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About me 
• My first (boring) job was a virus analyst in 2004.  
•  I had a dream… 



Virus Analysis VS Image Recognition 

Experienced	virus	analyst	some*mes	is	doing	image	recogni*on! 

Image	Provided	by	the	MNIST	handwriHen	database 



Sample increase VS signature efficiency decrease 

Number	of	Malicious	Android	Apps Dowgin:	A	Rich	Variants	Android	Adware	Family	
New	Dowgin	Samples	VS	Average	Dowgin	Samples	Hit	Per	Signature 

Malicious	apps,	Dowgin	samples	and	Dowgin	signatures	are	counted	from	our	database. 
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APK 

Feature extraction 

Structural	features	
• Num	of	uses-permissons	in	AndroidManifest	
• Number	of	picture	files	in	/res	
• Size	of	/res	
• Number	of	classes	starts	with	Lcom/	
• Num	of	classes	starts	with	Ljava/	
• Num	of	fields	type	boolean	
• Num	of	methods	which	has	parameters	>	20 

Empirical	features	
• Has	executable	file	in	/res	
• Has	apk	file	in	/assets	
• Register	DEVICE_ADMIN_ENABLED	
broadcast	and	has	sendSMSMessage	
permission	

 

Sta*s*cal	features	
• Count	cer*ficate	fields	in	samples	to	get	
100	strings	with	discrimina*ve	info.	E.g.	
emailAddress=MGame@mobile.com	
malicious/benign	=	52	
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CuVng	
technique	

Feature normalization 

Con*nuous	
value 

Gaussian	distribu*on 

[-1,	1] 

Standard	score		
normaliza*on 

To	make	features	more	discrimina*ve	
Precision	increased	by	9% 

Noise	problem	

Long-tailed	distribu*on	

Quan*le	normaliza*on 
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Mul*modal	distribu*on	



Tanh ReLU 

Training in deep neural network 

AutoEncoder 

Configura*ons:	
• Hidden	layer	ac*va*on	func*on:	Tanh	
and	ReLU	
• Cost	func*on:	Mul*class	cross	entropy	
• Learning	method:	ADADELTA	
• Final	layer	ac*va*on	func*on:	Sormax	
• Passes:	20	–	30	
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Trained	on	PaddlePaddle	plaYorm	with	15M+	samples 



Prediction & Evaluation 

Models 

Extract	apk	features	
on	the	phone	
Perf:	140ms/apk	
Traffic:	1kB/apk	

Send	features	to	
the	cloud 

Return	predic*on	to	
the	phone 

Predic*on 

Predict	in	
the	cloud	

Apk	features 

Produc+on	deployment 

0.88	
0.89	
0.9	
0.91	
0.92	
0.93	
0.94	
0.95	
0.96	
0.97	

Jan	2016	 Mar	2016	 May	2016	 Jul	2016	

The	life*me	of	model	trained	on	Jan	2016 

The	model	is	trained	on	Jan	2016	and	tested	
against	AV-TEST	Jan,	Mar,	May	and	July’s	
samples.	Recall	rate	dropped	by	7.6%	in	6	
months.	
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Detec*on	performance	as	ROC	curve 

ROC	curve	is	test	against	AV-TEST	July’s	samples:	
7613	Android	malware,	3020	legi*mate	Android	
apps,	total	10633.	
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Limitations 
• Can’t provide explanations 

for its detection results 
• Can’t understand code 

meaning. 
• Build on static analysis and 

lack of dynamic inspection. 
• Can’t self learning, need 

continuous training with 
labeled data. 

Advantages 
• More difficult to evade 
• Fixed-size 



Conclusion 
• Feature extraction is the key step 

•  Virus analyst experience can help to find valuable features. 
•  AutoEncoder neural network can be used to extract the most valuable 

features from a large number of features. 
• This system is designed to detect Android malware, but these 

methods can also be used in detecting malware in other 
platforms. 

• Our system learns in image recognition way. It’s effective only in 
detecting malware variants.  



Thank you 
• Welcome contact me 

•  Twitter: @thomaslwang 
•  Email: thomas.l.wang@gmail.com 

• Welcome cooperation and partnership with us 
• Acknowledgement 

•  Baidu IDL: Lyv Qin, Xiao Zhou, Jie Zhou, Errui Ding, Yuanqing Lin, 
Andrew Ng 

•  Partner: Liuping Hou, Jinke Liu, Zhijun Jia, Yanyan Ji 
•  PaddlePaddle platform http://paddlepaddle.org 


