AI Based Antivirus: Detecting Android Malware Variants With a Deep Learning System

Thomas Lei Wang
@thomaslwang
About me

• My first (boring) job was a virus analyst in 2004.
• I had a dream…
Virus Analysis VS Image Recognition

Experienced virus analyst sometimes is doing image recognition!

Image Provided by the MNIST handwritten database
Sample increase VS signature efficiency decrease

Malicious apps, Dowgin samples and Dowgin signatures are counted from our database.
Our evolution

- Signature based rules
- Behavioral based rules
- Opcode based rules
- AI based deep learning system
Training

Feature Extraction
- Structural type
- Statistical type
- Empirical type
- Continuous value
- 0-1 value

Feature Normalization
- Standard score normalization
- Cutting technique
- Quantile normalization

Training in Deep Neural Network
- PaddlePaddle platform
- Residual layer
- AutoEncoder
- Configuration tunings

Models
- Malware model
- PUA model

Prediction

Input APK features

Model

Output
Feature extraction

APK

Structural features
- Number of uses-permissions in AndroidManifest
- Number of picture files in /res
- Size of /res
- Number of classes starts with Lcom/
- Number of classes starts with Ljava/
- Num of fields type boolean
- Num of methods which has parameters > 20

Statistical features
- Count certificate fields in samples to get 100 strings with discriminative info. E.g. emailAddress=MGame@mobile.com malicious/benign = 52

Empirical features
- Has executable file in /res
- Has apk file in /assets
- Register DEVICE_ADMIN_ENABLED broadcast and has sendSMSMessage permission

Numeralization (N = 1235)

- Continuous value (N = 571)
 - 205 3 34.5 143234
 - 285 68 296 7
 - 13850 157 11218 847
 - 1.23e+9 422 1004 177
 - 0 398 13.333 125

- 0-1 value (N = 664)
 - 0 0 0 0
 - 0 0 0 1
 - 0 1 0 0
 - 0 1 1 0
 - 0 1 0 0
Feature normalization

To make features more discriminative
Precision increased by 9%

Gaussian distribution

Standard score normalization

\[z = \frac{x - \mu}{\sigma} \]

Continuous value

Noise problem

Cutting technique

Multimodal distribution

Cutting technique

Quantile normalization

Long-tailed distribution

[-1, 1]
Training in deep neural network

Configurations:
- Hidden layer activation function: Tanh and ReLU
- Cost function: Multiclass cross entropy
- Learning method: ADADELTA
- Final layer activation function: Softmax
- Passes: 20 – 30

Network Architecture

Trained on PaddlePaddle platform with 15M+ samples
Detection performance as ROC curve

ROC curve is test against AV-TEST July’s samples: 7613 Android malware, 3020 legitimate Android apps, total 10633.

The lifetime of model trained on Jan 2016

The model is trained on Jan 2016 and tested against AV-TEST Jan, Mar, May and July’s samples. Recall rate dropped by 7.6% in 6 months.
Limitations

- Can’t provide explanations for its detection results
- Can’t understand code meaning.
- Build on static analysis and lack of dynamic inspection.
- Can’t self learning, need continuous training with labeled data.

Advantages

- More difficult to evade
- Fixed-size
Conclusion

• Feature extraction is the key step
 • Virus analyst experience can help to find valuable features.
 • AutoEncoder neural network can be used to extract the most valuable features from a large number of features.

• This system is designed to detect Android malware, but these methods can also be used in detecting malware in other platforms.

• Our system learns in image recognition way. It’s effective only in detecting malware variants.
Thank you

• Welcome contact me
 • Twitter: @thomaslwang
 • Email: thomas.l.wang@gmail.com

• Welcome cooperation and partnership with us

• Acknowledgement
 • Baidu IDL: Lyv Qin, Xiao Zhou, Jie Zhou, Errui Ding, Yuanqing Lin, Andrew Ng
 • Partner: Liuping Hou, Jinke Liu, Zhijun Jia, Yanyan Ji
 • PaddlePaddle platform http://paddlepaddle.org