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Background 
The classic Flash exploit for many past years, regardless of the type of the bug, was mainly about 
corruption of the length field of Vector objects. For instance, a heap overflow exploit sprays Vectors and 
creates memory holes by freeing some Vectors. Vulnerable buffer is created to occupy one of the memory 
holes, corrupting the length field of a Vector object by triggering an overflow. A Vector with a large 
length is then utilized to search the process memory for ROP gadgets. Then ROP chain is triggered by a 
fake virtual function table. 
For “use-after-free” bugs, the exploitation process is largely similar to that of heap overflow exploits. With 
a proper heap memory layout, vulnerable objects falling in one of the memory holes is released because 
of the “free” in “use-after-free” and occupied with controlled Vector data. After the member function of a 
dangling pointer is invoked, a fully controllable memory write will corrupt one of the length fields. Other 
aspects are similar to that of heap overflow exploits. 
  

Mitigation 
Since the length field is located at the beginning of the Vector buffer. It is convenient to be exploited 
through various Flash and even browser vulnerabilities. Length fields have been exploited more than 
three years now, since Adobe only patched the vulnerability itself instead of mitigating against the 
exploitation method. Eventually in December 2015, the popularity of Hack Teams’ Flash exploit played a 
major role in Adobe’s adoption of relevant mitigation. With the help of Google Project Zero, Adobe added 
mitigations to the Vector. With the mitigation, length field moves to the metadata part with only a 
verification cookie in the old position. The length field and the cookie now reside in different memory 
blocks, rendering simultaneous corruptions of both impractical.  
One month after implementing the Vector mitigation, Adobe added verification fields to ByteArray, which 
is another popular array-like structure inside Flash. While the verification and length fields are still staying 
in the same block, although only rarely, powerful 0-day exploits including those used by P2O were able to 
read the verification field first and calculate the secret randomized value by applying XOR to the length 
and the verification field, and then corrupting them simultaneously. However, this behavior is highly 
dependent on the quality of the exploited vulnerability. For example, for a type-confusion bug, the ability 
to read and corrupt the verification cookie essentially implies that the bug itself is capable of accessing 
any part of the memory. Even without the corruption of ByteArray, the quality of the bug is sufficient to 
guarantee successful exploitations.  
In addition to the length verification, isolated heap was also introduced into Flash. Its mechanism was 
first explained in Google Project Zero’s blog. Basically, Object and Data are separated and allocated in 
different memory partitions. Even if a “use-after-free” bug exists, it is impossible to control the content of 
the freed object with Vector or ByteArray content as before. Nevertheless, it is still possible to occupy the 
freed objects’ memory with class objects in the same partition, which is the type of exploit that we 
discuss below. 
In summary, Adobe’s mitigations had disarmed the classic and popular Flash exploit. In addition, there is 
yet another mitigation technique called Memory Protector, which was introduced into Flash version 22 
this June. Since it does not affect our method nor the vulnerability that we are interested in, it is not 
discussed further here. 



Use-After-Use-After-Free 
What are the necessary conditions to exploit a “use-after-free” bug successfully? I think a read primitive 
helps a lot, which is commonly shared between previous Flash exploits. All modules are ASLR nowadays, 
hence with only a read primitive, one can find ROP gadgets and wrappers to set the executive bit of the 
shellcode. Specially for “use-after-free” type of exploits, we are able to fake the virtual function table by 
just occupation. A memory write is not a necessity.  
Currently, exploits gain read primitives by tampering with the length field of array-like objects with large 
numbers, which contrasts with my approach to tamper with the start addresses. Also, Vectors and 
ByteArrays are not the only candidates. Other ActionScript classes also contain array-like structures inside. 
As a proof of concept, I will start with the simplest array structure, the String Object. 
If a class holds a String inside, its structure is similar to that as depicted in Figure 1.  

Figure 1. A class contains a String. 

The String here is not an ActionScript “String”, otherwise it will be just an atom reference pointer here, 
instead of length and start address. Some class objects only store the String inside with no further 
operations, so they prefer a self-defined, light weighted String structure instead of ActionScript “String”. 
Then, with the help of a “use-after-free” bug, we are able to release the object’s memory and occupy it 
with controlled content, where the start address is set to any desired value. Presently, we are able to 
access the target memory through the String object. After operating on the target memory, we assume 
that the object can be released again. With repeated occupations and releases, the String becomes a read 
primitive. This process is the main component of our exploitation method. Since there are many cycles of 
releases and occupations. Our exploitation method is named “use-after-use-after-free”. 
The process described above is idealistic. Most frequently, we require one additional preparation step. 
During the initial steps of the “use-after-free” bug exploit, after the vulnerable class is released, we occupy 
it with our selected class object that is in the same size of the vulnerable class and holds a String 
structure. Because of the heap isolation, these two classes must reside in the same memory partition. 
When we invoke the virtual function with the dangling pointer, we invoke the function with the same 
offset but resides in the selected class’s virtual function table. The key point is that such type-confusion 
status is not expected by any of the functions and may help to release the selected class memory, 
resulting in two dangling pointers pointed to the same memory block. This step prepares us to perform 
the read primitive process. 

Case Study 
I discovered CVE-2016-1097 and reported it to Adobe in May. My approach employed a “use-after-free” 
bug of the “PSDK" class. “PSDK” belongs to the “mediacore" package, which was firstly seen in Flash 
version 19. I discovered this package by decompiling the player global file and cross-comparing it with its 
old version (Figure 2).  
The package is undocumented, but there is some related information that can be found from Adobe 
Primetime Player SDK. This SDK is used to develop cross-platform TV based application. For the PC side, 
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the SDK is mainly a group of ActionScript files. My hypothesis is that, the “mediacore" package is a native 
implementation of this SDK inside Adobe Flash Player. 

Figure 2. Cross-comparing of AS3 classes. 

Apparently, this package has not been thoroughly tested as presented in Flash. I found many memory 
corruptions of this package in August of 2015. After reporting those issues to Adobe, they removed the 
entire package for half a year and reintroduced it in Flash version 21. The “use-after-free” bug we discuss 
below is found right after the reintroduction of “PSDK”. Below is a code snippet to trigger the “use-after-
free” bug: 

function poc() 
{ 
    var ps:PSDK = PSDK.pSDK; 
    ps.release(); 
    ps.createdispatcher(); 
} 

The only way to get an instance of "PSDK" is through its static member property “PSDK". Apparently 
"PSDK" is constructed by the AVM (ActionScript Virtual Machine). Naturally, it should be destructed and 
cleaned by the AVM as well. The "PSDK" unexpectedly contains a method called “release()” that can be 
invoked directly from ActionScript level to explicitly release a class object’s memory. This is rarely the case 
of Flash objects, which normally depend on their reference counts of to become zero, while the garbage 
collector (MMgc), scans all objects periodically and opportunistically releases the class’s memory. Since 
the "PSDK" class is undocumented, we are uncertain if this manual release operation is necessary. 
However, after the class is released, its atom reference still points to the class memory. Hence we are 
facing the old text-book “use-after-free”. 



32-bit exploit 
"PSDK" requires 0x20 bytes in memory, all the ActionScript-level member functions are indexed in the 
first virtual function table, the destructor is indexed in the second one. The destructor can only be 
invoked by MMgc to release its class memory. 
In order to occupy the memory of "PSDK" class, we have to choose a class from the same partition and 
with the same size as the "PSDK" class. I manually checked all the classes under the “mediacore" package. 
which are the most probable candidates. Classes under the same package are highly likely to be 
implemented in a consistent way, especially with regards to memory management.  

Figure 3. Type-confusion function call 

I settled on the “Track” class, which contains two string fields and is the same size as "PSDK". Newly 
constructed “Track” will then occupy freed memory of "PSDK". If we invoke “createDispatcher()” with the 
dangling pointer, it is the virtual functions of “Track” being indexed (Figure 3). This type-confusion 
function call decrements the second DWORD and releases current memory if the DWORD becomes zero. 
The second DWORD of current class is the length of the first String field. If we initialize “Track” with a 
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single character String, the length field shall be 1. After decrementing it, current memory will be released 
once again after “use-after-free”.  
At the moment, we have a dangling pointer in the type of “Track”. To retrieve a read primitive, we need a 
mechanism to occupy and release current memory with controlled data freely. 
“Metadata.setByteArray()” is a handy function that allow us to finish the task. “setByteArray()” duplicates 
input bytes inside “Metadata”. Since “Metadata” is also under the “mediacore" package, it shares the same 
heap partition with “Track”. 
“setByteArray()” starts by allocating a temporary memory space to preprocess input bytes. This temporary 
space occupies the memory space of “Track”. Afterwards, a new buffer will be allocated to store the input 
bytes inside "Metadata". What makes this function desirable is that the temporary memory is 
subsequently released automatically at the end of “setByteArray()”. Hence our “Track” ‘s memory, which is 
filled with controllable content, will still be freed. 
Recall that, after the "PSDK" class was released, “Track” took its position, then type-confusion function call 
released “Track” again.  
With the help of “setByteArray()”, we can easily occupy and corrupt the start address of the String object. 
Each time we could set the 0x10 offset (start address of the second String field of “Track”) of the ByteArray 
to be the target address, then “setByteArray()” will push the data over “Track”. Subsequently, accessing 
“track.language” returns the content of target memory.  

bytes.postion = 0x10; 
bytes.writeUnsignedInt(0xadd7e555); 
mt.setByteArray("address", bytes); 
res = track.language; 
value = (res.charCodeAt(3)<<24); 
value|= (res.charCodeAt(2)<<16); 
value|= (res.charCodeAt(1)<<8); 
value|= (res.charCodeAt(0)); 

This above code can be looped as needed to read arbitrary memory and permits us to read any place 
inside the process memory. 
We can simply read a stable location sprayed with “this” (current class pointer). With the current class 
pointer, we can find self-defined variables like ByteArray or Vector (used to store shellcode and fake 
virtual function table) starting from the 0x54 offset. With virtual function tables of any found variables, we 
can find the module base address of Flash and begin searching the ROP chain. Such technique is well-
explained in Hack Team’s Flash exploit. It is an efficient process with less brute force searching compared 
to other known techniques. 
After every buffer is filled and linked, “setByteArray()” is invoked one more time to corrupt the second 
virtual function table. We corrupt the second virtual function table instead of the first one because the 
release of the temporary memory space brought by “setByteArray()” has a minor side effect of modifying 
the first byte of current memory. Therefore, we cannot fully control the first virtual function table. After all 
the ActionScript code in our exploit is executed, MMgc will attempt to release the memory of "PSDK" by 
invoking the destructor inside the second virtual function table that holds the ROP chain address. 

Figure 4. Trigger the ROP via second virtual function table of "PSDK". 
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ROP chain simply invokes a wrapper inside Flash (Figure 4). The wrapper code will call VirtualProtect to set 
the executive bit of the shellcode memory then jump over. Searching pattern for this wrapper remains 
unchanged since CVE-2014-0515 to Flash version 21. Beginning with Flash version 22, searching pattern 
is push [eax - 0x0C], push [eax - 0x08], compared to the original push [eax - 0x08], push [eax - 0x04]. This 
change is necessary due to the Memory Protector, which is a new mitigation to delay the release of 
objects’ memory spaces.  An extra field is added to this wrapper function. We will discuss this mitigation 
later in the conclusion part. 

64-bit Exploit 
Principally, memory layouts of Flash objects are different between the 64-bit and the 32-bit versions. The 
pointers in the 64-bit version increase in size from 4 bytes to 8 bytes. As a result, "PSDK" and “Track” are no 
longer the same size. We resort to choose “MediaResource” class to occupy the memory of "PSDK". 
“MediaResource” is also under “mediacore" package and contains a String object inside. See code 
snippets below. 

ps = PSDK.pSDK; 
ps.release(); 
ms = new MediaResource("jack", 0x54336677, null); 
try{ 
    ps.createDefaultContentFactory(); 
}catch(e:Error){} 

This type-confusion function call treat offset 0xF0 of current memory as a reference count (Figure 5), 
decrements it and release “MediaResource” if it is zero. 

Figure 5. Type-confusion function call under 64-bit. 

While 0xF0 offset is out of bounds of the current class, we cannot control that part of memory with 
member property of “MediaResource” as we did with “Track” under 32-bit versions. However, we can still 
control that part of memory by occupying it with “setByteArray()” before "PSDK" is released. 

var bytes:ByteArray = new ByteArray(); 
bytes.endian = "littleEndian"; 
bytes.position = 0x30; 



bytes.writeInt(1); 
mt.setByteArray("jack", bytes); 

There are two reasons why we can simply invoke “setByteArray()” once to occupy the 0xF0 memory. The 
first reason is that "PSDK", “Track” and other classes under the “mediacore “package are using a different 
heap partition compared to other traditional Flash objects. Traditional Flash objects are completely 
managed by MMgc on self-maintained Flash heaps. Whereas, "PSDK" and “Track” are managed directly via 
“malloc()” and “free()” on the default/CRT heap. It is possible that this is a new trend in Adobe Flash, 
moving self-managed VirtualAlloc objects to the default heap. This new memory partition is rather pure 
in composition. After "PSDK" is initialized, the memory after "PSDK" are not interfered by traditional Flash 
objects. When “setByteArray()” is invoked, it is the first time the memory after "PSDK" is allocated. The 
second reason is that “setByteArray()” allocates two pieces of memory, one is temporary and the other 
one storing inside "Metadata". In combination with the memory of “PSDK”,  the memory blocks associated 
with “setByteArray()” cover the 0xF0 memory. 
After “MediaResource” is released, a read primitive is gained. However, this time we cannot start by 
reading a sprayed Vector’s memory, since heap sprays of normal Flash objects are high 32-bit 
randomized. 
Fortunately, I found that spraying malloced Flash objects under Windows 7 does not lead to sufficiently 
high entropies of heap randomization (hight 32-bit remains zero). To spray malloced Flash objects, I 
choose another class, “AdAsset “under “mediacore", which works like an array and is capable of storing 
different kinds of objects. If we create “AdAsset” many times, classes inside them will duplicate themselves 
and cover a stable memory location. One of the classes inside “AdAsset” is “MediaResource”, which also 
contains an integer value that can be used as a flag. 

gc_arr = new Array(); 
ad = new AdClick("","",""); 
ms = new MediaResource("jack",0x54336677,null); 
mt = new MetaData(); 
for(var i=0;i<0x80000;i++) 
{ 
    gc_arr[i]=new AdAsset("",1,ms,ad,mt); 
} 

From the sprayed memory we can locate our flag and thus “MediaResource” with adjacent "Metadata". 
"Metadata" can be a replacement of ByteArray or Vector to store the shellcode, the ROP chain and the 
fake virtual function table. Every set of bytes stored inside can be indexed via fixed offsets. Notice that the 
offset for the second step is calculated via a hash function. The buffer we need can be stored in different 
locations via different key names. The hash value can only be 0-7. We want to avoid a hash collision, or 
else there will be a list structure inside "Metadata", increasing the difficulty for us to locate the buffer. As 
we do not need many buffers, we choose proper key names to ensure unique hash values. With the 
known address buffer, the fake virtual function table trick operates similarly to that as applied to 32-bit 
versions. 

Windows 10 Exploit 
Currently, all experiments are conducted under Windows 7. I do not intend to build a fully workable 
exploit under Windows 10. Instead, I will provide a quick peek to illustrate some key differences. 
As usual, "PSDK" is allocated via “malloc()” on the LFH (Low Fragment Heap). However, the LFH has 
evolved from Windows 7 to Windows 10. Heap randomization is added into LFH in Windows 10, which 
makes heap occupation in Windows 10 compared to Windows 7 less predictable. For Windows 7, after a 
memory block is freed, it is tabulated at the end of the memory block free-list. When next allocation 



occurs, the most recently freed block will be the next one allocated. For Windows 10, there is a bitmap 
controlling the allocation, but we can still use the free-list model to understand its operations. When a 
memory block is freed, it is added to the memory block free-list. If for example, there are “n” blocks on the 
free-list, when the next allocation occurs, LFH will choose one of these blocks randomly and hence we 
cannot determine if the previously freed block is occupied or not with one allocation.  
I deduced via black-box experimentations with heaps that the occupation can still work with multiple 
attempts, but “n” allocations do not yield full occupation. After “n-1” normal allocations, LFH will allocate a 
new free-list and randomly choose one of its blocks to allocate for “n”-th try,  in order to increase the 
randomness. However, the extent of randomization is limited, as after two to three cycles of free-list 
allocations, LFH realizes that there is still one free block on the first free-list and makes an attempt to 
allocate it, thus giving us eventual occupation. My deductions corroborate well with reverse-engineered 
results by others of “ntdll.dll”. 
After "PSDK" is released, we can construct “Track” hundreds of times to ensure that it eventually occupies 
the memory. Because of the Flash object layout under Windows 10, we invoke “createAdPolicySelector()”.  

ps.release(); 
for(i=0;i<0x100;i++) 
    track = new Track("j","lan",true,true); 
ps.createAdPolicySelector(1,mp); 

This type-confusion function call is simpler to control than Windows 7, as we do not need to control any 
part of memory. We only need to pass the parameter “1” and “Track” will be released (Figure 6). Then we 
are in the read primitive situation once again. For the read primitive part, each cycle of “setByteArray()” 
need to be looped multiple times as we did with the "PSDK" occupation. This is the extent of my research 
on this type exploit under Windows 10. 

Figure 6. Type-confusion function call under Windows 10. 

It seems that Windows 10 presents a tough environment for us to exploit, but our “use-after-use-after-
free” exploitation technique may still find its way to a read primitive with a proper approach. 

Conclusion 
After my submission of the discovered bug to Adobe, they chose to manually remove the associated 
atom reference at first in a manner that can be bypassed. Hence producing yet another bug 



CVE-2016-4248. If we declare two references and invoke “release()” with one of them and trigger a “use” 
with the other, then the “use-after-free” bug still exists. 
The modification to the triggering code involves changing one line. All the remaining exploitation code is 
absolutely the same. As it was Flash version 22 by then, Adobe had introduced the Memory Protector into 
Flash, presumably a mitigation technique learnt from Microsoft, which is used to delay the release of class 
objects. However it does not affect the “use-after-free” exploitation of “PSDK”, perhaps because it is a 
mitigation technique only focused on class objects allocated by MMgc. I conducted no further analysis 
was conducted on this mitigation technique, as it does not interfere with our exploitation procedures. 
Subsequently, Adobe completely abandoned the “release()” function for the next patch.  
Our “use-after-use-after-free” is a relatively common way to exploit an “use-after-free” bugs. The idea 
behind this method is adaptable to other platforms. I have seen such occupation/release and type-
confusion exploits targeting an iOS kernel. Although the first step to released the selected class via a 
type-confusion call may seem complicated, I have demonstrated that it is possible under three different 
Flash versions, across both 32-bit and 64-bit versions under Windows 7 and a 32-bit version of Windows 
10. 
As I have implemented, the occupation and release cycle deals with a String object and thus give us a 
read primitive. Extending this idea in the future, we may find other array structures to replace String and 
hopefully gain the ability to write primitives, which are helpful to overcome mitigations under Windows 
10. 


