.4”	This	means	that	an	
attacker	can	impersonate	any	user	they	please,	presuming	that	user	is	logged	in	and	has	a	valid	
access	token	to	impersonate.		
	
To	 fully	appreciate	 the	use	of	Access	Token	Manipulation	by	adversaries,	and	how	defenders	
might	 detect	 this	 technique,	 it	 is	 important	 to	 understand	 how	 authentication	 works	 within	
Windows.	 To	 start	 this	 section,	 we	 will	 describe	 the	 components	 of	 the	 Windows	
Authentication	architecture	and	then	we	describe	how	attackers	use	this	knowledge	to	abuse	
these	features.	

Windows	Authentication	Overview	
Authentication	within	Windows	 is	a	very	complex	 subject,	and	while	a	 full	description	of	 this	
process	 is	 outside	 the	 scope	 of	 this	 paper,	 it	 is	 important	 to	 describe	 at	 a	 high	 level	 how	
different	 components	 interoperate	 to	 allow	 local	 and	 domain	 authentication	 to	 function.	 To	
understand	Access	Token	Manipulation,	a	defender	must	understand	two	major	authentication	
components:	 Logon	 Sessions	 and	Access	 Tokens.	Additionally,	we	 found	 that	 Kerberos	 Ticket	
Granting	 Tickets	 are	 also	 quite	 beneficial	 in	 detecting	 some	 attacker	 activity	 that	 in	 our	
estimation	falls	within	the	Access	Token	Manipulation	technique.	

Logon	Session5	
When	 a	 user	 logs-on	 (authenticates)	 to	 a	 Windows	 computer,	 a	 Logon	 Session	 (session)	 is	
created	by	the	chosen	authentication	package	(NTLM,	Kerberos,	Negotiate,	CredSSP,	etc.)6.	The	
authentication	 package	 also	 interacts	 with	 the	 Local	 Security	 Authority	 (LSA)	 to	 retrieve	 the	
information	necessary	to	create	an	Access	Token.	The	session	maintains	a	reference	count	to	
the	Access	Token.	This	reference	count	is	incremented	whenever	a	process	is	created	within	the	
Logon	Session	or	whenever	the	Access	Token	in	impersonated.	When	a	program	is	terminated,	
it	 releases	 its	 handle	 to	 the	 Access	 Token	 and	 the	 reference	 count	 is	 decremented.	 Once	 a	
session’s	Access	Token	has	no	references	left,	the	session	is	terminated.	

Access	Token7	
An	Access	Token	(token)	 is	a	kernel	object	that	describes	the	security	context	of	a	process	or	
thread	 with	 information	 like	 user,	 groups,	 privileges,	 etc.	 Tokens	 are	 used	 by	 the	 operating	
system	to	allow	or	disallow	access	to	securable	objects	or	when	a	user	attempts	to	execute	a	
task	 that	 requires	 privilege.	 Every	 process	 is	 given	 a	 primary	 token	 when	 it	 is	 created.	 A	

4 https://msdn.microsoft.com/en-us/library/windows/desktop/aa376391(v=vs.85).aspx
5 https://msdn.microsoft.com/en-us/library/windows/desktop/aa378338(v=vs.85).aspx
6 https://msdn.microsoft.com/en-us/library/windows/desktop/aa380541(v=vs.85).aspx
7 https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx

- 11 -

process’s	 primary	 token	 describes	 the	 associated	 user	 account	 and	 dictates	 what	 securable	
objects	or	privileged	tasks	the	process	can	perform.	In	certain	situations,	impersonation	is	used	
to	 provide	 a	 process	with	 a	 second	 token,	 this	 time	 applied	 at	 the	 thread	 level.	 This	 second	
token	 is	 referred	 to	 as	 an	 Impersonation	 Token.	 Impersonation	 is	 commonly	 seen	 in	 server	
applications,	 like	 svchost,	 to	 impersonate	a	different	user	 in	 the	 context	of	 certain	 clients.	 In	
cases	where	a	thread	does	not	have	an	Impersonation	Token	applied,	 it	will	use	the	process's	
Primary	Token.	It	is	important	to	note	that	the	token	itself	does	not	contain	a	user’s	credentials,	
as	credentials	are	stored	in	the	context	of	the	Logon	Session	within	the	Local	Security	Authority	
Sub-system	 (lsass)	 process’s	 memory.	 Instead,	 it	 contains	 security	 information	 (such	 as	 the	
user’s	SID	and	group	memberships)	 that	are	used	to	determine	 if	 the	user	should	be	granted	
access	to	a	securable	object.	

Kerberos	Tickets8	
When	a	user	authenticates	via	the	Kerberos	authentication	package,	the	Kerberos	client	on	the	
local	machine	requests	a	Ticket	Granting	Ticket	(TGT)	from	the	Kerberos	Key	Distribution	Center	
(KDC)	and	associates	it	with	the	requesting	session.	In	Windows	Active	Directory	environments,	
the	 KDC	 effectively	 means	 a	 Domain	 Controllers	 (DC).	 The	 TGT	 can	 then	 used	 to	 request	
Kerberos	Ticket	Granting	Service	Tickets	 (service	 tickets)	 to	access	network	 services	 like	CIFS,	
WinRM,	 and	 RPC	 without	 the	 need	 for	 the	 user	 to	 reenter	 their	 password.	While	 Kerberos	
tickets	 are	not	 directly	 related	 to	 the	Access	 Token	Manipulation	 technique,	 the	 relationship	
will	 become	 clear	 when	 we	 start	 talking	 about	 different	 forms	 of	 this	 attack	 technique	 like	
“Make	and	Impersonate	Token”.	

Procedures	
The	 Access	 Token	 Manipulation	 technique	 can	 be	 broken	 down	 further	 to	 its	 individual	
procedures	 or	 implementations.	 In	 this	 section	 we	 will	 discuss	 our	 three	 logically	 separate	
implementations	of	Access	Token	Manipulation.	

Token	Impersonation/Theft9	

The	 most	 straightforward	 implementation	 of	 Access	 Token	 Manipulation	 is	 simple	 Token	
Impersonation	 or	 more	 colloquially,	 Token	 Theft.	 Token	 Theft	 is	 an	 implementation	 of	 the	
Access	 Token	Manipulation	 technique	where	 attackers	 leverage	 the	Windows	 impersonation	
architecture	to	duplicate	and	apply	the	token	of	a	different	user.	A	user	can	“steal”	the	token	of	
a	targeted	user	from	a	process	or	thread	in	that	user’s	session	and	apply	it	to	their	own,	thus	
impersonating	 that	user.	An	example	use	case	 is	 if	a	user	has	 local	administrator	access	on	a	

8 https://msdn.microsoft.com/en-us/library/windows/desktop/aa380510(v=vs.85).aspx
9 https://youtu.be/H6w1Ja1pS84

- 12 -

system	 where	 a	 domain	 administrator	 is	 logged	 on.	 The	 attacker	 can	 steal	 the	 domain	
administrator’s	token	to	escalate	their	privilege	within	the	domain	context.	
	
Below	is	a	description	of	the	Windows	API	functions	that	could	be	used	to	perform	this	attack:	

• OpenProcess	or	OpenThread	-	Request	a	handle	to	a	process	or	thread	with	the	target	
user’s	token.	This	call	is	abstracted	within	PowerShell’s	Get-Process	cmdlet.	

• OpenProcessToken	or	OpenThreadToken	-	Request	a	handle	to	the	target	token.	
• DuplicateToken	-	Create	a	duplicate	of	the	target	token.	
• ImpersonateLoggedOnUser	 or	 SetThreadToken	 -	 Apply	 the	 duplicate	 token	 to	 the	

executing	thread.	
	
It	 is	worth	mentioning	 again	 that	 the	 stolen	 token	 is	 applied	 to	 the	 thread,	 not	 the	 process	
itself,	 as	 an	 Impersonation	 Token.	 When	 a	 defender	 queries	 the	 “owner”	 of	 a	 process,	 the	
owner	is	derived	from	the	Primary	token,	not	the	Impersonation	token.	Thus	in	order	to	detect	
this	method	of	process	token	theft,	we	must	analyze	both	the	process's	token	and	tokens	used	
by	each	thread	in	the	process.	

Create	a	Process	with	a	Token10	

The	 second	 common	 Access	 Token	Manipulation	 scenario	 is	 called	 “Create	 a	 Process	with	 a	
Token”.	 In	 this	 scenario,	 the	attacker	creates	a	duplicate	of	a	 targeted	user’s	 token	and	 then	
calls	the	CreateProcessWithTokenW	function	to	start	a	new	process	with	the	duplicated	token.	

Below	is	a	description	of	the	Windows	API	functions	used	to	perform	this	attack:	

• OpenProcess	or	OpenThread	-	Request	a	handle	to	a	process	or	thread	with	the	target	
user’s	token.	This	call	is	abstracted	within	PowerShell’s	Get-Process	cmdlet.	

• OpenProcessToken	or	OpenThreadToken	-	Request	a	handle	to	the	target	token.	
• DuplicateToken	-	Create	a	duplicate	of	the	target	token.	
• CreateProcessWithTokenW	 -	 Create	 a	 process	 with	 the	 duplicate	 token	 made	 in	 the	

previous	step.	

While	 Token	 Impersonation/Theft	 adds	 an	 Impersonation	 Token	 to	 the	 current	 process’s	
thread,	this	implementation	creates	an	entirely	new	process	with	the	target	token	applied	as	a	
Primary	 Token.	 This	 fact	 makes	 detection	 significantly	 different	 than	 other	 Access	 Token	
Manipulation	attack	implementations,	as	the	new	process	appears,	from	the	token	perspective,	
to	be	a	normal	process.	

10 https://youtu.be/H6w1Ja1pS84?t=20s

- 13 -

Make	Token	and	Impersonate11	

A	 third	 Access	 Token	 Manipulation	 scenario,	 which	 we	 have	 dubbed	 “Make	 Token	 and	
Impersonate”,	comes	about	when	an	attacker	possesses	credentials	 for	a	target	user,	but	the	
user	is	not	logged	on	locally.	There	are	many	situations	in	which	an	attacker	may	gain	access	to	
user	credentials	without	 the	user	being	 logged	on.	Below	 is	a	non-comprehensive	 list	of	such	
situations:	

• Kerberoasting12	
• Dumping	Credentials	(via	Mimikatz,	for	example)	
• Cleartext	Credentials	in	Files	(local	or	network	shares)	
• Passwords	in	Email	
• Passwords	in	SharePoint	or	Internal	Wiki	pages	

In	the	cases	documented	above,	the	attacker	can	create	a	logon	session	for	the	target	user	and	
impersonate	 that	user’s	 session.	The	LogonUser	 function	provides	 the	ability	 to	create	a	new	
“network	only”	logon	session	with	the	LOGON32_LOGON_NEW_CREDENTIALS	flag.	

• LogonUser	 (LOGON32_LOGON_NEW_CREDENTIALS)	 -	 Create	 a	 Logon	 Session	 with	 a	
Logon	Type	of	NewCredential	 (type	9)	 for	 the	 specified	username	and	password.	 This	
Logon	 Session	 will	 act	 on	 behalf	 of	 the	 caller	 locally,	 but	 will	 use	 the	 username	 and	
password	will	be	used	on	the	network.	LogonUser	returns	a	handle	to	the	token	created	
for	the	new	logon	session.	

• SetThreadToken	 -	Applies	 the	 token	created	with	 the	call	 to	LogonUser	 to	 the	current	
thread.	

This	functionality	 is	similar	to	the	runas	application’s	/netonly	flag	as	documented	by	Raphael	
Mudge	in	this	blog	post13.	This	attack	will	result	 in	a	new	Logon	Session	with	a	Logon	Type	of	
NewCredentials	 (9).	 This	 logon	 type	 has	 an	 interesting	 behavior	 as	 it	 creates	 a	 “split	
personality”	where	one	user	(the	caller)	is	used	locally	and	a	different	user	(the	username	and	
password	passed	to	LogonUser)	is	used	for	network	requests.	When	querying	the	associate	user	
for	 the	 session	 or	 token,	 the	 caller	 (original	 user)	 will	 be	 returned.	 We	 have	 not	 found	 a	
straightforward	 mechanism	 in	 Windows	 to	 query	 the	 user	 that	 will	 be	 used	 for	 network	
requests.	

11 https://youtu.be/H6w1Ja1pS84?t=38s
12 https://adsecurity.org/?p=2293
13 https://blog.cobaltstrike.com/2015/12/16/windows-access-tokens-and-alternate-credentials/

- 14 -

Selection	

Since	 “Create	 a	 Process	with	 a	 Token”	 is	 difficult	 to	 distinguish,	 from	 the	 token	 perspective,	
from	any	normal	process,	we	decided	to	exclude	this	implementation	from	this	hypothesis	and	
will	focus	our	efforts	on	“Token	Impersonation/Theft”	and	“Make	Token	and	Impersonate”.	

Phase	3:	Identify	Collection	Requirements	
In	this	phase	we	will	use	open	source	implementations	to	identify	relevant	data	points.	Based	
on	our	understanding	of	the	different	components	of	Windows	based	authentication,	we	must	
collect	tokens,	sessions,	and	TGTs.	We	have	written	PowerShell	scripts	to	collect	each	of	these	
data	sets.	Links	to	the	scripts	are	included	in	each	section.	We	can	then	use	Windows	Remote	
Management	(WinRM)	or	Windows	Management	Instrumentation	(WMI)	to	execute	our	scripts	
across	a	large	set	of	systems	in	a	relatively	short	period	of	time.	In	our	specific	implementation,	
we	 use	 the	 Automated	 Collection	 and	 Enrichment	 Platform14	 (ACE),	 an	 open	 source	 data	
collection	and	enrichment	system.	

Access	Tokens	

Access	Tokens	are	our	main	focus	during	this	hunt,	but	can	be	misleading	in	certain	situations	
(see	“Make	Token	and	 Impersonate”).	The	majority	of	our	analysis	will	be	comparing	Process	
and	Thread	tokens.	For	instance,	a	process	with	a	Primary	(Process)	Token	for	a	normal	domain	
user.	Below	you	will	find	a	list	of	Windows	API	functions	to	collect	tokens.	

• Process32First	and	Process32Next	-	Iterates	through	currently	running	processes.	These	
functions	are	abstracted	within	PowerShell’s	Get-Process	cmdlet.	

• OpenProcess	 -	 Requests	 a	 handle	 to	 a	 process.	 This	 function	 is	 abstracted	 by	
PowerShell’s	Get-Process	cmdlet.		

• OpenProcessToken	-	Requests	a	handle	to	a	process’s	token.	
• Thread32First	and	Thread32Next	-	Iterate	through	current	threads.	These	functions	are	

abstracted	within	PowerShell’s	Get-Process	cmdlet.	
• OpenThread	-	Requests	a	handle	to	a	Thread.	
• OpenThreadToken	-	Requests	a	handle	to	a	thread’s	token.	If	no	token	is	present,	then	

the	thread	will	use	the	process’s	token.	
• GetTokenInformation	 -	 Query	 a	 token	 handle	 for	 its	 information	 (user,	 groups,	

privileges,	impersonation	level,	etc.)	

14 https://github.com/Invoke-IR/ACE

- 15 -

	
Our	 collection	 involves	 iterating	 through	 all	 Processes	 and	 Threads,	 and	 querying	 their	
associated	 tokens.	 You	 can	 see	 our	 implementation	 by	 reviewing	 our	 PowerShell	 script	Get-
AccessToken15.	

Kerberos	Ticket	Granting	Tickets	

Kerberos	 Ticket	 Granting	 Tickets	 allows	 the	 identification	 of	 what	 user	 identity	 was	 used	 to	
perform	Kerberos	authentication	for	a	specific	session.	As	TGTs	are	stored	in	the	context	of	the	
session,	we	must	first	enumerate	logon	sessions.	We	can	then	focus	on	sessions	with	a	Logon	
Type	of	“NewCredentials”	(Type	9),	so	we	can	compare	the	session’s	owner	with	the	TGT’s	user.	
This	will	allow	us	to	identify	abnormal	behavior.	

Below	is	a	list	of	Windows	API	functions	necessary	to	query	TGTs:	

• LsaEnumerateLogonSessions	-	Returns	a	handle	to	an	array	of	session	data	structures.	
• LsaGetLogonSessionData	 -	 Queries	 each	 session	 handle	 for	 its	 associated	 information	

(logon	type,	user,	etc.).	The	rest	of	this	code	will	 iterate	through	each	session	and	ask	
for	its	TGT.	

• LsaRegisterLogonProcess	 -	 Establishes	 a	 connection	 to	 the	 Local	 Security	 Authority	
Server.	

• LsaCallAuthenticationPackage	 -	 Calls	 a	 specified	 function	 implemented	 by	 an	
authentication	package.	In	this	case,	we	are	interested	in	interacting	with	the	Kerberos	

15 https://gist.github.com/jaredcatkinson/17698b39efd72f976a6a846ec3a8eacd

- 16 -

authentication	package	to	request	the	TGT.	We	can	use	the	KerbRetrieveTicketMessage	
Kerberos	message	type16	to	request	the	TGT	for	the	specified	session.	

• LsaDeregisterLogonProcess	 -	 Closes	 the	 connection	 to	 the	 Local	 Security	 Authority	
Server.	

With	this	information	we	can	now	perform	analysis	of	these	NewCredential	sessions	to	identify	
possible	 malicious	 activity.	 The	 Get-LogonSession17	 and	 Get-KerberosTicketGrantingTicket18	
PowerShell	scripts	show	our	implementation	of	these	functions.	

We	 now	 have	 the	 ability	 to	 collect	 the	 data	 we	 need	 to	 identify	 our	 target	 Access	 Token	
Manipulation	tasks.	

Phase	4:	Identify	the	Scope	

For	this	hypothesis,	we	will	limit	execution	to	a	single	week	to	gather	necessary	data,	perform	
analysis	 and	 complete	 the	 hunt	 effort.	 Due	 to	 the	 small	 size	 of	 our	 network	 and	 the	 lack	 of	
sensitive	 and/or	 production	 systems,	 our	 hunt	 will	 include	 all	 Windows	 systems	 in	 the	
environment	to	which	we	have	access.	

Phase	5:	Document	Excluded	Factors	

For	this	phase,	we	will	step	through	each	of	the	previous	phases	and	document	the	exclusions.	

16 https://msdn.microsoft.com/en-us/library/windows/desktop/aa378099(v=vs.85).aspx
17 https://gist.github.com/jaredcatkinson/c95fd1e4e76a4b9b966861f64782f5a9#file-get-kerberosticketgrantingticket-ps1-L2256
18 https://gist.github.com/jaredcatkinson/c95fd1e4e76a4b9b966861f64782f5a9#file-get-kerberosticketgrantingticket-ps1

- 17 -

Phase	1:	Identify	the	Tactics	and	Technique(s)	

Since	the	original	concern	was	around	PowerShell	Empire	which	is	a	full	featured	attack	toolset,	
there	 are	 a	 large	 number	 of	 Tactics	 and	 Techniques	 that	 can	 be	 extrapolated.	 To	make	 this	
hypothesis	more	approachable,	we	 chose	one	Tactic/Technique	 to	 focus	on	 for	 this	 exercise.	
For	a	complete	list	of	excluded	Tactics	and	Techniques,	see	Appendix	A.	

Phase	2:	Identify	the	Procedures	

In	 Phase	 2,	 we	 identified	 three	 distinct	 Access	 Token	 Manipulation	 implementations	 or	
procedures,	and	decided	to	 focus	on	the	two	of	 them	(Token	Theft/Impersonation	and	Make	
and	Impersonate).	The	third	procedure	Create	a	Process	with	a	Token	was	excluded	from	this	
hunt	as	 it	 is	difficult	to	differentiate	this	activity	 from	a	normal	Process	creation	which	would	
require	a	completely	different	detection	strategy	than	the	other	two	procedures.	

Phase	3:	Identify	Collection	Requirements	

In	 this	 hunt	 hypothesis,	 we	 are	 working	 on	 the	 assumption	 that	 there	 is	 no	 real-time	 data	
collection	 capability	 (no	 EDR	 solution),	 so	 collection	 requirements	 were	 identified	 with	 this	
limitation	in	mind.	If	real-time	collection	were	in	play	in	our	environment,	we	could	focus	our	
collection	 around	 API	 calls	 for	 SetThreadToken,	 ImpersonateLoggedOnUser,	
CreateProcessWithTokenW,	LogonUser,	etc.	

Phase	4:	Identify	the	Scope	

Due	 to	 PowerShell	 Empire	 being	 a	 Windows	 focused	 toolset,	 this	 hunt	 excluded	 all	 Linux	
systems.	 Additionally,	 due	 to	 a	 lack	 of	 credentials,	 we	 were	 unable	 to	 scan	 and	 analyze	 2	
systems	in	the	CYBERPARTNERS	domain.	If	credentials	were	granted,	scanning	could	take	place	
on	the	excluded	Windows	systems.	

Detections	

Token	Impersonation/Theft	

The	 example	 below	 demonstrates	 an	 attacker	 impersonating	 an	 token	 for	 the	 LocalSystem	
account19	 (NT	AUTHORITY\SYSTEM).	 The	 attacker	 starts	 by	 checking	 their	 current	 user	which	
happens	to	be	a	local	user	named	“tester”.	Next	the	attacker	calls	the	Get-System20	function	to	

19 https://msdn.microsoft.com/en-us/library/windows/desktop/ms684190(v=vs.85).aspx
20 https://github.com/jaredcatkinson/PSReflect-Functions/blob/master/Examples/Get-System.ps1

- 18 -

“steal”	 a	 token	 from	 the	 winlogon	 process	 and	 then	 checks	 to	 ensure	 that	 they	 are	 indeed	
running	as	LocalSystem.	Once	this	is	confirmed	the	attacker	can	move	on	with	their	other	tasks.	

	

As	a	defender,	we	can	use	the	Get-AccessToken	function,	which	 implements	the	API	 function	
calls	mentioned	earlier	in	this	section,	to	query	all	tokens.	Once	all	tokens	are	collected,	we	can	
inspect	 the	 Impersonation	 Tokens	 for	 odd	 behavior.	 Get-AccessToken	 produces	 objects	 that	
convey	 information	about	 the	 token	 in	question	as	well	 as	 the	process’s	Primary	Token.	 This	
allows	 us	 to	 quickly	 identify	 who	 is	 impersonating	 whom.	 Recall	 that	 the	 purpose	 of	
Impersonation	 in	 Windows	 is	 to	 allow	 a	 server	 application	 to	 impersonate	 a	 client,	 so	 a	
situation	like	an	svchost	process	impersonating	the	local	tester	account	may	be	normal	but	the	
tester	account	impersonating	LocalSystem	is	certainly	not.	

	

If	we	take	a	look	at	the	tokens	for	the	powershell.exe	process	specifically,	we	again	see	that	the	
process	was	started	as	the	tester	user,	but	later	impersonated	the	LocalSystem	account.	

	

- 19 -

Make	Token	and	Impersonate	

Recall	 that	 this	 technique	 creates	 a	 new	 Logon	 Session	 using	 a	 specified	 username	 and	
password.	This	newly	created	Logon	Session	will	have	a	Logon	Type	of	NewCredentials	which	
means	the	associated	token	will	appear	to	be	the	original	calling	account,	not	the	user	passed	
to	 the	 LogonUser	 API	 function.	 This	 makes	 it	 difficult	 for	 defenders	 to	 identify	 anomalies	
between	the	local	and	network	users.		

During	 some	 research	 on	 a	 hypothesis	 for	 the	 Pass-the-Ticket	 technique,	we	 found	 that	 if	 a	
domain	account	 is	used	for	Kerberos	authentication,	then	the	NewCredentials	Logon	Sessions	
(Logon	Type	9)	would	request	a	TGT	for	the	network	user.	We	can	now	compare	the	the	Logon	
Session’s	 user	 (local	 user)	 against	 the	 TGT’s	 user	 (network	 user).	 Again,	 this	 type	 of	 activity	
should	be	relatively	rare	and	should	follow	expected	use	cases	associated	with	runas	/netonly.	
One	 accepted	 use	 case	 would	 involve	 a	 non-administrative	 user	 elevating	 to	 their	
administrative	credentials	to	perform	certain	tasks.	

In	this	example,	we	see	a	NewCredentials	Logon	Session	where	the	session	was	started	by	the	
LocalSystem	 account.	 When	 we	 query	 the	 session’s	 TGT,	 we	 find	 that	 a	 ticket	 has	 been	
requested,	 and	 granted,	 for	 the	 citadel.covertius.local\wschroeder_da	 user.	 Based	 on	 our	
corporate	 naming	 convention,	 we	 know	 that	 the	 wschroeder_da	 account	 is	 a	 Domain	
Administrator	account	in	the	CITADEL	domain.	While	a	NewCredentials	Logon	Session	elevating	
to	a	Domain	Administrator	user	is	not	necessarily	abnormal,	it	is	definitely	not	normal	for	that	
elevation	 to	occur	 from	 the	 LocalSystem	account.	 This	 activity	has	 the	evidence	of	 the	Make	
Token	and	Impersonate	procedure.	

	

- 20 -

Now	that	we	have	identified	a	Logon	Session	exhibiting	the	symptoms	of	the	Make	Token	and	
Impersonate	 attack,	 we	 can	 use	 Lee	 Christensen’s	 Get-LogonSessionProcesses21	 function	 to	
query	a	list	of	processes	associated	with	our	possibly	malicious	Logon	Session.	Remember	that	
NewCredentials	Logon	Sessions	are	not	malicious	 in	a	vacuum,	but	one	that	acts	on	behalf	of	
the	 LocalSystem	 account	 locally	 and	 as	 a	 Domain	 Administrator	 on	 the	 network	 is	 definitely	
suspicious.	

	

	 	

21 https://github.com/leechristensen/Random/blob/master/PowerShellScripts/Get-LogonSessionProcesses.ps1

- 21 -

Conclusion	

When	faced	with	the	challenge	of	beginning	to	hunt,	it	can	be	very	difficult	to	know	where	to	
start	 and	 how	 to	 ensure	 that	 the	 time	 and	 effort	 of	 hunting	 is	 not	 being	 wasted.	 Planning	
hunting	efforts	around	well	thought	out	hypotheses	will	ensure	that	all	the	time	and	effort	of	
hunting	is	worthwhile.	This	allows	for	long	term	hunt	planning,	focusing	on	solving	incremental	
challenges	week	by	week	rather	than	biting	off	more	than	can	be	achieved.	This	approach	will	
ensure	that	malicious	activity	is	hunted	for	through	to	completion	due	to	the	specificity	of	the	
hunt	hypotheses.	 	Additionally,	planning	the	hunting	effort	will	help	prevent	“going	down	the	
rabbit	hole”	and	focusing	too	much	on	a	very	small	issue	for	an	extended	period	of	time.	While	
progress	may	seem	slow	at	first,	as	the	weeks	go	by	more	and	more	of	the	ATT&CK	matrix	will	
have	coverage	and	the	security	posture	will	greatly	increase.	
	
The	focus	of	the	hunt	hypothesis	 is	to	search	for	malicious	behaviors	 in	the	environment,	not	
trying	to	find	hashes	of	tools	or	known	bad	IP	addresses	to	blacklist.	Behavioral	detections	will	
continue	 to	 provide	 value	 even	 if	 an	 attacker	 recompiles	 a	 tool	 or	 changes	 command	 and	
control	systems.	Having	anti-virus	and	network	monitoring	blocking	known	bad	is	not	a	waste	
of	 time,	 however	 hunt	 efforts	 should	 be	 reaching	 above	 and	 beyond	 brittle	 easily	 changed	
indicators.	
	
In	the	Access	Token	case	study,	not	every	possible	malicious	activity	was	able	to	be	completed	
in	 the	 current	 hypothesis,	 however	 there	 is	 now	 a	 capability	 to	 detect	 some	 activity	 where	
there	 was	 none	 before.	 For	 future	 hunt	 hypotheses,	 the	 research	 conducted	 and	 excluded	
areas	which	were	not	able	to	be	researched	in	the	scope	of	the	current	hypothesis.	The	goal	of	
this	process	is	to	allow	for	anyone	to	create	an	actionable	targeted	hunt	hypothesis	that	can	be	
executed	and	provide	security	to	an	environment.	

- 22 -

Appendix	

All	Tactics	and	Techniques	(PowerShell	Empire)	
• Persistence

o Accessibility Features
o Authentication Package
o Component Object Model Hijack
o Modify Existing Service
o New Service
o Registry Run Keys
o Scheduled Task
o Security Support Provider
o Service Registry Permission Weakness
o Valid Accounts
o Windows Management Instrumentation Event Subscription

• Privilege Escalation
o Access Token Manipulation
o Accessibility Features
o Bypass User Account Control
o DLL Injection
o DLL Search Order Hijacking
o File System Permission Weakness
o New Service
o Scheduled Task
o Service Registry Permission Weakness
o Valid Accounts

• Defense Evasion
o Access Token Manipulation
o Bypass User Account Control
o Component Object Model Hijacking
o DLL Injection
o DLL Search Order Hijacking
o File Deletion
o InstallUtil
o Modify Registry
o Regsvr32
o Scripting
o Timestomping
o Trusted Developer Utilities
o Valid Accounts

• Credential Access
o Create Account
o Credential Dumping
o Credentials in Files
o Input Capture

• Discovery
o Account Discovery
o File and Directory Discovery
o Network Share Discovery

- 23 -

o Permission Group Discovery
o Process Discovery
o Query Registry
o Remote System Discovery
o Security Software Discovery
o System Information Discovery
o System Network Connection Discovery
o System Owner/User Discovery
o System Service Discovery
o System Time Discovery

• Lateral Movement
o Pass the Hash
o Pass the Ticket
o Remote File Copy
o Remote Services
o Windows Admin Shares
o Windows Remote Management

• Execution
o Command-Line Interface
o Execution through API
o Execution through Module Load
o InstallUtil
o PowerShell
o Regsvr32
o Rundll32
o Scheduled Task
o Scripting
o Service Execution
o Trusted Developer Utilities
o Windows Management Instrumentation
o Windows Remote Management

• Collection
o Clipboard Data
o Input Capture
o Screen Capture

• Exfiltration
o Data Compressed
o Data Encrypted
o Data Transfer Size Limits
o Exfiltration Over Command and Control Channel

• Command and Control
o Commonly Used Port
o Connection Proxy
o Data Encoding
o Data Obfuscation
o Multi-Stage Channels
o Multilayer Encryption
o Remote File Copy
o Standard Application Layer Protocol

